1
|
Niu B, Sihai G, Gong H, Hu P, Shah P, Liu X, Xia Y, Yao D, Klugah-Brown B, Biswal B. Assessment of Hyperacute Cerebral Ischemia Using Laser Speckle Contrast Imaging. Brain Connect 2024; 14:459-470. [PMID: 39291777 DOI: 10.1089/brain.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Background: Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision making. Laser speckle contrast imaging-based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. Method: In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature. Pearson correlation was used to examine the correlation between damaged vessels. Granger causality analysis was used to investigate causality correlation in ischemic vessels. Results: Resting state analysis revealed a negative Pearson correlation between regional arteries and veins. Following cerebral ischemia induction, a positive artery-vein correlation emerged, which vanished after blood flow reperfusion. Granger causality analysis demonstrating enhanced causality coefficients for middle artery-vein pairs during occlusion, with a stronger left-right arterial effect than that of right-left, which persisted after reperfusion. Conclusions: These processing approaches amplify the understanding of cerebral ischemic images, promising potential future diagnostic advancements.
Collapse
Affiliation(s)
- Bochao Niu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guan Sihai
- College of Electronic and Information, Southwest Minzu University, Chengdu, China
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, China
| | - Hongyan Gong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Peng Hu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Pushti Shah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Xiqin Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
2
|
Hren R, Brezar SK, Marhl U, Sersa G. Laser speckle contrast imaging of perfusion in oncological clinical applications: a literature review. Radiol Oncol 2024; 58:326-334. [PMID: 39287164 PMCID: PMC11406933 DOI: 10.2478/raon-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Laser speckle coherence imaging (LSCI) is an emerging imaging modality that enables noninvasive visualization and assessment of tissue perfusion and microcirculation. In this article, we evaluated LSCI in imaging perfusion in clinical oncology through a systematic review of the literature. METHODS The inclusion criterion for the literature search in PubMed, Web of Science and Scopus electronic databases was the use of LSCI in clinical oncology, meaning that all animal, phantom, ex vivo, experimental, research and development, and purely methodological studies were excluded. RESULTS Thirty-six articles met the inclusion criteria. The anatomic locations of the neoplasms in the selected articles were brain (5 articles), breasts (2 articles), endocrine glands (4 articles), skin (12 articles), and the gastrointestinal tract (13 articles). CONCLUSIONS While LSCI is emerging as an appealing imaging modality, it is crucial for more clinical sites to initiate clinical trials. A lack of standardized protocols and interpretation guidelines are posing the most significant challenge.
Collapse
Affiliation(s)
- Rok Hren
- Faculty of Mathematics and Physics, Ljubljana, Slovenia
- Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
- Syreon Research Institute, Budapest, Hungary
| | | | - Urban Marhl
- Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Ghigo N, Ramos-Palacios G, Bourquin C, Xing P, Wu A, Cortés N, Ladret H, Ikan L, Casanova C, Porée J, Sadikot A, Provost J. Dynamic Ultrasound Localization Microscopy Without ECG-Gating. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1436-1448. [PMID: 38969526 DOI: 10.1016/j.ultrasmedbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Dynamic Ultrasound Localization Microscopy (DULM) has first been developed for non-invasive Pulsatility measurements in the rodent brain. DULM relies on the localization and tracking of microbubbles (MBs) injected into the bloodstream, to obtain highly resolved velocity and density cine-loops. Previous DULM techniques required ECG-gating, limiting its application to specific datasets, and increasing acquisition time. The objective of this study is to eliminate the need for ECG-gating in DULM experiments by introducing a motion-matching method for time registration. METHODS We developed a motion-matching algorithm based on tissue Doppler that leverages the cyclic tissue motion within the brain. Tissue Doppler was estimated for each group of frames in the acquisitions, at multiple locations identified as local maxima in the skin above the skull. Subsequently, each group of frames was time-registered to a reference group by delaying it based on the maximum correlation value between their respective tissue Doppler signals. This synchronization ensured that each group of frames aligned with the brain tissue motion of the reference group, and consequently, with its cardiac cycle. As a result, velocities of MBs could be averaged to retrieve flow velocity variations over time. RESULTS Initially validated in ECG-gated acquisitions in a rat model (n = 1), the proposed method was successfully applied in a mice model in 2D (n = 3) and in a feline model in 3D (n = 1). Performing time-registration with the proposed motion-matching method or by using ECG-gating leads to similar results. For the first time, dynamic velocity and density cine-loops were extracted without the need for any information on the animal ECG, and complex dynamic markers such as the Pulsatility index were estimated. CONCLUSION Results suggest that DULM can be performed without external gating, enabling the use of DULM on any ULM dataset where enough MBs are detectable. Time registration by motion-matching represents a significant advancement in DULM techniques, making DULM more accessible by simplifying its experimental complexity.
Collapse
Affiliation(s)
- Nin Ghigo
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada.
| | | | - Chloé Bourquin
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Paul Xing
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Alice Wu
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Nelson Cortés
- School of Optometry, University of Montreal, Montréal, Quebec, Canada
| | - Hugo Ladret
- School of Optometry, University of Montreal, Montréal, Quebec, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | - Lamyae Ikan
- School of Optometry, University of Montreal, Montréal, Quebec, Canada
| | | | - Jonathan Porée
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Abbas Sadikot
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Jean Provost
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Quebec, Canada; Montreal Heart Institute, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Dimanche A, Goldberg J, Miller DR, Bervini D, Raabe A, Dunn AK. Laser speckle contrast imaging versus microvascular Doppler sonography in aneurysm surgery: A prospective study. World Neurosurg X 2024; 23:100377. [PMID: 38698836 PMCID: PMC11063637 DOI: 10.1016/j.wnsx.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Objective This study aimed to compare microvascular Doppler sonography (MDS) and laser speckle contrast imaging (LSCI) for assessing vessel patency and aneurysm occlusion during microsurgical clipping of intracranial aneurysms. Methods MDS and LSCI were used after clip placement during six neurovascular procedures including six patients, and agreement between the two techniques was assessed. LSCI was performed in parallel or right after MDS evaluation. The Doppler response was assessed through listening while flow in the LSCI videos was evaluated by three blinded neurovascular surgeons after the surgery. Statistical analysis determined the agreement between the techniques in assessing flow in 18 regions of interest (ROIs). Results Agreement between MDS and LSCI in assessing vessel patency was observed in 87 % of the ROIs. LSCI accurately identified flow in 93.3 % of assessable ROIs, with no false positive or negative measurements. Three ROIs were not assessable with LSCI due to motion artifacts or poor image quality. No complications were observed. Conclusions LSCI demonstrated high agreement with MDS in assessing vessel patency during microsurgical clipping of intracranial aneurysms. It provided continuous, real-time, full-field imaging with high spatial resolution and temporal resolution. While MDS allowed evaluation of deep vascular regions, LSCI complemented it by offering unlimited assessment of surrounding vessels.
Collapse
Affiliation(s)
- Alexis Dimanche
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, United States
| | - Johannes Goldberg
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - David Bervini
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew K. Dunn
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, United States
| |
Collapse
|
5
|
Zhu W, Tao T, Hong J, Li R, Ma M, Zhang J, Chen J, Lu J, Li P. Exploring the impact of pre-anastomosis cerebral microcirculation on cerebral hyperperfusion syndrome in superficial temporal artery-middle cerebral artery bypass surgery of moyamoya disease. NEUROPHOTONICS 2024; 11:035008. [PMID: 39234576 PMCID: PMC11372418 DOI: 10.1117/1.nph.11.3.035008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Significance Cerebral hyperperfusion syndrome (CHS), characterized by neurologic deficits due to postoperative high cerebral perfusion, is a serious complication of superficial temporal artery-middle cerebral artery (STA-MCA) surgery for moyamoya disease (MMD). Aim We aim to clarify the importance of assessing pre-anastomosis cerebral microcirculation levels by linking the onset of CHS to pre- and post-anastomosis hemodynamics. Approach Intraoperative laser speckle contrast imaging (LSCI) measured changes in regional cerebral blood flow (rCBF) and regional blood flow structuring (rBFS) within the cerebral cortical microcirculation of 48 adults with MMD. Results Following anastomosis, all MMD patients exhibited a significant increase in rCBF ( 279.60 % ± 120.00 % , p < 0.001 ). Changes in rCBF and rBFS showed a negative correlation with their respective baseline levels (rCBF, p < 0.001 ; rBFS, p = 0.005 ). Baseline rCBF differed significantly between CHS and non-CHS groups ( p = 0.0049 ). The areas under the receiver operating characteristic (ROC) curve for baseline rCBF was 0.753. Hemorrhagic MMD patients showed higher baseline rCBF than ischemic patients ( p = 0.036 ), with a marked correlation between pre- and post-anastomosis rCBF in hemorrhagic cases ( p = 0.003 ), whereas ischemic MMD patients did not. Conclusion Patients with low levels of pre-anastomosis baseline CBF induce a dramatic increase in post-anastomosis and show a high risk of postoperative CHS.
Collapse
Affiliation(s)
- Wenting Zhu
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Tianshu Tao
- Zhongnan Hospital of Wuhan University, Wuhan University, Department of Neurosurgery, Wuhan, China
| | - Jiachi Hong
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Ruolan Li
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Minghui Ma
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Jianjian Zhang
- Zhongnan Hospital of Wuhan University, Wuhan University, Department of Neurosurgery, Wuhan, China
| | - Jincao Chen
- Zhongnan Hospital of Wuhan University, Wuhan University, Department of Neurosurgery, Wuhan, China
| | - Jinling Lu
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Pengcheng Li
- Huazhong University of Science and Technology, Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- Hainan University, School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Sanya, China
- Huazhong University of Science and Technology, Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
6
|
Hsieh MC, Chang CY, Hsu CH, Lin YR, Hsieh PY, Ching CTS, Liao LD. Improvement of clinical wound microcirculation diagnosis using an object tracking-based laser speckle contrast imaging system. APL Bioeng 2024; 8:016105. [PMID: 38292062 PMCID: PMC10827336 DOI: 10.1063/5.0172443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Wound monitoring is crucial for effective healing, as nonhealing wounds can lead to tissue ulceration and necrosis. Evaluating wound recovery involves observing changes in angiogenesis. Laser speckle contrast imaging (LSCI) is vital for wound assessment due to its rapid imaging, high resolution, wide coverage, and noncontact properties. When using LSCI equipment, regions of interest (ROIs) must be delineated in lesion areas in images for quantitative analysis. However, patients with serious wounds cannot maintain constant postures because the affected areas are often associated with discomfort and pain. This leads to deviations between the drawn ROI and actual wound position when using LSCI for wound assessment, affecting the reliability of relevant assessments. To address these issues, we used the channel and spatial reliability tracker object tracking algorithm to develop an automatic ROI tracking function for LSCI systems. This algorithm is used to track and correct artificial movements in blood flow images, address the ROI position offset caused by the movement of the affected body part, increase the blood flow analysis accuracy, and improve the clinical applicability of LSCI systems. ROI tracking experiments were performed by simulating wounds, and the results showed that the intraclass correlation coefficient (ICC) ranged from 0.134 to 0.976. Furthermore, the object within the ROI affected tracking performance. Clinical assessments across wound types showed ICCs ranging from 0.798 to 0.917 for acute wounds and 0.628-0.849 for chronic wounds. We also discuss factors affecting tracking performance and propose strategies to enhance implementation effectiveness.
Collapse
Affiliation(s)
| | | | - Ching-Han Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yan-Ren Lin
- Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Pei-You Hsieh
- Department of Emergency and Critical Care Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | | | - Lun-De Liao
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Kandukuri J, Jain A, Karmarkar P, Gadagkar H, Aberman H, Wang Q, Rege A. Realtime assessment of vascular occlusion and reperfusion in animal models of intraoperative imaging - a pilot study. Innov Surg Sci 2024; 9:25-35. [PMID: 38826630 PMCID: PMC11138401 DOI: 10.1515/iss-2023-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/04/2023] [Indexed: 06/05/2024] Open
Abstract
Objectives Intraoperative monitoring of blood flow (BF) remains vital to guiding surgical decisions. Here, we report the use of SurgeON™ Blood Flow Monitor (BFM), a prototype system that attaches to surgical microscopes and implements laser speckle contrast imaging (LSCI) to noninvasively obtain and present vascular BF information in real-time within the microscope's eyepiece. Methods The ability of SurgeON BFM to monitor BF status during reversible vascular occlusion procedures was investigated in two large animal models: occlusion of saphenous veins in six NZW rabbit hindlimbs and clipping of middle cerebral artery (MCA) branches in four Dorset sheep brain hemispheres. SurgeON BFM acquired, presented, and stored LSCI-based blood flow velocity index (BFVi) data and performed indocyanine green video angiography (ICG-VA) for corroboration. Results Stored BFVi data were analyzed for each phase: pre-occlusion (baseline), with the vessel occluded (occlusion), and after reversal of occlusion (re-perfusion). In saphenous veins, BFVi relative to baseline reduced to 5.2±3.7 % during occlusion and returned to 102.9±14.9 % during re-perfusion. Unlike ICG-VA, SurgeON BFM was able to monitor reduced BFVi and characterize re-perfusion robustly during five serial occlusion procedures conducted 2-5 min apart on the same vessel. Across four sheep MCA vessels, BFVi reduced to 18.6±7.7 % and returned to 120.1±27.8 % of baseline during occlusion and re-perfusion phases, respectively. Conclusions SurgeON BFM can noninvasively monitor vascular occlusion status and provide intuitive visualization of BF information in real-time to an operating surgeon. This technology may find application in vascular, plastic, and neurovascular surgery.
Collapse
Affiliation(s)
| | - Aseem Jain
- Vasoptic Medical, Inc., Columbia, MD, USA
| | | | | | | | - Qihong Wang
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
8
|
Konovalov A, Grebenev F, Stavtsev D, Kozlov I, Gadjiagaev V, Piavchenko G, Telyshev D, Gerasimenko AY, Meglinski I, Zalogin S, Artemyev A, Golodnev G, Shumeiko T, Eliava S. Real-time laser speckle contrast imaging for intraoperative neurovascular blood flow assessment: animal experimental study. Sci Rep 2024; 14:1735. [PMID: 38242903 PMCID: PMC10799050 DOI: 10.1038/s41598-023-51022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024] Open
Abstract
The use of various blood flow control methods in neurovascular interventions is crucial for reducing postoperative complications. Neurosurgeons worldwide use different methods, such as contact Dopplerography, intraoperative indocyanine videoangiography (ICG) video angiography, fluorescein angiography, flowmetry, intraoperative angiography, and direct angiography. However, there is no noninvasive method that can assess the presence of blood flow in the vessels of the brain without the introduction of fluorescent substances throughout the intervention. The real-time laser-speckle contrast imaging (LSCI) method was studied for its effectiveness in controlling blood flow in standard cerebrovascular surgery cases in rat common carotid arteries, such as proximal occlusion, trapping, reperfusion, anastomosis, and intraoperative vessel thrombosis. The real-time LSCI method is a promising method for use in neurosurgical practice. This approach allows timely diagnosis of intraoperative disturbance of blood flow in vessels in cases of clip occlusion or thrombosis. Additionally, LSCI allows us to reliably confirm the functioning of the anastomosis and reperfusion after removal of the clips and thrombolysis in real time. An unresolved limitation of the method is noise from movements, but this does not reduce the value of the method. Additional research is required to improve the quality of the data obtained.
Collapse
Affiliation(s)
- Anton Konovalov
- Burdenko Neurosurgшcal Center, Moscow, Russian Federation.
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation.
| | - Fyodor Grebenev
- Burdenko Neurosurgшcal Center, Moscow, Russian Federation
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | - Dmitry Stavtsev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, Moscow, 124498, Russian Federation
| | - Igor Kozlov
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
| | | | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Dmitry Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, Moscow, 124498, Russian Federation
| | - Alexander Yu Gerasimenko
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russian Federation
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, Moscow, 124498, Russian Federation
| | - Igor Meglinski
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- College of Engineering and Physical Sciences, Aston University, Birmingham, UK.
| | - Savely Zalogin
- Department of Operative Surgery and Topographic Anatomy, I.M, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Artemyev
- Department of Operative Surgery and Topographic Anatomy, I.M, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Grigorii Golodnev
- Department of Operative Surgery and Topographic Anatomy, I.M, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tatiana Shumeiko
- Department of Operative Surgery and Topographic Anatomy, I.M, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Shalva Eliava
- Burdenko Neurosurgшcal Center, Moscow, Russian Federation
| |
Collapse
|
9
|
Goldberg J, Miller DR, Dimanche A, Kissling C, Müller T, Müller MD, Jesse CM, Murek M, Bervini D, Dunn AK, Raabe A. Intraoperative Laser Speckle Contrast Imaging to Assess Vessel Flow in Neurosurgery: A Pilot Study. Neurosurgery 2023:00006123-990000000-00974. [PMID: 38032222 DOI: 10.1227/neu.0000000000002776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Laser speckle contrast imaging (LSCI) has emerged as a promising tool for assessment of vessel flow during neurosurgery. We aimed to investigate the feasibility of visualizing vessel flow in the macrocirculation with a new fully microscope-integrated LSCI system and assess the validity and objectivity of findings compared with fluorescence angiography (FA). METHODS This is a single-center prospective observational study enrolling adult patients requiring microsurgical treatment for brain vascular pathologies or brain tumors. Three independent raters, blinded toward findings of FA, reviewed regions of interest (ROIs) placed in exposed vessels and target structures. The primary end point was the validity of LSCI for assessment of vessel flow as measured by the agreement with FA. The secondary end point was objectivity, measured as the inter-rater agreement of LSCI findings. RESULTS During 18 surgical procedures, 23 observations using FA and LSCI were captured simultaneously. Using LSCI, vessel flow was assessable in 62 (86.1%) and not assessable in 10 (13.9%) ROIs. The agreement between LSCI and FA was 86.1%, with an agreement coefficient of 0.85 (95% CI: 0.75-0.94). Disagreement between LSCI and FA was observed in the 10 ROIs that were not assessable. The agreement between ROIs that were assessable using LSCI and FA was 100%. The inter-rater agreement of LSCI findings was 87.9%, with an agreement coefficient of 0.86 (95% CI: 0.79-0.94). CONCLUSION Fully microscope-integrated LSCI is feasible and has a high potential for clinical utility. Because of its characteristics, LSCI can be viewed as a full-field visual micro-Doppler that can be used as a complementary method to FA for assessing vessel flow during neurosurgery. Despite technical limitations related to the early development phase of the fully microscope-integrated system, we demonstrated reasonable validity and objectivity of findings compared with FA. Further research and refinement of the system may enhance its value in neurosurgical applications.
Collapse
Affiliation(s)
- Johannes Goldberg
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Alexis Dimanche
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Cédric Kissling
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Timothy Müller
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Mandy D Müller
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christopher Marvin Jesse
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Murek
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Bervini
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Andreas Raabe
- Department of Neurosurgery and Stroke Research Center Bern, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Mannoh EA, Baregamian N, Thomas G, Solόrzano CC, Mahadevan-Jansen A. Comparing laser speckle contrast imaging and indocyanine green angiography for assessment of parathyroid perfusion. Sci Rep 2023; 13:17270. [PMID: 37828222 PMCID: PMC10570279 DOI: 10.1038/s41598-023-42649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023] Open
Abstract
Accurate intraoperative assessment of parathyroid blood flow is crucial to preserve function postoperatively. Indocyanine green (ICG) angiography has been successfully employed, however its conventional application has limitations. A label-free method overcomes these limitations, and laser speckle contrast imaging (LSCI) is one such method that can accurately detect and quantify differences in parathyroid perfusion. In this study, twenty-one patients undergoing thyroidectomy or parathyroidectomy were recruited to compare LSCI and ICG fluorescence intraoperatively. An experimental imaging device was used to image a total of 37 parathyroid glands. Scores of 0, 1 or 2 were assigned for ICG fluorescence by three observers based on perceived intensity: 0 for little to no fluorescence, 1 for moderate or patchy fluorescence, and 2 for strong fluorescence. Speckle contrast values were grouped according to these scores. Analyses of variance were performed to detect significant differences between groups. Lastly, ICG fluorescence intensity was calculated for each parathyroid gland and compared with speckle contrast in a linear regression. Results showed significant differences in speckle contrast between groups such that parathyroids with ICG score 0 had higher speckle contrast than those assigned ICG score 1, which in turn had higher speckle contrast than those assigned ICG score 2. This was further supported by a correlation coefficient of -0.81 between mean-normalized ICG fluorescence intensity and speckle contrast. This suggests that ICG angiography and LSCI detect similar differences in blood flow to parathyroid glands. Laser speckle contrast imaging shows promise as a label-free alternative that overcomes current limitations of ICG angiography for parathyroid assessment.
Collapse
Affiliation(s)
- Emmanuel A Mannoh
- Vanderbilt Biophotonics Center, Vanderbilt University, PMB 351631, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Naira Baregamian
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Giju Thomas
- Vanderbilt Biophotonics Center, Vanderbilt University, PMB 351631, Nashville, TN, 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Carmen C Solόrzano
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, PMB 351631, Nashville, TN, 37235, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Mehrotra S, Liu YZ, Nwaiwu CA, Buharin VE, Stolyarov R, Schwaitzberg SD, Kalady MF, Kim PCW. Real-time quantification of bowel perfusion using Laparoscopic Laser Speckle Contrast Imaging (LSCI) in a porcine model. BMC Surg 2023; 23:261. [PMID: 37649010 PMCID: PMC10468884 DOI: 10.1186/s12893-023-02161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND/PURPOSE Real-time quantification of tissue perfusion can improve intraoperative surgical decision making. Here we demonstrate the utility of Laser Speckle Contrast Imaging as an intra-operative tool that quantifies real-time regional differences in intestinal perfusion and distinguishes ischemic changes resulting from arterial/venous obstruction. METHODS Porcine models (n = 3) consisted of selectively devascularized small bowel loops that were used to measure the perfusion responses under conditions of control/no vascular occlusion, arterial inflow occlusion, and venous outflow occlusion using laser speckle imaging and indocyanine green fluoroscopy. Laser Speckle was also used to assess perfusion differences between small bowel antimesenteric-antimesenteric and mesenteric-mesenteric anastomoses. Perfusion quantification was measured in relative perfusion units calculated from the laser speckle perfusion heatmap. RESULTS Laser Speckle distinguished between visually identified perfused, watershed, and ischemic intestinal segments with both color heatmap and quantification (p < .00001). It detected a continuous gradient of relative intestinal perfusion as a function of distance from the stapled ischemic bowel edge. Strong positive linear correlation between relative perfusion units and changes in mean arterial pressure resulting from both arterial (R2 = .96/.79) and venous pressure changes (R2 = .86/.96) was observed. Furthermore, Laser Speckle showed that the antimesenteric anastomosis had a higher perfusion than mesenteric anastomosis (p < 0.01). CONCLUSIONS Laser Speckle Contrast Imaging provides objective, quantifiable tissue perfusion information in both color heatmap and relative numerical units. Laser Speckle can detect spatial/temporal differences in perfusion between antimesenteric and mesenteric borders of a bowel segment and precisely detect perfusion changes induced by progressive arterial/venous occlusions in real-time.
Collapse
Affiliation(s)
- Saloni Mehrotra
- Department of Surgery, University at Buffalo, Buffalo, NY, USA
- Activ Surgical Inc., Boston, MA, USA
| | - Yao Z Liu
- Activ Surgical Inc., Boston, MA, USA
- Department of Surgery, Brown University, Providence, Rhode Island, USA
| | - Chibueze A Nwaiwu
- Activ Surgical Inc., Boston, MA, USA
- Department of Surgery, Brown University, Providence, Rhode Island, USA
| | | | | | | | - Matthew F Kalady
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter C W Kim
- Activ Surgical Inc., Boston, MA, USA.
- Department of Surgery, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
12
|
Konovalov A, Gadzhiagaev V, Grebenev F, Stavtsev D, Piavchenko G, Gerasimenko A, Telyshev D, Meglinski I, Eliava S. Laser Speckle Contrast Imaging in Neurosurgery: A Systematic Review. World Neurosurg 2023; 171:35-40. [PMID: 36526222 DOI: 10.1016/j.wneu.2022.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intraoperative study of blood flow in the brain vessels is among the most critical topics of modern neurosurgery. One of the promising methods for intraoperative monitoring of blood flow is laser speckle contrast imaging (LSCI). This systematic review aims to analyze the experience of using intraoperative LSCI in neurosurgical interventions. METHODS The literature search was carried out in the PubMed and Web of Science databases using the keywords "Laser-Speckle," "Laser Speckle," "Laser speckle contrast imaging," and "LSCI." We allowed the search to include the following criteria: 1) publication in the English language, 2) full access to the article, 3) information about the method of treatment, and 4) the results presented for at least one patient. RESULTS The initial search resulted in the detection of 508 publications, of which 476 were eliminated during the initial assessment of titles and abstracts. Two more articles were excluded due to the lack of data in the English language. Twenty articles were found to be focused on nonhuman studies and therefore were excluded. In three more studies treatment of non-neurosurgical patients was reported. The final analysis included 8 articles with 102 patients overall. CONCLUSIONS LSCI is a promising intraoperative method for intraoperative cerebral blood flow assessing. This method offers several advantages over other modalities. The experience of use is limited to a small number of case series. Further investigation of the method and its implementation in clinical practice is needed.
Collapse
Affiliation(s)
- Anton Konovalov
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation.
| | - Vadim Gadzhiagaev
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation
| | - Fyodor Grebenev
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation
| | - Dmitry Stavtsev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; National Research University of Electronic Technology, Institute of Biomedical Systems, Moscow, Russia
| | - Gennadii Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Gerasimenko
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; National Research University of Electronic Technology, Institute of Biomedical Systems, Moscow, Russia
| | - Dmitry Telyshev
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; National Research University of Electronic Technology, Institute of Biomedical Systems, Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland; College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Shalva Eliava
- Department of Cerebrovascular Surgery, Burdenko Neurosurgical Center, Moscow, Russian Federation
| |
Collapse
|
13
|
Light-sheet laser speckle imaging for cilia motility assessment. Comput Struct Biotechnol J 2023; 21:1661-1669. [PMID: 36874161 PMCID: PMC9978471 DOI: 10.1016/j.csbj.2023.02.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mucociliary clearance is an important innate defense mechanism predominantly mediated by ciliated cells in the upper respiratory tract. Ciliary motility on the respiratory epithelium surface and mucus pathogen trapping assist in maintaining healthy airways. Optical imaging methods have been used to obtain several indicators for assessing ciliary movement. Light-sheet laser speckle imaging (LSH-LSI) is a label-free and non-invasive optical technique for three-dimensional and quantitative mapping of velocities of microscopic scatterers. Here, we propose to use an inverted LSH-LSI platform to study cilia motility. We have experimentally confirmed that LSH-LSI can reliably measure the ciliary beating frequency and has the potential to provide many additional quantitative indicators for characterizing the ciliary beating pattern without labeling. For example, the asymmetry between the power stroke and the recovery stroke is apparent in the local velocity waveform. PIV (particle imaging velocimetry) analysis of laser speckle data could determine the cilia motion directions in different phases.
Collapse
|
14
|
Heeman W, Maassen H, Dijkstra K, Calon J, van Goor H, Leuvenink H, van Dam GM, Boerma EC. Real-time, multi-spectral motion artefact correction and compensation for laser speckle contrast imaging. Sci Rep 2022; 12:21718. [PMID: 36522524 PMCID: PMC9755276 DOI: 10.1038/s41598-022-26154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Laser speckle contrast imaging (LSCI) is so sensitive to motion that it can measure the movement of red blood cells. However, this extreme sensitivity to motion is also its pitfall as the clinical translation of LSCI is slowed down due to the inability to deal with motion artefacts. In this paper we study the effectiveness of a real-time, multi-spectral motion artefact correction and compensation by subduing an in vitro flow phantom and ex vivo porcine kidney to computer-controlled motion artefacts. On the in vitro flow phantom, the optical flow showed a good correlation with the total movement. This model results in a better signal-to-noise ratios for multiple imaging distances and the overestimation of perfusion was reduced. In the ex vivo kidney model, the perfusion overestimation was also reduced and we were still able to distinguish between ischemia and non-ischemia in the stabilized data whereas this was not possible in the non-stabilized data. This leads to a notably better perfusion estimation that could open the door to a multitude of new clinical applications for LSCI.
Collapse
Affiliation(s)
- Wido Heeman
- grid.4830.f0000 0004 0407 1981Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, Leeuwarden, 8911 CE The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands ,LIMIS Development BV, Henri Dunantweg 2, Leeuwarden, 8934 AD The Netherlands
| | - Hanno Maassen
- grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands ,grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Klaas Dijkstra
- grid.461051.7Centre of Expertise in Computer Vision and Data Science, NHL Stenden University of Applied Sciences, Rengerslaan 8-10, Leeuwarden, 8917 DD The Netherlands
| | - Joost Calon
- ZiuZ Visual Intelligence, Stationsweg 3, Gorredijk, 8401 DK The Netherlands
| | - Harry van Goor
- grid.4494.d0000 0000 9558 4598Department of Pathology and Medical Biology, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Henri Leuvenink
- grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - Gooitzen. M. van Dam
- grid.4494.d0000 0000 9558 4598Department of Surgery, University Medical Centre Groningen, Hanzeplein 1, Groningen, 9713 GZ The Netherlands
| | - E. Christiaan Boerma
- grid.4830.f0000 0004 0407 1981Faculty Campus Fryslân, University of Groningen, Wirdumerdijk 34, Leeuwarden, 8911 CE The Netherlands ,grid.414846.b0000 0004 0419 3743Department of Intensive Care, Medical Centre Leeuwarden, Henri Dunantweg 2, Leeuwarden, 8934 AD The Netherlands
| |
Collapse
|
15
|
Tao S, Zhang T, Zhou K, Liu X, Feng Y, Zhao W, Chen J. Intraoperative Monitoring Cerebral Blood Flow During the Treatment of Brain Arteriovenous Malformations in Hybrid Operating Room by Laser Speckle Contrast Imaging. Front Surg 2022; 9:855397. [PMID: 35599788 PMCID: PMC9120635 DOI: 10.3389/fsurg.2022.855397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hemodynamic changes caused by hybrid surgery for brain arteriovenous malformations (bAVM) are usually related to long-term lesions from "blood stealing". There are currently no viable low-cost, noninvasive procedures for assessing cerebral perfusion in the operating room. This study aims to investigate the use of intraoperative laser speckle contrast image (LSCI) software in AVM surgery. Methods In Zhongnan Hospital of Wuhan University, 14 patients who underwent surgery with LSCI were collected. To analyze the hemodynamic features of AVM and the influence on the peripheral cortex of AVM embolization and resection, we assessed the transit time between feeding arteries and drainage veins by intraoperative digital subtraction angiography (DSA). Meanwhile, LSCI was performed at pre-embolization, post-embolization, and after complete resection of bAVM. Results In this study, the transit time of bAVM before and after embolization was compared, the transit time before embolization was significantly shorter than that after embolization (p < 0.05). We also got good visualization of relative CBF, in addition, to flow imaging in the cortical vasculature round bAVM with LSCI. The flux of post-surgery was significantly higher than pre-embolization (p < 0.01). Conclusion Hemodynamic variable assessment plays an important role in the resection of AVM in the hybrid operative room and LSCI can be used to visualize and evaluate cortical cerebral blood flow to detect pathological hyperperfusion in real-time with a good spatial-temporal resolution in a sensitive and continuous, non-invasive mode.
Collapse
Affiliation(s)
- Sicai Tao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Tingbao Zhang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Keyao Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaohu Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Feng
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Miller DR, Ashour R, Sullender CT, Dunn AK. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. NEUROPHOTONICS 2022; 9:021908. [PMID: 35265733 PMCID: PMC8900813 DOI: 10.1117/1.nph.9.2.021908] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Significance: Laser speckle contrast imaging (LSCI) has emerged as a promising tool for intraoperative cerebral blood flow (CBF) monitoring because it produces real-time full-field blood flow maps noninvasively and label free. Aim: We aim to demonstrate the ability of LSCI to continuously visualize blood flow during neurovascular procedures. Approach: LSCI hardware was attached to the surgical microscope and did not interfere with the normal operation of the microscope. To more easily visualize CBF in real time, LSCI images were registered with the built-in microscope white light camera such that LSCI images were overlaid on the white light images and displayed to the neurosurgeon continuously in real time. Results: LSCI was performed throughout each surgery when the microscope was positioned over the patient, providing the surgeon with real-time visualization of blood flow changes before, during, and after aneurysm clipping or arteriovenous malformation (AVM) resection in humans. LSCI was also compared with indocyanine green angiography (ICGA) to assess CBF during aneurysm clipping and AVM surgery; integration of the LSCI hardware with the microscope enabled simultaneous acquisition of LSCI and ICGA. Conclusions: The results suggest that LSCI can provide continuous and real-time CBF visualization without affecting the surgeon workflow or requiring a contrast agent. The results also demonstrate that LSCI and ICGA provide different, yet complementary information about vessel perfusion.
Collapse
Affiliation(s)
- David R. Miller
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Ramsey Ashour
- The University of Texas at Austin, Dell Medical School, Department of Neurosurgery, Austin, Texas, United States
| | - Colin T. Sullender
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew K. Dunn
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| |
Collapse
|
17
|
Sullender CT, Richards LM, He F, Luan L, Dunn AK. Dynamics of isoflurane-induced vasodilation and blood flow of cerebral vasculature revealed by multi-exposure speckle imaging. J Neurosci Methods 2022; 366:109434. [PMID: 34863840 PMCID: PMC9258779 DOI: 10.1016/j.jneumeth.2021.109434] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Anesthetized animal models are used extensively during neurophysiological and behavioral studies despite systemic effects from anesthesia that undermine both accurate interpretation and translation to awake human physiology. The majority of work examining the impact of anesthesia on cerebral blood flow (CBF) has been restricted to before and after measurements with limited spatial resolution. NEW METHOD We used multi-exposure speckle imaging (MESI), an advanced form of laser speckle contrast imaging (LSCI), to characterize the dynamics of isoflurane anesthesia induction on cerebral vasculature and blood flow in the mouse brain. RESULTS The large anatomical changes caused by isoflurane are depicted with wide-field imagery and video highlighting the induction of general anesthesia. Within minutes of exposure, both vessel diameter and blood flow increased drastically compared to the awake state and remained elevated for the duration of imaging. An examination of the dynamics of anesthesia induction reveals that blood flow increased faster in arteries than in veins or parenchyma regions. COMPARISON WITH EXISTING METHODS MESI offers robust hemodynamic measurements across large fields-of-view and high temporal resolutions sufficient for continuous visualization of cerebrovascular events featuring major changes in blood flow. CONCLUSION The large alterations caused by isoflurane anesthesia to the cortical vasculature and CBF are readily characterized using MESI. These changes are unrepresentative of normal physiology and provide further evidence that neuroscience experiments would benefit from transitioning to un-anesthetized awake animal models.
Collapse
Affiliation(s)
- Colin T Sullender
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States
| | - Lisa M Richards
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States
| | - Fei He
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, United States; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX 78712, United States.
| |
Collapse
|
18
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
19
|
Guilbert J, Desjardins M. Movement correction method for laser speckle contrast imaging of cerebral blood flow in cranial windows in rodents. JOURNAL OF BIOPHOTONICS 2022; 15:e202100218. [PMID: 34658168 DOI: 10.1002/jbio.202100218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Laser speckle contrast imaging (LSCI) is used in clinical research to dynamically image blood flow. One drawback is its susceptibility to movement artifacts. We demonstrate a new, simple method to correct motion artifacts in LSCI signals measured in awake mice with cranial windows during sensory stimulation. The principle is to identify a region in the image in which speckle contrast (SC) is independent of blood flow and only varies with animal movement, then to regress out this signal from the data. We show that (1) the regressed signal correlates well with mouse head movement, (2) the corrected signal correlates better with independently measured blood volume and (3) it has a (59 ± 6)% higher signal-to-noise ratio. Compared to three alternative correction methods, ours has the best performance. Regressing out flow-independent global variations in SC is a simple and accessible way to improve the quality of LSCI measurements.
Collapse
Affiliation(s)
- Jérémie Guilbert
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, Québec, Canada
- Oncology Division, Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, Québec, Canada
- Oncology Division, Centre de recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada
| |
Collapse
|
20
|
Chizari A, Schaap MJ, Knop T, Boink YE, Seyger MMB, Steenbergen W. Handheld versus mounted laser speckle contrast perfusion imaging demonstrated in psoriasis lesions. Sci Rep 2021; 11:16646. [PMID: 34404886 PMCID: PMC8371022 DOI: 10.1038/s41598-021-96218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/06/2021] [Indexed: 02/08/2023] Open
Abstract
Enabling handheld perfusion imaging would drastically improve the feasibility of perfusion imaging in clinical practice. Therefore, we examine the performance of handheld laser speckle contrast imaging (LSCI) measurements compared to mounted measurements, demonstrated in psoriatic skin. A pipeline is introduced to process, analyze and compare data of 11 measurement pairs (mounted-handheld LSCI modes) operated on 5 patients and various skin locations. The on-surface speeds (i.e. speed of light beam movements on the surface) are quantified employing mean separation (MS) segmentation and enhanced correlation coefficient maximization (ECC). The average on-surface speeds are found to be 8.5 times greater in handheld mode compared to mounted mode. Frame alignment sharpens temporally averaged perfusion maps, especially in the handheld case. The results show that after proper post-processing, the handheld measurements are in agreement with the corresponding mounted measurements on a visual basis. The absolute movement-induced difference between mounted-handheld pairs after the background correction is [Formula: see text] (mean ± std, [Formula: see text]), with an absolute median difference of [Formula: see text]. Realization of handheld LSCI facilitates measurements on a wide range of skin areas bringing more convenience for both patients and medical staff.
Collapse
Affiliation(s)
- Ata Chizari
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mirjam J Schaap
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Tom Knop
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Yoeri E Boink
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Multi-Modality Medical Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Marieke M B Seyger
- Department of Dermatology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
21
|
Lee S, Namgoong JM, Kim Y, Cha J, Kim JK. Multimodal imaging of laser speckle contrast imaging combined with mosaic filter-based hyperspectral imaging for precise surgical guidance. IEEE Trans Biomed Eng 2021; 69:443-452. [PMID: 34260344 DOI: 10.1109/tbme.2021.3097122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To enable a real-time surgical guidance system that simultaneously monitors blood vessel perfusion, oxygen saturation, thrombosis, and tissue recovery by combining multiple optical imaging techniques into a single system: visible imaging, mosaic filter-based snapshot hyperspectral imaging (HSI), and laser speckle contrast imaging (LSCI). METHODS The multimodal optical imaging system was demonstrated by clamping blood vessels in the small intestines of rats to create areas of restricted blood flow. Subsequent tissue damage and regeneration were monitored during procedures. Using LSCI, vessel perfusion was measured, revealing the biological activity and survival of organ tissues. Blood oxygen saturation was monitored using HSI in the near-infrared region. Principal component analysis was used over the spectral dimension to identify an HSI wavelength combination optimized for hemodynamic biomarker visualization. HSI and LSCI were complimentary, identifying thrombus generation and tissue recovery, which was not possible in either modality alone. RESULTS AND CONCLUSION By analyzing multimodal tissue information from visible imaging, LSCI perfusion imaging, and HSI, a recovery prognosis could be determined based on the blood supply to the organ. The unique combination of the complementary imaging techniques into a single surgical microscope holds promise for improving the real-time determination of blood supply and tissue prognosis during surgery. SIGNIFICANCE Precise real-time monitoring for vascular anomalies promises to reduce the risk of organ damage in precise surgical operations such as tissue resection and transplantation. In addition, the convergence of label-free imaging technologies removes delays associated with the injection and diffusion of vascular monitoring dyes.
Collapse
|
22
|
Predicting successful stellate ganglion block using laser speckle contrast imaging. Chin Med J (Engl) 2021; 134:1486-1488. [PMID: 33840741 PMCID: PMC8213298 DOI: 10.1097/cm9.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Guerraty M, Bhargava A, Senarathna J, Mendelson AA, Pathak AP. Advances in translational imaging of the microcirculation. Microcirculation 2021; 28:e12683. [PMID: 33524206 PMCID: PMC8647298 DOI: 10.1111/micc.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution. Collectively, these imaging modalities enable us to characterize the morphological and functional changes in a tissue's microcirculation that are known to accompany the initiation and progression of numerous pathologies. Although there have been significant advances for imaging the microcirculation in preclinical models, this review focuses on developments in the assessment of the microcirculation in patients with optical imaging, NIRS, PET, US, MRI, and CT, to name a few. The goal of this review is to serve as a springboard for exploring the burgeoning role of translational imaging technologies for interrogating the structural and functional status of the microcirculation in humans, and highlight the breadth of current clinical applications. Making the human microcirculation "visible" in vivo to clinicians and researchers alike will facilitate bench-to-bedside discoveries and enhance the diagnosis and management of disease.
Collapse
Affiliation(s)
- Marie Guerraty
- Division of Cardiovascular Medicine, Department of
Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asher A. Mendelson
- Department of Medicine, Section of Critical Care, Rady
Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins
University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Ma L, Fei B. Comprehensive review of surgical microscopes: technology development and medical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200292VRR. [PMID: 33398948 PMCID: PMC7780882 DOI: 10.1117/1.jbo.26.1.010901] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 05/06/2023]
Abstract
SIGNIFICANCE Surgical microscopes provide adjustable magnification, bright illumination, and clear visualization of the surgical field and have been increasingly used in operating rooms. State-of-the-art surgical microscopes are integrated with various imaging modalities, such as optical coherence tomography (OCT), fluorescence imaging, and augmented reality (AR) for image-guided surgery. AIM This comprehensive review is based on the literature of over 500 papers that cover the technology development and applications of surgical microscopy over the past century. The aim of this review is threefold: (i) providing a comprehensive technical overview of surgical microscopes, (ii) providing critical references for microscope selection and system development, and (iii) providing an overview of various medical applications. APPROACH More than 500 references were collected and reviewed. A timeline of important milestones during the evolution of surgical microscope is provided in this study. An in-depth technical overview of the optical system, mechanical system, illumination, visualization, and integration with advanced imaging modalities is provided. Various medical applications of surgical microscopes in neurosurgery and spine surgery, ophthalmic surgery, ear-nose-throat (ENT) surgery, endodontics, and plastic and reconstructive surgery are described. RESULTS Surgical microscopy has been significantly advanced in the technical aspects of high-end optics, bright and shadow-free illumination, stable and flexible mechanical design, and versatile visualization. New imaging modalities, such as hyperspectral imaging, OCT, fluorescence imaging, photoacoustic microscopy, and laser speckle contrast imaging, are being integrated with surgical microscopes. Advanced visualization and AR are being added to surgical microscopes as new features that are changing clinical practices in the operating room. CONCLUSIONS The combination of new imaging technologies and surgical microscopy will enable surgeons to perform challenging procedures and improve surgical outcomes. With advanced visualization and improved ergonomics, the surgical microscope has become a powerful tool in neurosurgery, spinal, ENT, ophthalmic, plastic and reconstructive surgeries.
Collapse
Affiliation(s)
- Ling Ma
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
| | - Baowei Fei
- University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, Texas, United States
| |
Collapse
|
25
|
Mennes OA, Selles M, van Netten JJ, van Baal JG, Steenbergen W, Slart RHJA. Semi-Automatic Tracking of Laser Speckle Contrast Images of Microcirculation in Diabetic Foot Ulcers. Diagnostics (Basel) 2020; 10:E1054. [PMID: 33291254 PMCID: PMC7762195 DOI: 10.3390/diagnostics10121054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 01/22/2023] Open
Abstract
Foot ulcers are a severe complication of diabetes mellitus. Assessment of the vascular status of diabetic foot ulcers with Laser Speckle Contrast Imaging (LSCI) is a promising approach for diagnosis and prognosis. However, manual assessment during analysis of LSCI limits clinical applicability. Our aim was to develop and validate a fast and robust tracking algorithm for semi-automatic analysis of LSCI data. The feet of 33 participants with diabetic foot ulcers were recorded with LSCI, including at baseline, during the Post-Occlusive Reactive Hyperemia (PORH) test, and during the Buerger's test. Different regions of interest (ROIs) were used to measure microcirculation in different areas of the foot. A tracking algorithm was developed in MATLAB to reposition the ROIs in the LSCI scans. Manual- and algorithm-tracking of all recordings were compared by calculating the Intraclass Correlation Coefficient (ICC). The algorithm was faster in comparison with the manual approach (90 s vs. 15 min). Agreement between manual- and algorithm-tracking was good to excellent during baseline (ICC = 0.896-0.984; p < 0.001), the PORH test (ICC = 0.790-0.960; p < 0.001), and the Buerger's test (ICC = 0.851-0.978; p < 0.001), resulting in a tracking algorithm that delivers assessment of LSCI in diabetic foot ulcers with results comparable to a labor-intensive manual approach, but with a 10-fold workload reduction.
Collapse
Affiliation(s)
- Onno A. Mennes
- Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands; (O.A.M.); (R.H.J.A.S.)
- Ziekenhuisgroep Twente, ZGT Academy, 7609 PP Almelo, The Netherlands;
| | - Mark Selles
- Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Jaap J. van Netten
- Amsterdam Movement Sciences, Department of Rehabilitation, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Institute of Health and Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jeff G. van Baal
- Ziekenhuisgroep Twente, ZGT Academy, 7609 PP Almelo, The Netherlands;
- School of Medicine, Cardiff University, Wales CF10 3AT, UK
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands; (O.A.M.); (R.H.J.A.S.)
| | - Riemer H. J. A. Slart
- Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands; (O.A.M.); (R.H.J.A.S.)
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
26
|
Jafari CZ, Sullender CT, Miller DR, Mihelic SA, Dunn AK. Effect of vascular structure on laser speckle contrast imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:5826-5841. [PMID: 33149989 PMCID: PMC7587253 DOI: 10.1364/boe.401235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a powerful tool for non-invasive, real-time imaging of blood flow in tissue. However, the effect of tissue geometry on the form of the electric field autocorrelation function and speckle contrast values is yet to be investigated. In this paper, we present an ultrafast forward model for simulating a speckle contrast image with the ability to rapidly update the image for a desired illumination pattern and flow perturbation. We demonstrate the first simulated speckle contrast image and compare it against experimental results. We simulate three mouse-specific cerebral cortex decorrelation time images and implement three different schemes for analyzing the effects of homogenization of vascular structure on correlation decay times. Our results indicate that dissolving structure and assuming homogeneous geometry creates up to ∼ 10x shift in the correlation function decay times and alters its form compared with the case for which the exact geometry is simulated. These effects are more pronounced for point illumination and detection imaging schemes, highlighting the significance of accurate modeling of the three-dimensional vascular geometry for accurate blood flow estimates.
Collapse
Affiliation(s)
- Chakameh Z. Jafari
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Colin T. Sullender
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - David R. Miller
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samuel A. Mihelic
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Mangraviti A, Volpin F, Cha J, Cunningham SI, Raje K, Brooke MJ, Brem H, Olivi A, Huang J, Tyler BM, Rege A. Intraoperative Laser Speckle Contrast Imaging For Real-Time Visualization of Cerebral Blood Flow in Cerebrovascular Surgery: Results From Pre-Clinical Studies. Sci Rep 2020; 10:7614. [PMID: 32376983 PMCID: PMC7203106 DOI: 10.1038/s41598-020-64492-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2020] [Indexed: 01/04/2023] Open
Abstract
Cerebrovascular surgery can benefit from an intraoperative system that conducts continuous monitoring of cerebral blood flow (CBF). Such a system must be handy, non-invasive, and directly integrated into the surgical workflow. None of the currently available techniques, considered alone, meets all these criteria. Here, we introduce the SurgeON™ system: a newly developed non-invasive modular tool which transmits high-resolution Laser Speckle Contrast Imaging (LSCI) directly onto the eyepiece of the surgical microscope. In preclinical rodent and rabbit models, we show that this system enabled the detection of acute perfusion changes as well as the recording of temporal response patterns and degrees of flow changes in various microvascular settings, such as middle cerebral artery occlusion, femoral artery clipping, and complete or incomplete cortical vessel cautery. During these procedures, a real-time visualization of vasculature and CBF was available in high spatial resolution through the eyepiece as a direct overlay on the live morphological view of the surgical field. Upon comparison with indocyanine green angiography videoangiography (ICG-VA) imaging, also operable via SurgeON, we found that direct-LSCI can produce greater information than ICG-VA and that continuous display of data is advantageous for performing immediate LSCI-guided adjustments in real time.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Francesco Volpin
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Jaepyeong Cha
- Vasoptic Medical, Inc., Baltimore, MD, United States
| | | | - Karan Raje
- Vasoptic Medical, Inc., Baltimore, MD, United States
| | | | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University, Baltimore, MD, United States.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alessandro Olivi
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University, Baltimore, MD, United States.,Department of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Judy Huang
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Betty M Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States.
| | - Abhishek Rege
- Vasoptic Medical, Inc., Baltimore, MD, United States
| |
Collapse
|
28
|
Chizari A, Knop T, Sirmacek B, van der Heijden F, Steenbergen W. Exploration of movement artefacts in handheld laser speckle contrast perfusion imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:2352-2365. [PMID: 32499928 PMCID: PMC7249814 DOI: 10.1364/boe.387252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 05/19/2023]
Abstract
Functional performance of handheld laser speckle contrast imaging (LSCI) is compromised by movement artefacts. Here we quantify the movements of a handheld LSCI system employing electromagnetic (EM) tracking and measure the applied translational, tilt and on-surface laser beam speeds. By observing speckle contrast on static objects, the magnitudes of translation and tilt of wavefronts are explored for various scattering levels of the objects. We conclude that for tissue mimicking static phantoms, on-surface speeds play a dominant role to wavefront tilt speed in creation of movement artefacts. The ratio depends on the optical properties of the phantom. Furthermore, with the same applied speed, the drop in the speckle contrast increases with decreasing reduced scattering coefficient, and hence the related movement artefact increases.
Collapse
Affiliation(s)
- Ata Chizari
- University of Twente, Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, Enschede, P.O. Box 217, 7500 AE, The Netherlands
| | - Tom Knop
- University of Twente, Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, Enschede, P.O. Box 217, 7500 AE, The Netherlands
| | - Beril Sirmacek
- University of Twente, Robotics and Mechatronics, Technical Medical Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, Enschede, P.O. Box 217, 7500 AE, The Netherlands
| | - Ferdinand van der Heijden
- University of Twente, Robotics and Mechatronics, Technical Medical Centre, Faculty of Electrical Engineering, Mathematics and Computer Science, Enschede, P.O. Box 217, 7500 AE, The Netherlands
| | - Wiendelt Steenbergen
- University of Twente, Biomedical Photonic Imaging, Technical Medical Centre, Faculty of Science and Technology, Enschede, P.O. Box 217, 7500 AE, The Netherlands
| |
Collapse
|
29
|
Heeman W, Steenbergen W, van Dam GM, Boerma EC. Clinical applications of laser speckle contrast imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31385481 PMCID: PMC6983474 DOI: 10.1117/1.jbo.24.8.080901] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/02/2019] [Indexed: 05/02/2023]
Abstract
When a biological tissue is illuminated with coherent light, an interference pattern will be formed at the detector, the so-called speckle pattern. Laser speckle contrast imaging (LSCI) is a technique based on the dynamic change in this backscattered light as a result of interaction with red blood cells. It can be used to visualize perfusion in various tissues and, even though this technique has been extensively described in the literature, the actual clinical implementation lags behind. We provide an overview of LSCI as a tool to image tissue perfusion. We present a brief introduction to the theory, review clinical studies from various medical fields, and discuss current limitations impeding clinical acceptance.
Collapse
Affiliation(s)
- Wido Heeman
- University of Groningen, Faculty Campus Fryslân, Leeuwarden, The Netherlands
- University Medical Centre Groningen, Department of Surgery, Optical Molecular Imaging Groningen, Groningen, The Netherlands
- LIMIS Development BV, Leeuwarden, The Netherlands
| | - Wiendelt Steenbergen
- University of Twente, Techmed Center, Faculty of Science and Technology, Biomedical Photonic Imaging Group, Enschede, The Netherlands
| | - Gooitzen M. van Dam
- University Medical Centre Groningen, Department of Surgery, Optical Molecular Imaging Groningen, Groningen, The Netherlands
| | - E. Christiaan Boerma
- Medical Centre Leeuwarden, Department of Intensive Care, Leeuwarden, The Netherlands
- Address all correspondence to E. Christiaan Boerma, E-mail:
| |
Collapse
|
30
|
A Robust Method for Adjustment of Laser Speckle Contrast Imaging during Transcranial Mouse Brain Visualization. PHOTONICS 2019. [DOI: 10.3390/photonics6030080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Laser speckle imaging (LSI) is a well-known and useful approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues (such as brain vasculature, skin capillaries etc.). Despite an extensive use of LSI for brain imaging, the LSI technique has several critical limitations. One of them is associated with inability to resolve a functionality of vessels. This limitation also leads to the systematic error in the quantitative interpretation of values of speckle contrast obtained for different vessel types, such as sagittal sinus, arteries, and veins. Here, utilizing a combined use of LSI and fluorescent intravital microscopy (FIM), we present a simple and robust method to overcome the limitations mentioned above for the LSI approach. The proposed technique provides more relevant, abundant, and valuable information regarding perfusion rate ration between different types of vessels that makes this method highly useful for in vivo brain surgical operations.
Collapse
|
31
|
He J, Lu H, Young L, Deng R, Callow D, Tong S, Jia X. Real-time quantitative monitoring of cerebral blood flow by laser speckle contrast imaging after cardiac arrest with targeted temperature management. J Cereb Blood Flow Metab 2019; 39:1161-1171. [PMID: 29283290 PMCID: PMC6547180 DOI: 10.1177/0271678x17748787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain injury is the main cause of mortality and morbidity after cardiac arrest (CA). Changes in cerebral blood flow (CBF) after reperfusion are associated with brain injury and recovery. To characterize the relative CBF (rCBF) after CA, 14 rats underwent 7 min asphyxia-CA and were randomly treated with 6 h post-resuscitation normothermic (36.5-37.5℃) or hypothermic- (32-34℃) targeted temperature management (TTM) (N = 7). rCBF was monitored by a laser speckle contrast imaging (LSCI) technique. Brain recovery was evaluated by neurologic deficit score (NDS) and quantitative EEG - information quantity (qEEG-IQ). There were regional differences in rCBF among veins of distinct cerebral areas and heterogeneous responses among the three components of the vascular system. Hypothermia immediately following return of spontaneous circulation led to a longer hyperemia duration (19.7 ± 1.8 vs. 12.7 ± 0.8 min, p < 0.01), a lower rCBF (0.73 ± 0.01 vs. 0.79 ± 0.01; p < 0.001) at the hypoperfusion phase, a better NDS (median [25th-75th], 74 [61-77] vs. 49 [40-77], p < 0.01), and a higher qEEG-IQ (0.94 ± 0.02 vs. 0.77 ± 0.02, p < 0.001) compared with normothermic TTM. High resolution LSCI technique demonstrated hypothermic TTM extends hyperemia duration, delays onset of hypoperfusion phase and lowered rCBF, which is associated with early restoration of electrophysiological recovery and improved functional outcome after CA.
Collapse
Affiliation(s)
- Junyun He
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hongyang Lu
- 2 School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Leanne Young
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruoxian Deng
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Callow
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shanbao Tong
- 2 School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Xiaofeng Jia
- 1 Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,3 Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,4 Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.,5 Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,6 Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Ringuette D, Nauenberg J, Monnier PP, Carlen PL, Levi O. Data compression and improved registration for laser speckle contrast imaging of rodent brains. BIOMEDICAL OPTICS EXPRESS 2018; 9:5615-5634. [PMID: 30460150 PMCID: PMC6238931 DOI: 10.1364/boe.9.005615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/30/2018] [Accepted: 09/13/2018] [Indexed: 05/16/2023]
Abstract
Single-frame blood flow maps from laser speckle contrast imaging (LSCI) contain high spatiotemporal variation that obscures high spatial-frequency vascular features, making precise image registration for signal amplification challenging. In this work, novel bivariate standardized moment filters (BSMFs) were used to provide stable measures of vessel edge location, permitting more robust LSCI registration. Relatedly, BSMFs enabled the stable reconstruction of vessel edges from sparsely distributed blood flow map outliers, which were found to retain most of the temporal dynamics. Consequently, data discarding and BSMF-based reconstruction enable efficient real-time quantitative LSCI data compression. Smaller LSCI-kernels produced log-normal blood flow distributions, enhancing sparse-to-dense inference.
Collapse
Affiliation(s)
- Dene Ringuette
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2S8,
Canada
| | - Jacob Nauenberg
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4,
Canada
| | - Philippe P. Monnier
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2S8,
Canada
| | - Peter L. Carlen
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2S8,
Canada
| | - Ofer Levi
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4,
Canada
| |
Collapse
|
33
|
Wu X, Li J, Joypaul K, Bao WW, Wang D, Huang YJ, Li PC, Mei W. Blood flow index as an indicator of successful sciatic nerve block: a prospective observational study using laser speckle contrast imaging. Br J Anaesth 2018; 121:859-866. [PMID: 30236247 DOI: 10.1016/j.bja.2018.05.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Laser speckle contrast imaging allows real-time, non-invasive, quantitative measurements of regional blood flow. The objectives of this prospective observational study were to use laser speckle contrast imaging to evaluate blood flow changes after sciatic nerve block, and to determine whether this novel optical technique can evaluate block success. METHODS This observational study included 63 adult patients undergoing elective lower limb surgery with sciatic nerve block. Blood flow images and blood flow index (BFI) values of toes were recorded using laser speckle contrast imaging 5 min before nerve block and at 5 min intervals until 30 min after sciatic block. The sensitivity, specificity, and cut-off value of laser speckle contrast imaging for predicting successful sciatic block were determined by receiver operator characteristic (ROC) curve analysis. RESULTS The BFI values of toes were significantly increased at each time point after successful sciatic block, compared with the baseline value obtained 5 min before nerve block; in failed sciatic block, there were no significant differences. For successful sciatic block, the highest increase of BFI value was at the big toe. BFI increase of the big toe at 10 min after sciatic block has great potential as an indicator of block success. The area under the ROC curve was 0.954 at a cut-off value of 8.48 perfusion units (PU) with a sensitivity of 89% and a specificity of 100%. CONCLUSIONS Laser speckle contrast imaging might be an early, objective, quantitative, and reliable indicator of successful sciatic block. BFI increase of the big toe not reaching 8.48 PU within 10 min after sciatic block indicates block failure. CLINICAL TRIAL REGISTRATION NCT03169517.
Collapse
Affiliation(s)
- X Wu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anaesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - K Joypaul
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anaesthesiology, Flacq Hospital, Centre-de-Flacq, Mauritius
| | - W W Bao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Anaesthesiology, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - D Wang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y J Huang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - P C Li
- Britton Chance Center for Biomedical Photonics, School of Engineering Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| | - W Mei
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Lee SR, Kim KH, You HS, Fu J, Hsieh TCM, Bhargava V, Raj Rajasekaran M. Characterization of age-related penile microvascular hemodynamic impairment using laser speckle contrast imaging: possible role of increased fibrogenesis. Physiol Rep 2018; 5:5/21/e13481. [PMID: 29122956 PMCID: PMC5688777 DOI: 10.14814/phy2.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 02/07/2023] Open
Abstract
Current technology for penile hemodynamic evaluations in small animals is invasive and has limitations. We evaluated a novel laser speckle contrast imaging (LSCI) technique to determine age‐related changes in penile microvascular perfusion (PMP) and tested the role of cavernosal muscle (CC) fibrosis mediated by Wnt‐TGF β1 signaling pathways in a mouse model. Ten young (2–3 months) and old (24–28 months) wild‐type C57BL6 male mice were subjected to PMP measured using a LSCI system. Penile blood flow (PBF, peak systolic velocity, PSV) was also measured using a color Doppler ultrasound for comparison. Measurements were made before and after injection of vasoactive drugs: prostaglandin E1 (PGE1) and acetylcholine (ACh). CC was processed for immunohistochemical studies for markers of endothelium and fibrosis. Protein levels were quantified by Western blot.PMP and PBF increased significantly from baseline after injection of vasoactive drugs. Peak PMP after PGE1 and ACh was higher in young mice (225.0 ± 12.0 and 211.3 ± 12.1 AU) compared to old (155.9 ± 7.1 and 162.6 ± 5.1 AU, respectively). PSV after PGE1 was higher in young than old mice (112.7 ± 8.5 vs. 78.2 ± 4.6 mm/sec). PSV after ACh was also higher in young (112.7 ± 5.6 mm/sec) than older mice (69.2 ± 7.1 mm/sec). PMP positively correlated with PSV (r = 0.867, P = 0.001). Immunostaining and Western blot showed increased protein expression of all fibrosis markers with aging. LSCI is a viable technique for evaluating penile hemodynamics. Increased cavernosal fibrosis may cause impaired penile hemodynamics and increased incidence of erectile dysfunction in older men.
Collapse
Affiliation(s)
- Seung-Ryeol Lee
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California.,Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ki-Ho Kim
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California.,Department of Urology, Dongguk University College of Medicine, Gyeongju, Korea
| | - Ho-Song You
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California.,Department of Urology, Chonnam National University Hospital, Gwangju, Korea
| | - Johnny Fu
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| | - Tung-Chin Mike Hsieh
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| | - Valmik Bhargava
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| | - M Raj Rajasekaran
- Departments of Urology and Medicine, VA San Diego Health Care System University of California, San Diego, California
| |
Collapse
|
35
|
Lertsakdadet B, Yang BY, Dunn CE, Ponticorvo A, Crouzet C, Bernal N, Durkin AJ, Choi B. Correcting for motion artifact in handheld laser speckle images. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29546735 PMCID: PMC5852319 DOI: 10.1117/1.jbo.23.3.036006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/21/2018] [Indexed: 05/03/2023]
Abstract
Laser speckle imaging (LSI) is a wide-field optical technique that enables superficial blood flow quantification. LSI is normally performed in a mounted configuration to decrease the likelihood of motion artifact. However, mounted LSI systems are cumbersome and difficult to transport quickly in a clinical setting for which portability is essential in providing bedside patient care. To address this issue, we created a handheld LSI device using scientific grade components. To account for motion artifact of the LSI device used in a handheld setup, we incorporated a fiducial marker (FM) into our imaging protocol and determined the difference between highest and lowest speckle contrast values for the FM within each data set (Kbest and Kworst). The difference between Kbest and Kworst in mounted and handheld setups was 8% and 52%, respectively, thereby reinforcing the need for motion artifact quantification. When using a threshold FM speckle contrast value (KFM) to identify a subset of images with an acceptable level of motion artifact, mounted and handheld LSI measurements of speckle contrast of a flow region (KFLOW) in in vitro flow phantom experiments differed by 8%. Without the use of the FM, mounted and handheld KFLOW values differed by 20%. To further validate our handheld LSI device, we compared mounted and handheld data from an in vivo porcine burn model of superficial and full thickness burns. The speckle contrast within the burn region (KBURN) of the mounted and handheld LSI data differed by <4 % when accounting for motion artifact using the FM, which is less than the speckle contrast difference between superficial and full thickness burns. Collectively, our results suggest the potential of handheld LSI with an FM as a suitable alternative to mounted LSI, especially in challenging clinical settings with space limitations such as the intensive care unit.
Collapse
Affiliation(s)
- Ben Lertsakdadet
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, California, United States
| | - Bruce Y. Yang
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, California, United States
| | - Cody E. Dunn
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, California, United States
| | - Adrien Ponticorvo
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, California, United States
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, California, United States
| | - Nicole Bernal
- University of California, Irvine, California, United States
- University of California, Department of Surgery, Irvine, California, United States
| | - Anthony J. Durkin
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, California, United States
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, California, United States
- Address all correspondence to: Bernard Choi, E-mail:
| |
Collapse
|
36
|
Regan C, Hayakawa C, Choi B. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin. BIOMEDICAL OPTICS EXPRESS 2017; 8:5708-5723. [PMID: 29296499 PMCID: PMC5745114 DOI: 10.1364/boe.8.005708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/15/2017] [Accepted: 10/18/2017] [Indexed: 05/03/2023]
Abstract
Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.
Collapse
Affiliation(s)
- Caitlin Regan
- Beckman Laser Institute, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California-Irvine, 3120 Natural Sciences II, Irvine, CA 92697, USA
| | - Carole Hayakawa
- Beckman Laser Institute, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
| | - Bernard Choi
- Beckman Laser Institute, University of California-Irvine, 1002 Health Sciences Road East, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California-Irvine, 3120 Natural Sciences II, Irvine, CA 92697, USA
- Department of Surgery, University of California-Irvine, 333 City Boulevard West, Suite 1600, Orange, CA 92868, USA
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, 2400 Engineering Hall, Irvine CA 92697, USA
| |
Collapse
|
37
|
Richards LM, Kazmi SS, Olin KE, Waldron JS, Fox DJ, Dunn AK. Intraoperative multi-exposure speckle imaging of cerebral blood flow. J Cereb Blood Flow Metab 2017; 37:3097-3109. [PMID: 28112550 PMCID: PMC5584700 DOI: 10.1177/0271678x16686987] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multiple studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable cerebral blood flow monitoring technique during neurosurgery. However, the quantitative accuracy and sensitivity of LSCI is limited, and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study ( n = 8) recorded multiple exposure times from the same cortical tissue area spanning 0.5-20 ms, and evaluated images individually as single-exposure LSCI and jointly using the MESI model. This study demonstrated that the MESI estimates provided the broadest flow sensitivity for sampling the flow magnitude in the human brain, closely followed by the shorter exposure times. Conservation of flow analysis on vascular bifurcations was used to validate physiological accuracy, with highly conserved flow estimates (<10%) from both MESI and 1 ms LSCI ( n = 14 branches). The MESI model had high goodness-of-fit with proper image calibration and acquisition, and was used to monitor blood flow changes after tissue cautery. Results from this study demonstrate that intraoperative MESI can be performed with high quantitative accuracy and sensitivity for cerebral blood flow monitoring.
Collapse
Affiliation(s)
- Lisa M Richards
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| | - Sm Shams Kazmi
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| | - Katherine E Olin
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| | - James S Waldron
- 2 NeuroTexas Institute, St. David's Medical Center, Austin, USA
| | - Douglas J Fox
- 2 NeuroTexas Institute, St. David's Medical Center, Austin, USA
| | - Andrew K Dunn
- 1 Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
| |
Collapse
|
38
|
Knudsen KBK, Thorup J, Strandby RB, Ambrus R, Ring LL, Ifaoui I. Laser Speckle Contrast Imaging to Evaluate Bowel Lesions in Neonates with NEC. European J Pediatr Surg Rep 2017; 5:e43-e46. [PMID: 28868231 PMCID: PMC5578818 DOI: 10.1055/s-0037-1606196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/16/2017] [Indexed: 02/06/2023] Open
Abstract
Background
Necrotizing enterocolitis (NEC) is the most frequent surgical emergency in newborns. Intestinal ischemia is considered a factor that precedes the development of NEC lesions. Laser speckle contrast imaging (LSCI) can be used to assess tissue microcirculation. We evaluated if LSCI may help to detect intestinal regions with reduced microcirculation in NEC.
Case Report
A male patient (gestational age, 26 [3/7] weeks; birth weight, 600 g) showed clinical signs of NEC 28 days after birth. X-ray revealed pneumatosis intestinalis and portal gas. Laparotomy showed NEC lesions with signs of transmural ischemia in the terminal ileum and cecum. Surgical resection lines (RLs) were marked, followed by LSCI measurements and resection of the bowel between the two RLs. Post hoc LSCI analyses were conducted on both sides of the proximal and distal RL. Low-flux values, indicating reduced microcirculation, were found in the macroscopically assessed necrotic bowel at the proximal RL, whereas higher flux values, indicating sufficient microcirculation, were found in the macroscopically assessed normal bowel.
Discussion
This study is the first description of intra-abdominal use of LSCI to evaluate tissue microcirculation in relation to NEC lesions. LSCI could be a valuable tool to distinguish between ischemic and nonischemic bowel in neonates undergoing surgery for NEC.
Collapse
Affiliation(s)
- Kristine Bach Korsholm Knudsen
- Department of Surgical Gastroenterology and Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Joergen Thorup
- Department of Surgical Gastroenterology and Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rune Broni Strandby
- Department of Surgical Gastroenterology and Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rikard Ambrus
- Department of Surgical Gastroenterology and Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Linea Landgrebe Ring
- Department of Surgical Gastroenterology and Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Inge Ifaoui
- Department of Surgical Gastroenterology and Pediatric Surgery, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
39
|
Liu J, Zhang H, Lu J, Ni X, Shen Z. Quantitative model of diffuse speckle contrast analysis for flow measurement. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76016. [PMID: 28742921 DOI: 10.1117/1.jbo.22.7.076016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
Diffuse speckle contrast analysis (DSCA) is a noninvasive optical technique capable of monitoring deep tissue blood flow. However, a detailed study of the speckle contrast model for DSCA has yet to be presented. We deduced the theoretical relationship between speckle contrast and exposure time and further simplified it to a linear approximation model. The feasibility of this linear model was validated by the liquid phantoms which demonstrated that the slope of this linear approximation was able to rapidly determine the Brownian diffusion coefficient of the turbid media at multiple distances using multiexposure speckle imaging. Furthermore, we have theoretically quantified the influence of optical property on the measurements of the Brownian diffusion coefficient which was a consequence of the fact that the slope of this linear approximation was demonstrated to be equal to the inverse of correlation time of the speckle.
Collapse
Affiliation(s)
- Jialin Liu
- Nanjing University of Science and Technology, School of Science, Nanjing, China
| | - Hongchao Zhang
- Nanjing University of Science and Technology, School of Science, Nanjing, China
| | - Jian Lu
- Nanjing University of Science and Technology, School of Science, Nanjing, China
| | - Xiaowu Ni
- Nanjing University of Science and Technology, School of Science, Nanjing, China
| | - Zhonghua Shen
- Nanjing University of Science and Technology, School of Science, Nanjing, China
| |
Collapse
|
40
|
Mikkelsen MLG, Ambrus R, Rasmussen R, Miles JE, Poulsen HH, Moltke FB, Eriksen T. The effect of dexmedetomidine on cerebral perfusion and oxygenation in healthy piglets with normal and lowered blood pressure anaesthetized with propofol-remifentanil total intravenous anaesthesia. Acta Vet Scand 2017; 59:27. [PMID: 28468670 PMCID: PMC5415812 DOI: 10.1186/s13028-017-0293-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During anaesthesia and surgery, in particular neurosurgery, preservation of cerebral perfusion and oxygenation (CPO) is essential for normal postoperative brain function. The isolated effects on CPO of either individual anaesthetic drugs or entire anaesthetic protocols are of importance in both clinical and research settings. Total intravenous anaesthesia (TIVA) with propofol and remifentanil is widely used in human neuroanaesthesia. In addition, dexmedetomidine is receiving increasing attention as an anaesthetic adjuvant in neurosurgical, intensive care, and paediatric patients. Despite the extensive use of pigs as animal models in neuroscience and the increasing use of both propofol-remifentanil and dexmedetomidine, very little is known about their combined effect on CPO in pigs with uninjured brains. This study investigates the effect of dexmedetomidine on CPO in piglets with normal and lowered blood pressure during background anaesthesia with propofol-remifentanil TIVA. Sixteen healthy female Danish pigs (crossbreeds of Danish Landrace, Yorkshire and Duroc, 25-34 kg) were used. Three animals were subsequently excluded. The animals were randomly allocated into one of two groups with either normal blood pressure (NBP, n = 6) or with induced low blood pressure (LBP, n = 7). Both groups were subjected to the same experimental protocol. Intravenous propofol induction was performed without premedication. Anaesthesia was maintained with propofol-remifentanil TIVA, and later supplemented with continuous infusion of dexmedetomidine. Assessments of cerebral perfusion obtained by laser speckle contrast imaging (LSCI) were related to cerebral oxygenation measures (PbrO2) obtained by an intracerebral Clark-type Licox probe. RESULTS Addition of dexmedetomidine resulted in a 32% reduction in median PbrO2 values for the LBP group (P = 0.03), but no significant changes in PbrO2 were observed for the NBP group. No significant changes in LSCI readings were observed in either group between any time points, despite a 28% decrease in the LBP group following dexmedetomidine administration. Caval block resulted in a significant (P = 0.02) reduction in median MAP from 68 mmHg (range 63-85) at PCB to 58 mmHg (range 53-63) in the LBP group, but no significant differences in either PbrO2 or LSCI were observed due to this intervention (P = 0.6 and P = 0.3 respectively). CONCLUSIONS Addition of dexmedetomidine to propofol-remifentanil TIVA resulted in a significant decrease in cerebral oxygenation (PbrO2) measurements in piglets with lowered blood pressure. Cerebral perfusion (LSCI) did not decrease significantly in this group. In piglets with normal blood pressure, no significant changes in cerebral perfusion or oxygenation were seen in response to addition of dexmedetomidine to the background anaesthesia.
Collapse
Affiliation(s)
- Mai Louise Grandsgaard Mikkelsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 16 Dyrlægevej, 1870 Frederiksberg C, Denmark
| | - Rikard Ambrus
- Department of Surgical Gastroenterology C, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen Ø, Denmark
| | - Rune Rasmussen
- Department of Neurosurgery, The Neuroscience Centre, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen Ø, Denmark
| | - James Edward Miles
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 16 Dyrlægevej, 1870 Frederiksberg C, Denmark
| | - Helle Harding Poulsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 16 Dyrlægevej, 1870 Frederiksberg C, Denmark
| | - Finn Borgbjerg Moltke
- Department of Neuroanaesthesia, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen Ø, Denmark
- Department of Anaesthesia, Bispebjerg and Frederiksberg Hospitals, Faculty of Health and Medical Sciences, University of Copenhagen, 23 Bispebjerg Bakke, 2400 Copenhagen NV, Denmark
| | - Thomas Eriksen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 16 Dyrlægevej, 1870 Frederiksberg C, Denmark
| |
Collapse
|
41
|
Ringuette D, Jeffrey MA, Dufour S, Carlen PL, Levi O. Continuous multi-modality brain imaging reveals modified neurovascular seizure response after intervention. BIOMEDICAL OPTICS EXPRESS 2017; 8:873-889. [PMID: 28270990 PMCID: PMC5330586 DOI: 10.1364/boe.8.000873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 05/28/2023]
Abstract
We developed a multi-modal brain imaging system to investigate the relationship between blood flow, blood oxygenation/volume, intracellular calcium and electrographic activity during acute seizure-like events (SLEs), both before and after pharmacological intervention. Rising blood volume was highly specific to SLE-onset whereas blood flow was more correlated with all eletrographic activity. Intracellular calcium spiked between SLEs and at SLE-onset with oscillation during SLEs. Modified neurovascular and ionic SLE responses were observed after intervention and the interval between SLEs became shorter and more inconsistent. Comparison of artery and vein pulsatile flow suggest proximal interference and greater vascular leakage prior to intervention.
Collapse
Affiliation(s)
- Dene Ringuette
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
| | - Melanie A. Jeffrey
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2R1,
Canada
| | - Suzie Dufour
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2R1,
Canada
| | - Peter L. Carlen
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- Division of Fundamental Neurobiology, Toronto Western Research Institute, 60 Leonard Ave, Toronto, Ontario M5T 2R1,
Canada
| | - Ofer Levi
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario, M5S 3G4,
Canada
| |
Collapse
|
42
|
Valdés PA, Roberts DW, Lu FK, Golby A. Optical technologies for intraoperative neurosurgical guidance. Neurosurg Focus 2016; 40:E8. [PMID: 26926066 DOI: 10.3171/2015.12.focus15550] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.
Collapse
Affiliation(s)
- Pablo A Valdés
- Departments of 1 Neurosurgery and.,Department of Neurosurgery, Harvard Medical School, Boston Children's Hospital, Boston
| | - David W Roberts
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Alexandra Golby
- Departments of 1 Neurosurgery and.,Radiology, and.,Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital
| |
Collapse
|
43
|
Borges JP, Lopes GO, Verri V, Coelho MP, Nascimento PMC, Kopiler DA, Tibirica E. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging. ACTA ACUST UNITED AC 2016; 49:e5541. [PMID: 27599202 PMCID: PMC5018692 DOI: 10.1590/1414-431x20165541] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
Abstract
Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.
Collapse
Affiliation(s)
- J P Borges
- Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - G O Lopes
- Laboratório de Atividade Física e Promoção è Saúde, Departamento de Desporto Coletivo, Instituto de Educação Física e Desportos, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.,Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - V Verri
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - M P Coelho
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | | | - D A Kopiler
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - E Tibirica
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil.,Laboratório de Investigação Cardiovascular, Departamento Osório de Almeida, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
44
|
Farraro R, Fathi O, Choi B. Handheld, point-of-care laser speckle imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:94001. [PMID: 27579578 PMCID: PMC5005973 DOI: 10.1117/1.jbo.21.9.094001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/12/2016] [Indexed: 05/15/2023]
Abstract
Laser speckle imaging (LSI) enables measurement of relative changes in blood flow in biological tissues. We postulate that a point-of-care form factor will lower barriers to routine clinical use of LSI. Here, we describe a first-generation handheld LSI device based on a tablet computer. The coefficient of variation of speckle contrast was < 2% after averaging imaging data collected over an acquisition period of 5.3 s. With a single, experienced user, handheld motion artifacts had a negligible effect on data collection. With operation by multiple users, we did not identify any significant difference (p > 0.05) between the measured speckle contrast values using either a handheld or mounted configuration. In vivo data collected during occlusion experiments demonstrate that a handheld LSI is capable of both quantitative and qualitative assessment of changes in blood flow. Finally, as a practical application of handheld LSI, we collected data from a 53-day-old neonate with confirmed compromised blood flow in the hand. We readily identified with LSI a region of diminished blood flow in the thumb of the affected hand. Our data collectively suggest that handheld LSI is a promising technique to enable clinicians to obtain point-of-care measurements of blood flow.
Collapse
Affiliation(s)
- Ryan Farraro
- University of California-Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, California 92612, United States
- University of California-Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697, United States
| | - Omid Fathi
- University of California-Irvine, Department of Pediatrics, 505 South Main Street, Irvine, Orange, California 92868, United States
| | - Bernard Choi
- University of California-Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, California 92612, United States
- University of California-Irvine, Department of Biomedical Engineering, 3120 Natural Sciences II, Irvine, California 92697, United States
- University of California-Irvine, Department of Surgery, 333 City Boulevard West, Suite 1600, Orange, California 92868, United States
- University of California-Irvine, Edwards Lifesciences Center for Advanced Cardiovascular Technology, 2400 Engineering Hall, Irvine, California 92697, United States
- CHOC Children’s Hospital, 1201 West La Veta Avenue, Orange, California 92868, United States
- Address all correspondence to: Bernard Choi, E-mail:
| |
Collapse
|
45
|
Wilson RH, Vishwanath K, Mycek MA. Optical methods for quantitative and label-free sensing in living human tissues: principles, techniques, and applications. ADVANCES IN PHYSICS 2016; 1:523-543. [PMID: 28824194 PMCID: PMC5560608 DOI: 10.1080/23746149.2016.1221739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present an overview of quantitative and label-free optical methods used to characterize living biological tissues, with an emphasis on emerging applications in clinical tissue diagnostics. Specifically, this review focuses on diffuse optical spectroscopy, imaging, and tomography, optical coherence-based techniques, and non-linear optical methods for molecular imaging. The potential for non- or minimally-invasive assessment, quantitative diagnostics, and continuous monitoring enabled by these tissue-optics technologies provides significant promise for continued clinical translation.
Collapse
Affiliation(s)
- Robert H. Wilson
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, USA
| | | | - Mary-Ann Mycek
- Department of Biomedical Engineering, Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Soloperto A, Bisio M, Palazzolo G, Chiappalone M, Bonifazi P, Difato F. Modulation of Neural Network Activity through Single Cell Ablation: An in Vitro Model of Minimally Invasive Neurosurgery. Molecules 2016; 21:E1018. [PMID: 27527143 PMCID: PMC6274492 DOI: 10.3390/molecules21081018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/03/2022] Open
Abstract
The technological advancement of optical approaches, and the growth of their applications in neuroscience, has allowed investigations of the physio-pathology of neural networks at a single cell level. Therefore, better understanding the role of single neurons in the onset and progression of neurodegenerative conditions has resulted in a strong demand for surgical tools operating with single cell resolution. Optical systems already provide subcellular resolution to monitor and manipulate living tissues, and thus allow understanding the potentiality of surgery actuated at single cell level. In the present work, we report an in vitro experimental model of minimally invasive surgery applied on neuronal cultures expressing a genetically encoded calcium sensor. The experimental protocol entails the continuous monitoring of the network activity before and after the ablation of a single neuron, to provide a robust evaluation of the induced changes in the network activity. We report that in subpopulations of about 1000 neurons, even the ablation of a single unit produces a reduction of the overall network activity. The reported protocol represents a simple and cost effective model to study the efficacy of single-cell surgery, and it could represent a test-bed to study surgical procedures circumventing the abrupt and complete tissue removal in pathological conditions.
Collapse
Affiliation(s)
- Alessandro Soloperto
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Marta Bisio
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Gemma Palazzolo
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Michela Chiappalone
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| | - Paolo Bonifazi
- Biocruces Health Research Institute, Cruces University Hospital, Barakaldo 48903, Spain.
| | - Francesco Difato
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
47
|
Davis MA, Gagnon L, Boas DA, Dunn AK. Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex. BIOMEDICAL OPTICS EXPRESS 2016; 7:759-75. [PMID: 27231587 PMCID: PMC4866454 DOI: 10.1364/boe.7.000759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 05/18/2023]
Abstract
Laser speckle contrast imaging has become a ubiquitous tool for imaging blood flow in a variety of tissues. However, due to its widefield imaging nature, the measured speckle contrast is a depth integrated quantity and interpretation of baseline values and the depth dependent sensitivity of those values to changes in underlying flow has not been thoroughly evaluated. Using dynamic light scattering Monte Carlo simulations, the sensitivity of the autocorrelation function and speckle contrast to flow changes in the cerebral cortex was extensively examined. These simulations demonstrate that the sensitivity of the inverse autocorrelation time, [Formula: see text], varies across the field of view: directly over surface vessels [Formula: see text] is strongly localized to the single vessel, while parenchymal ROIs have a larger sensitivity to flow changes at depths up to 500 μm into the tissue and up to 200 μm lateral to the ROI. It is also shown that utilizing the commonly used models the relate [Formula: see text] to flow resulted in nearly the same sensitivity to the underlying flow, but fail to accurately relate speckle contrast values to absolute [Formula: see text].
Collapse
Affiliation(s)
- Mitchell A. Davis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712,
USA
| | - Louis Gagnon
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129,
USA
| | - David A. Boas
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129,
USA
| | - Andrew K. Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712,
USA
| |
Collapse
|
48
|
Kazmi SMS, Richards LM, Schrandt CJ, Davis MA, Dunn AK. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J Cereb Blood Flow Metab 2015; 35:1076-84. [PMID: 25944593 PMCID: PMC4640282 DOI: 10.1038/jcbfm.2015.84] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Laser speckle contrast imaging (LSCI) provides a rapid characterization of cortical flow dynamics for functional monitoring of the microcirculation. The technique stems from interactions of laser light with moving particles. These interactions encode the encountered Doppler phenomena within a random interference pattern imaged in widefield, known as laser speckle. Studies of neurovascular function and coupling with LSCI have benefited from the real-time characterization of functional dynamics in the laboratory setting through quantification of perfusion dynamics. While the technique has largely been relegated to acute small animal imaging, its scalability is being assessed and characterized for both chronic and clinical neurovascular imaging.
Collapse
Affiliation(s)
- S M Shams Kazmi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa M Richards
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Christian J Schrandt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Mitchell A Davis
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
49
|
Ringuette D, Sigal I, Gad R, Levi O. Reducing misfocus-related motion artefacts in laser speckle contrast imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:266-76. [PMID: 25657891 PMCID: PMC4317130 DOI: 10.1364/boe.6.000266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 05/03/2023]
Abstract
Laser Speckle Contrast Imaging (LSCI) is a flexible, easy-to-implement technique for measuring blood flow speeds in-vivo. In order to obtain reliable quantitative data from LSCI the object must remain in the focal plane of the imaging system for the duration of the measurement session. However, since LSCI suffers from inherent frame-to-frame noise, it often requires a moving average filter to produce quantitative results. This frame-to-frame noise also makes the implementation of rapid autofocus system challenging. In this work, we demonstrate an autofocus method and system based on a novel measure of misfocus which serves as an accurate and noise-robust feedback mechanism. This measure of misfocus is shown to enable the localization of best focus with sub-depth-of-field sensitivity, yielding more accurate estimates of blood flow speeds and blood vessel diameters.
Collapse
Affiliation(s)
- Dene Ringuette
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
| | - Iliya Sigal
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Raanan Gad
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Ofer Levi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| |
Collapse
|