1
|
Liu F, Chi X, Yu D. Reduced inhibition control ability in children with ADHD due to coexisting learning disorders: an fNIRS study. Front Psychiatry 2024; 15:1326341. [PMID: 38832323 PMCID: PMC11146205 DOI: 10.3389/fpsyt.2024.1326341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Inhibition control, as the core component of executive function, might play a crucial role in the understanding of attention deficit/hyperactivity disorder (ADHD) and specific learning disorders (SLD). Inhibition control deficits have been observed in children with ADHD or SLD. This study sought to test in a multi-modal fashion (i.e., behavior and plus brain imaging) whether inhibition control abilities would be further deteriorated in the ADHD children due to the comorbidity of SLD. Method A total number of 90 children (aged 6-12 years) were recruited, including 30 ADHD, 30 ADHD+SLD (children with the comorbidity of ADHD and SLD), and 30 typically developing (TD) children. For each participant, a 44-channel functional near infrared spectroscopy (fNIRS) equipment was first adopted to capture behavioral and cortical hemodynamic responses during a two-choice Oddball task (a relatively new inhibition control paradigm). Then, 50 metrics were extracted, including 6 behavioral metrics (i.e., OddballACC, baselineACC, totalACC, OddballRT, baselineRT, and totalRT) and 44 beta values in 44 channels based on general linear model. Finally, differences in those 50 metrics among the TD, ADHD, and ADHD+SLD children were analyzed. Results Findings showed that: (1) OddballACC (i.e., the response accuracy in deviant stimuli) is the most sensitive metric in identifying the differences between the ADHD and ADHD+SLD children; and (2) The ADHD+SLD children exhibited decreased behavioral response accuracy and brain activation level in some channels (e.g., channel CH35) than both the ADHD and TD children. Discussion Findings seem to support that inhibition control abilities would be further decreased in the ADHD children due to the comorbidity of SLD.
Collapse
Affiliation(s)
- Fulin Liu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xia Chi
- Department of Child Health Care, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Dongchuan Yu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Henan Provincial Medical Key Lab of Child Developmental Behavior and Learning, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Liu F, Yao M, Wang H, Chi X, Yu D. Improving Accuracy of ADHD Diagnosis with the Combination of Brain Imaging and Behavioral Measures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082829 DOI: 10.1109/embc40787.2023.10340889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neuropsychological measures may improve Attention-deficit/hyperactivity disorder (ADHD) diagnostic accuracy and enhance treatment response detection. Highquality evaluation indicators are necessary for accurate diagnosis of ADHD. Due to the high complexity of the pathogenesis of ADHD, it may not be possible to accurately diagnose ADHD only by relying on behavioral assessment or brain imaging examination. Therefore, the authors propose a comprehensive index that combines brain imaging behavioral and measures. The results showed that the classification performance of the composite index was better than that of the single behavior or brain image index.Clinical Relevance- The results of this study help to remind practicing clinicians to consider the results of multiple clinical examinations when clinically diagnosing ADHD patients.
Collapse
|
3
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
4
|
Poliakova E, Conrad AL, Schieltz KM, O'Brien MJ. Using fNIRS to evaluate ADHD medication effects on neuronal activity: A systematic literature review. FRONTIERS IN NEUROIMAGING 2023; 2:1083036. [PMID: 37033327 PMCID: PMC10078617 DOI: 10.3389/fnimg.2023.1083036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023]
Abstract
Background Functional near infrared spectroscopy (fNIRS) is a relatively non-invasive and inexpensive functional neuroimaging technique that has shown promise as a method for understanding the differences in neuronal activity associated with various neurodevelopmental conditions, including ADHD. Additionally, fNIRS has been suggested as a possible tool to understand the impact of psychotropic medications on brain activity in individuals with ADHD, but this approach is still in its infancy. Objective The purpose of this systematic literature review was to synthesize the extant research literature on the use of fNIRS to assess the effects of ADHD medications on brain activity in children and adolescents with ADHD. Methods A literature search following Preferred Reporting Items for Systematic Literature Reviews and Meta-Analyses (PRISMA) guidelines was conducted for peer-reviewed articles related to ADHD, medication, and fNIRS in PsychInfo, Scopus, and PubMed electronic databases. Results The search yielded 23 published studies meeting inclusion criteria. There was a high degree of heterogeneity in terms of the research methodology and procedures, which is explained in part by the distinct goals and approaches of the studies reviewed. However, there was also relative consistency in outcomes among a select group of studies that demonstrated a similar research focus. Conclusion Although fNIRS has great potential to further our understanding of the effects of ADHD medications on the neuronal activity of children and adolescents with ADHD, the current research base is still relatively small and there are limitations and methodological inconsistencies that should be addressed in future studies.
Collapse
Affiliation(s)
- Eva Poliakova
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
| | - Amy L. Conrad
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Kelly M. Schieltz
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Matthew J. O'Brien
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| |
Collapse
|
5
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Functional near-infrared spectroscopy in developmental psychiatry: a review of attention deficit hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272:273-290. [PMID: 34185132 PMCID: PMC9911305 DOI: 10.1007/s00406-021-01288-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/21/2021] [Indexed: 01/26/2023]
Abstract
Research has linked executive function (EF) deficits to many of the behavioral symptoms of attention deficit hyperactivity disorder (ADHD). Evidence of the involvement of EF impairment in ADHD is corroborated by accumulating neuroimaging studies, specifically functional magnetic resonance imaging (fMRI) studies. However, in recent years, functional near-infrared spectroscopy (fNIRS) has become increasingly popular in ADHD research due to its portability, high ecological validity, resistance to motion artifacts, and cost-effectiveness. While numerous studies throughout the past decade have used fNIRS to examine alterations in neural correlates of EF in ADHD, a qualitative review of the reliability of these findings compared with those reported using gold-standard fMRI measurements does not yet exist. The current review aims to fill this gap in the literature by comparing the results generated from a qualitative review of fNIRS studies (children and adolescents ages 6-16 years old) to a meta-analysis of comparable fMRI studies and examining the extent to which the results of these studies align in the context of EF impairment in ADHD. The qualitative analysis of fNIRS studies of ADHD shows a consistent hypoactivity in the right prefrontal cortex in multiple EF tasks. The meta-analysis of fMRI data corroborates altered activity in this region and surrounding areas during EF tasks in ADHD compared with typically developing controls. These findings indicate that fNIRS is a promising functional brain imaging technology for examining alterations in cortical activity in ADHD. We also address the disadvantages of fNIRS, including limited spatial resolution compared with fMRI.
Collapse
|
7
|
McLoughlin G, Gyurkovics M, Aydin Ü. What Has Been Learned from Using EEG Methods in Research of ADHD? Curr Top Behav Neurosci 2022; 57:415-444. [PMID: 35637406 DOI: 10.1007/7854_2022_344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording methods, including electroencephalography (EEG) and magnetoencephalography (MEG), have an unparalleled capacity to provide insights into the timing and frequency (spectral) composition of rapidly changing neural activity associated with various cognitive processes. The current chapter provides an overview of EEG studies examining alterations in brain activity in ADHD, measured both at rest and during cognitive tasks. While EEG resting state studies of ADHD indicate no universal alterations in the disorder, event-related studies reveal consistent deficits in attentional and inhibitory control and consequently inform the proposed cognitive models of ADHD. Similar to other neuroimaging measures, EEG research indicates alterations in multiple neural circuits and cognitive functions. EEG methods - supported by the constant refinement of analytic strategies - have the potential to contribute to improved diagnostics and interventions for ADHD, underlining their clinical utility.
Collapse
Affiliation(s)
- Gráinne McLoughlin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Máté Gyurkovics
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ümit Aydin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Kobayashi M, Ikeda T, Tokuda T, Monden Y, Nagashima M, Mizushima SG, Inoue T, Shimamura K, Ujiie Y, Arakawa A, Kuroiwa C, Ishijima M, Kishimoto Y, Kanazawa S, Yamagata T, Yamaguchi MK, Sakuta R, Dan I. Acute administration of methylphenidate differentially affects cortical processing of emotional facial expressions in attention-deficit hyperactivity disorder children as studied by functional near-infrared spectroscopy. NEUROPHOTONICS 2020; 7:025003. [PMID: 32377545 PMCID: PMC7201297 DOI: 10.1117/1.nph.7.2.025003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Significance: It has been reported that children with attention-deficit hyperactivity disorder (ADHD) have impairment in the recognition of angry but not of happy facial expressions, and they show atypical cortical activation patterns in response to facial expressions. However, little is known about neural mechanisms underlying the impaired recognition of facial expressions in school-aged children with ADHD and the effects of acute medication on their processing of facial expressions. Aim: We aimed to investigate the possibility that acute administration of methylphenidate (MPH) affects processing of facial expressions in ADHD children. Approach: We measured the hemodynamic changes in the bilateral temporo-occipital areas of ADHD children observing the happy and angry facial expressions before and 1.5 h after MPH or placebo administration in a randomized, double-blind, placebo-controlled, crossover design study. Results: We found that, regardless of medication, happy expressions induced increased oxyhemoglobin (oxy-Hb) responses in the right inferior occipital region but not in the superior temporal region. For angry expressions, oxy-Hb responses increased after MPH administration, but not after placebo administration, in the left inferior occipital area, whereas there was no significant activation before MPH administration. Conclusions: Our results suggest that (1) ADHD children consistently recruit the right inferior occipital regions to process happy expressions and (2) MPH administration to ADHD children enhances cortical activation in the left inferior occipital regions when they process angry expressions.
Collapse
Affiliation(s)
- Megumi Kobayashi
- Institute for Developmental Research, Aichi Developmental Disability Center, Department of Functioning and Disability, Kagiya-cho, Kasugai, Aichi, Japan
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
| | - Takahiro Ikeda
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Jichi Medical University, Department of Pediatrics, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Tatsuya Tokuda
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Chuo University, Applied Cognitive Neuroscience Laboratory, Kasuga, Bunkyo, Tokyo, Japan
| | - Yukifumi Monden
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Jichi Medical University, Department of Pediatrics, Yakushiji, Shimotsuke, Tochigi, Japan
- Chuo University, Applied Cognitive Neuroscience Laboratory, Kasuga, Bunkyo, Tokyo, Japan
- International University of Health and Welfare, Department of Pediatrics, Iguchi, Nasushiobara, Tochigi, Japan
| | - Masako Nagashima
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Jichi Medical University, Department of Pediatrics, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Sakae G. Mizushima
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Chuo University, Applied Cognitive Neuroscience Laboratory, Kasuga, Bunkyo, Tokyo, Japan
| | - Takeshi Inoue
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Dokkyo Medical University, Child Development and Psychosomatic Medicine Center, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Keiichi Shimamura
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Dokkyo Medical University, Child Development and Psychosomatic Medicine Center, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Yuta Ujiie
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Chuo University, Research and Development Initiative, Kasuga, Bunkyo, Tokyo, Japan
| | - Akari Arakawa
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Dokkyo Medical University, Child Development and Psychosomatic Medicine Center, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Chie Kuroiwa
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Dokkyo Medical University, Child Development and Psychosomatic Medicine Center, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Mayuko Ishijima
- Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yuki Kishimoto
- Chuo University, Applied Cognitive Neuroscience Laboratory, Kasuga, Bunkyo, Tokyo, Japan
| | - So Kanazawa
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Japan Women’s University, Department of Psychology, Nishi-Ikuta, Tama, Kawasaki, Kanagawa, Japan
| | - Takanori Yamagata
- Jichi Medical University, Department of Pediatrics, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Masami K. Yamaguchi
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Chuo University, Department of Psychology, Higashinakano, Hachioji, Tokyo, Japan
| | - Ryoichi Sakuta
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Dokkyo Medical University, Child Development and Psychosomatic Medicine Center, Minamikoshigaya, Koshigaya, Saitama, Japan
| | - Ippeita Dan
- RISTEX (Research Institute of Science and Technology for Society) Group, Kasuga, Bunkyo, Tokyo, Japan
- Chuo University, Applied Cognitive Neuroscience Laboratory, Kasuga, Bunkyo, Tokyo, Japan
| |
Collapse
|
9
|
Sutoko S, Monden Y, Tokuda T, Ikeda T, Nagashima M, Funane T, Atsumori H, Kiguchi M, Maki A, Yamagata T, Dan I. Atypical Dynamic-Connectivity Recruitment in Attention-Deficit/Hyperactivity Disorder Children: An Insight Into Task-Based Dynamic Connectivity Through an fNIRS Study. Front Hum Neurosci 2020; 14:3. [PMID: 32082132 PMCID: PMC7005005 DOI: 10.3389/fnhum.2020.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/07/2020] [Indexed: 11/13/2022] Open
Abstract
Connectivity between brain regions has been redefined beyond a stationary state. Even when a person is in a resting state, brain connectivity dynamically shifts. However, shifted brain connectivity under externally evoked stimulus is still little understood. The current study, therefore, focuses on task-based dynamic functional-connectivity (FC) analysis of brain signals measured by functional near-infrared spectroscopy (fNIRS). We hypothesize that a stimulus may influence not only brain connectivity but also the occurrence probabilities of task-related and task-irrelevant connectivity states. fNIRS measurement (of the prefrontal-to-inferior parietal lobes) was conducted on 21 typically developing (TD) and 21 age-matched attention-deficit/hyperactivity disorder (ADHD) children performing an inhibitory control task, namely, the Go/No-Go (GNG) task. It has been reported that ADHD children lack inhibitory control; differences between TD and ADHD children in terms of task-based dynamic FC were also evaluated. Four connectivity states were found to occur during the temporal task course. Two dominant connectivity states (states 1 and 2) are characterized by strong connectivities within the frontoparietal network (occurrence probabilities of 40%-56% and 26%-29%), and presumptively interpreted as task-related states. A connectivity state (state 3) shows strong connectivities in the bilateral medial frontal-to-parietal cortices (occurrence probability of 7-15%). The strong connectivities were found at the overlapped regions related the default mode network (DMN). Another connectivity state (state 4) visualizes strong connectivities in all measured regions (occurrence probability of 10%-16%). A global effect coming from cerebral vascular may highly influence this connectivity state. During the GNG stimulus interval, the ADHD children tended to show decreased occurrence probability of the dominant connectivity state and increased occurrence probability of other connectivity states (states 3 and 4). Bringing a new perspective to explain neuropathophysiology, these findings suggest atypical dynamic network recruitment to accommodate task demands in ADHD children.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Hitachi, Ltd., Research & Development Group, Center for Exploratory Research, Tokyo, Japan
- Faculty of Science and Engineering, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | - Yukifumi Monden
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
- Department of Pediatrics, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Tatsuya Tokuda
- Faculty of Science and Engineering, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masako Nagashima
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Tsukasa Funane
- Hitachi, Ltd., Research & Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Hirokazu Atsumori
- Hitachi, Ltd., Research & Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Masashi Kiguchi
- Hitachi, Ltd., Research & Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Atsushi Maki
- Hitachi, Ltd., Research & Development Group, Center for Exploratory Research, Tokyo, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Ippeita Dan
- Faculty of Science and Engineering, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| |
Collapse
|
10
|
Shimamura K, Inoue T, Ichikawa H, Nakato E, Sakuta Y, Kanazawa S, Yamaguchi MK, Kakigi R, Sakuta R. Hemodynamic response to familiar faces in children with ADHD. Biopsychosoc Med 2019; 13:30. [PMID: 31798682 PMCID: PMC6882321 DOI: 10.1186/s13030-019-0172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background School-age children with attention deficit hyperactivity disorder (ADHD) have difficulties in interpersonal relationships, in addition to impaired facial expression perception and recognition. For successful social interactions, the ability to discriminate between familiar and unfamiliar faces is critical. However, there are no published reports on the recognition of familiar and unfamiliar faces by children with ADHD. Methods We evaluated the neural correlates of familiar and unfamiliar facial recognition in children with ADHD compared to typically developing (TD) children. We used functional near-infrared spectroscopy (fNIRS) to measure hemodynamic responses on the bilateral temporal regions while participants looked at photographs of familiar and unfamiliar faces. Nine boys with ADHD and 14 age-matched TD boys participated in the study. fNIRS data were Z-scored prior to analysis. Results During familiar face processing, TD children only showed significant activity in the late phase, while ADHD children showed significant activity in both the early and late phases. Additionally, the boys with ADHD did not show right hemispheric lateralization to familiar faces. Conclusions This study is the first to assess brain activity during familiar face processing in boys with ADHD using fNIRS. These findings of atypical patterns of brain activity in boys with ADHD may be related to social cognitive impairments from ADHD.
Collapse
Affiliation(s)
- Keiichi Shimamura
- 1Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama-Ken, 343-8555 Japan
| | - Takeshi Inoue
- 1Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center, 2-1-50, Minami-Koshigaya, Koshigaya-shi, Saitama-Ken, 343-8555 Japan.,2Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Saitama, Japan.,3Department of Diagnostic Imaging, Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario Canada
| | - Hiroko Ichikawa
- 4Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Emi Nakato
- 5Department of Clothing, Osaka Shoin Women's University, Osaka, Japan
| | - Yuiko Sakuta
- 6Faculty of Human Life Sciences, Jissen Women's University, Tokyo, Japan
| | - So Kanazawa
- 7Department of Psychology, Japan Women's University, Kanagawa, Japan
| | | | - Ryusuke Kakigi
- 9Department of Integrative Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | - Ryoichi Sakuta
- 2Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
11
|
Sutoko S, Monden Y, Tokuda T, Ikeda T, Nagashima M, Funane T, Sato H, Kiguchi M, Maki A, Yamagata T, Dan I. Exploring attentive task-based connectivity for screening attention deficit/hyperactivity disorder children: a functional near-infrared spectroscopy study. NEUROPHOTONICS 2019; 6:045013. [PMID: 31853459 PMCID: PMC6917048 DOI: 10.1117/1.nph.6.4.045013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Connectivity impairment has frequently been associated with the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). Although the connectivity of the resting state has mainly been studied, we expect the transition between baseline and task may also be impaired in ADHD children. Twenty-three typically developing (i.e., control) and 36 disordered (ADHD and autism-comorbid ADHD) children were subjected to connectivity analysis. Specifically, they performed an attention task, visual oddball, while their brains were measured by functional near-infrared spectroscopy. The results of the measurements revealed three key findings. First, the control group maintained attentive connectivity, even in the baseline interval. Meanwhile, the disordered group showed enhanced bilateral intra- and interhemispheric connectivities while performing the task. However, right intrahemispheric connectivity was found to be weaker than those for the control group. Second, connectivity and activation characteristics might not be positively correlated with each other. In our previous results, disordered children lacked activation in the right middle frontal gyrus. However, within region connectivity of the right middle frontal gyrus was relatively strong in the baseline interval and significantly increased in the task interval. Third, the connectivity-based biomarker performed better than the activation-based biomarker in terms of screening. Activation and connectivity features were independently optimized and cross validated to obtain the best performing threshold-based classifier. The effectiveness of connectivity features, which brought significantly higher training accuracy than the optimum activation features, was confirmed (88% versus 76%). The optimum screening features were characterized by two trends: (1) strong connectivities of right frontal, left frontal, and left parietal lobes and (2) weak connectivities of left frontal, left parietal, and right parietal lobes in the control group. We conclude that the attentive task-based connectivity effectively shows the difference between control and disordered children and may represent pathological characteristics to be feasibly implemented as a supporting tool for clinical screening.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Hitachi, Ltd., Center for Exploratory Research, Research and Development Group, Hatoyama, Saitama, Japan
- Chuo University, Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Bunkyo-ku, Tokyo, Japan
| | - Yukifumi Monden
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Tochigi, Japan
- International University of Health and Welfare Hospital, Department of Pediatrics, Nasushiobara, Tochigi, Japan
| | - Tatsuya Tokuda
- Chuo University, Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Bunkyo-ku, Tokyo, Japan
| | - Takahiro Ikeda
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Tochigi, Japan
| | - Masako Nagashima
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Tochigi, Japan
| | - Tsukasa Funane
- Hitachi, Ltd., Center for Exploratory Research, Research and Development Group, Hatoyama, Saitama, Japan
| | - Hiroki Sato
- Hitachi, Ltd., Center for Exploratory Research, Research and Development Group, Hatoyama, Saitama, Japan
| | - Masashi Kiguchi
- Hitachi, Ltd., Center for Exploratory Research, Research and Development Group, Hatoyama, Saitama, Japan
| | - Atsushi Maki
- Hitachi, Ltd., Center for Exploratory Research, Research and Development Group, Hatoyama, Saitama, Japan
| | - Takanori Yamagata
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Tochigi, Japan
| | - Ippeita Dan
- Chuo University, Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
Sutoko S, Monden Y, Tokuda T, Ikeda T, Nagashima M, Kiguchi M, Maki A, Yamagata T, Dan I. Distinct Methylphenidate-Evoked Response Measured Using Functional Near-Infrared Spectroscopy During Go/No-Go Task as a Supporting Differential Diagnostic Tool Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Comorbid Children. Front Hum Neurosci 2019; 13:7. [PMID: 30800062 PMCID: PMC6375904 DOI: 10.3389/fnhum.2019.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) has been frequently reported as co-occurring with autism spectrum disorder (ASD). However, ASD-comorbid ADHD is difficult to diagnose since clinically significant symptoms are similar in both disorders. Therefore, we propose a classification method of differentially recognizing the ASD-comorbid condition in ADHD children. The classification method was investigated based on functional brain imaging measured by near-infrared spectroscopy (NIRS) during a go/no-go task. Optimization and cross-validation of the classification method was carried out in medicated-naïve and methylphenidate (MPH) administered ADHD and ASD-comorbid ADHD children (randomized, double-blind, placebo-controlled, and crossover design) to select robust parameters and cut-off thresholds. The parameters could be defined as either single or averaged multi-channel task-evoked activations under an administration condition (i.e., pre-medication, post-MPH, and post-placebo). The ADHD children were distinguished by significantly high MPH-evoked activation in the right hemisphere near the midline vertex. The ASD-comorbid ADHD children tended to have low activation responses in all regions. High specificity (86 ± 4.1%; mean ± SD), sensitivity (93 ± 7.3%), and accuracy (82 ± 1.6%) were obtained using the activation of oxygenated-hemoglobin concentration change in right middle frontal, angular, and precentral gyri under MPH medication. Therefore, the significantly differing MPH-evoked responses are potentially effective features and as supporting differential diagnostic tools.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Saitama, Japan
| | - Yukifumi Monden
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
- Department of Pediatrics, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | - Tatsuya Tokuda
- Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masako Nagashima
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masashi Kiguchi
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Saitama, Japan
| | - Atsushi Maki
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., Saitama, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Ippeita Dan
- Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Chuo University, Tokyo, Japan
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
13
|
Sutoko S, Monden Y, Funane T, Tokuda T, Katura T, Sato H, Nagashima M, Kiguchi M, Maki A, Yamagata T, Dan I. Adaptive algorithm utilizing acceptance rate for eliminating noisy epochs in block-design functional near-infrared spectroscopy data: application to study in attention deficit/hyperactivity disorder children. NEUROPHOTONICS 2018; 5:045001. [PMID: 30345324 PMCID: PMC6181242 DOI: 10.1117/1.nph.5.4.045001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) signals are prone to problems caused by motion artifacts and physiological noises. These noises unfortunately reduce the fNIRS sensitivity in detecting the evoked brain activation while increasing the risk of statistical error. In fNIRS measurements, the repetitive resting-stimulus cycle (so-called block-design analysis) is commonly adapted to increase the sample number. However, these blocks are often affected by noises. Therefore, we developed an adaptive algorithm to identify, reject, and select the noise-free and/or least noisy blocks in accordance with the preset acceptance rate. The main features of this algorithm are personalized evaluation for individual data and controlled rejection to maintain the sample number. Three typical noise criteria (sudden amplitude change, shifted baseline, and minimum intertrial correlation) were adopted. Depending on the quality of the dataset used, the algorithm may require some or all noise criteria with distinct parameters. Aiming for real applications in a pediatric study, we applied this algorithm to fNIRS datasets obtained from attention deficit/hyperactivity disorder (ADHD) children as had been studied previously. These datasets were divided for training and validation purposes. A validation process was done to examine the feasibility of the algorithm regardless of the types of datasets, including those obtained under sample population (ADHD or typical developing children), intervention (nonmedication and drug/placebo administration), and measurement (task paradigm) conditions. The algorithm was optimized so as to enhance reproducibility of previous inferences. The optimum algorithm design involved all criteria ordered sequentially (0.047 mM mm of amplitude change, 0.029 mM mm / s of baseline slope, and 0.6 × interquartile range of outlier threshold for each criterion, respectively) and presented complete reproducibility in both training and validation datasets. Compared to the visual-based rejection as done in the previous studies, the algorithm achieved 71.8% rejection accuracy. This suggests that the algorithm has robustness and potential to substitute for visual artifact-detection.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Hitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
| | - Yukifumi Monden
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
- International University of Health and Welfare, Department of Pediatrics, Shiobara, Japan
| | - Tsukasa Funane
- Hitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
| | - Tatsuya Tokuda
- Chuo University, Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Takusige Katura
- Hitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
| | - Hiroki Sato
- Hitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
| | - Masako Nagashima
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
| | - Masashi Kiguchi
- Hitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
| | - Atsushi Maki
- Hitachi Ltd., Research and Development Group, Center for Exploratory Research, Saitama, Japan
| | - Takanori Yamagata
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
| | - Ippeita Dan
- Chuo University, Research and Development Initiatives, Applied Cognitive Neuroscience Laboratory, Tokyo, Japan
- Jichi Medical University, Center for Development of Advanced Medical Technology, Shimotsuke, Japan
| |
Collapse
|
14
|
Ikeda T, Hirai M, Sakurada T, Monden Y, Tokuda T, Nagashima M, Shimoizumi H, Dan I, Yamagata T. Atypical neural modulation in the right prefrontal cortex during an inhibitory task with eye gaze in autism spectrum disorder as revealed by functional near-infrared spectroscopy. NEUROPHOTONICS 2018; 5:035008. [PMID: 30211250 PMCID: PMC6123570 DOI: 10.1117/1.nph.5.3.035008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by impairment in social communication and the presence of restricted and repetitive behaviors and interests. Executive function impairment is reportedly partially responsible for these symptoms. Executive function includes planning, flexibility, and inhibitory control. Although planning and flexibility in ASD have been consistently reported as atypical, the atypicality of inhibitory control remains controversial. As most previous studies have used nonsocial stimuli to investigate inhibitory control in ASD, the effects of socially relevant information on the inhibitory control system in individuals with ASD remain unclear. Therefore, we developed a go/no-go task with gaze stimuli and measured hemodynamic responses in the right prefrontal cortex (PFC), involved in inhibitory processing in both typically developing (TD) children and children with ASD, using functional near-infrared spectroscopy. Direct gaze induced commission errors to similar extents in both groups. Contrary to the behavioral responses, neural activation in the right PFC was modulated by gaze direction only in the TD group. These findings suggest that the gaze-processing mechanisms in the prefrontal region may be affected by atypical gaze processing in other brain regions during an inhibitory control task with socially relevant information in ASD.
Collapse
Affiliation(s)
- Takahiro Ikeda
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
| | - Masahiro Hirai
- Jichi Medical University, Center for Development of Advanced Medical Technology, Shimotsuke, Japan
- University of London, Centre for Brain and Cognitive Development, London, United Kingdom
- Address all correspondence to: Masahiro Hirai,
| | - Takeshi Sakurada
- Jichi Medical University, Center for Development of Advanced Medical Technology, Shimotsuke, Japan
| | - Yukifumi Monden
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
- International University of Health and Welfare, Department of Pediatrics, Nasushiobara, Japan
| | - Tatsuya Tokuda
- Chuo University, Applied Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Masako Nagashima
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
| | - Hideo Shimoizumi
- International University of Health and Welfare Rehabilitation Center, Nasu Institute for Developmental Disabilities, Otawara, Japan
| | - Ippeita Dan
- Chuo University, Applied Cognitive Neuroscience Laboratory, Tokyo, Japan
| | - Takanori Yamagata
- Jichi Medical University, Department of Pediatrics, Shimotsuke, Japan
| |
Collapse
|
15
|
Kim HY, Seo K, Jeon HJ, Lee U, Lee H. Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models. Mol Cells 2017; 40:523-532. [PMID: 28835022 PMCID: PMC5582298 DOI: 10.14348/molcells.2017.0153] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/26/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.
Collapse
Affiliation(s)
- Hak Yeong Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Kain Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul 06351,
Korea
| | - Unjoo Lee
- Department of Electronic Engineering, Hallym University, Kangwon 24252,
Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
16
|
Mueller A, Hong DS, Shepard S, Moore T. Linking ADHD to the Neural Circuitry of Attention. Trends Cogn Sci 2017; 21:474-488. [PMID: 28483638 PMCID: PMC5497785 DOI: 10.1016/j.tics.2017.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a complex condition with a heterogeneous presentation. Current diagnosis is primarily based on subjective experience and observer reports of behavioral symptoms - an approach that has significant limitations. Many studies show that individuals with ADHD exhibit poorer performance on cognitive tasks than neurotypical controls, and at least seven main functional domains appear to be implicated in ADHD. We discuss the underlying neural mechanisms of cognitive functions associated with ADHD, with emphasis on the neural basis of selective attention, demonstrating the feasibility of basic research approaches for further understanding cognitive behavioral processes as they relate to human psychopathology. The study of circuit-level mechanisms underlying executive functions in nonhuman primates holds promise for advancing our understanding, and ultimately the treatment, of ADHD.
Collapse
Affiliation(s)
- Adrienne Mueller
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - David S Hong
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Steven Shepard
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Tirin Moore
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Doi H, Shinohara K. fNIRS Studies on Hemispheric Asymmetry in Atypical Neural Function in Developmental Disorders. Front Hum Neurosci 2017; 11:137. [PMID: 28446869 PMCID: PMC5388750 DOI: 10.3389/fnhum.2017.00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/13/2022] Open
Abstract
Functional lateralization is highly replicable trait of human neural system. Many previous studies have indicated the possibility that people with attention-deficits/hyperactivity-disorder (ADHD) and autism spectrum disorder (ASD) show hemispheric asymmetry in atypical neural function. However, despite the abundance of relevant studies, there is still ongoing controversy over this issue. In the present mini-review, we provide an overview of the hemispheric asymmetry in atypical neural function observed in fNIRS studies on people with these conditions. Atypical neural function is defined as group-difference in the task-related concentration change of oxygenated hemoglobin. The existing fNIRS studies give support to the right-lateralized atypicalty in children with ADHD. At the same time, we did not find clear leftward-lateralization in atypical activation in people with ASD. On the basis of these, we discuss the current states and limitation of the existing studies.
Collapse
Affiliation(s)
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki UniversityNagasaki, Japan
| |
Collapse
|
18
|
The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization. Neuroimage 2015; 125:291-300. [PMID: 26439424 DOI: 10.1016/j.neuroimage.2015.09.062] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/05/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults.
Collapse
|
19
|
Monden Y, Dan I, Nagashima M, Dan H, Uga M, Ikeda T, Tsuzuki D, Kyutoku Y, Gunji Y, Hirano D, Taniguchi T, Shimoizumi H, Watanabe E, Yamagata T. Individual classification of ADHD children by right prefrontal hemodynamic responses during a go/no-go task as assessed by fNIRS. NEUROIMAGE-CLINICAL 2015; 9:1-12. [PMID: 26266096 PMCID: PMC4528046 DOI: 10.1016/j.nicl.2015.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD), an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS), which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs) and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level. Objective neuro-functional biomarker to diagnose ADHD has not been established. We measured right prefrontal fNIRS signals with a go/no-go task execution executed. We assessed the accuracy of classification between ADHD and healthy control. We found the way of classification with 90% sensitivity of diagnostic prediction. Our results would provide screening tool clinically applicable for ADHD children.
Collapse
Affiliation(s)
- Yukifumi Monden
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Ippeita Dan
- Functional Brain Science Laboratory, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan ; Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Masako Nagashima
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Haruka Dan
- Functional Brain Science Laboratory, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan ; Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Minako Uga
- Functional Brain Science Laboratory, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan ; Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Takahiro Ikeda
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Daisuke Tsuzuki
- Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Yasushi Kyutoku
- Applied Cognitive Neuroscience Laboratory, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Yuji Gunji
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan ; Department of Pediatrics, International University of Health and Welfare, 537-3 Iguchi, Nasushiobara, Tochigi 329-2763, Japan
| | - Daisuke Hirano
- International University of Health and Welfare, Otawara, Tochigi, Japan
| | | | - Hideo Shimoizumi
- Rehabilitation Center, International University of Health and Welfare, 2600-1 Kitakanemaru, Otawara, Tochigi 324-8501, Japan
| | - Eiju Watanabe
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|