1
|
Coventry BS, Luu CP, Bartlett EL. Focal Infrared Neural Stimulation Propagates Dynamical Transformations in Auditory Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642906. [PMID: 40161605 PMCID: PMC11952546 DOI: 10.1101/2025.03.12.642906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Significance Infrared neural stimulation (INS) has emerged as a potent neuromodulation technology, offering safe and focal stimulation with superior spatial recruitment profiles compared to conventional electrical methods. However, the neural dynamics induced by INS stimulation remain poorly understood. Elucidating these dynamics will help develop new INS stimulation paradigms and advance its clinical application. Aim In this study, we assessed the local network dynamics of INS entrainment in the auditory thalamocortical circuit using the chronically implanted rat model; our approach focused on measuring INS energy-based local field potential (LFP) recruitment induced by focal thalamocortical stimulation. We further characterized linear and nonlinear oscillatory LFP activity in response to single-pulse and periodic INS and performed spectral decomposition to uncover specific LFP band entrainment to INS. Finally, we examined spike-field transformations across the thalamocortical synapse using spike-LFP coherence coupling. Results We found that INS significantly increases LFP amplitude as a log-linear function of INS energy per pulse, primarily entraining to LFP β and γ bands with synchrony extending to 200 Hz in some cases. A subset of neurons demonstrated nonlinear, chaotic oscillations linked to information transfer across cortical circuits. Finally, we utilized spike-field coherences to correlate spike coupling to LFP frequency band activity and suggest an energy-dependent model of network activation resulting from INS stimulation. Conclusions We show that INS reliably drives robust network activity and can potently modulate cortical field potentials across a wide range of frequencies in a stimulus parameter-dependent manner. Based on these results, we propose design principles for developing full coverage, all-optical thalamocortical auditory neuroprostheses.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
| | - Cuong P Luu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53907 USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
2
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
3
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses. PNAS NEXUS 2024; 3:pgae082. [PMID: 38725532 PMCID: PMC11079674 DOI: 10.1093/pnasnexus/pgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 05/12/2024]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Spatially specific, closed-loop infrared thalamocortical deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560859. [PMID: 37904955 PMCID: PMC10614743 DOI: 10.1101/2023.10.04.560859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically-mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to mid-infrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| |
Collapse
|
5
|
Kim T, Kadji H, Whalen AJ, Ashourvan A, Freeman E, Fried SI, Tadigadapa S, Schiff SJ. Thermal effects on neurons during stimulation of the brain. J Neural Eng 2022; 19:056029. [PMID: 36126646 PMCID: PMC9855718 DOI: 10.1088/1741-2552/ac9339] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
All electric and magnetic stimulation of the brain deposits thermal energy in the brain. This occurs through either Joule heating of the conductors carrying current through electrodes and magnetic coils, or through dissipation of energy in the conductive brain.Objective.Although electrical interaction with brain tissue is inseparable from thermal effects when electrodes are used, magnetic induction enables us to separate Joule heating from induction effects by contrasting AC and DC driving of magnetic coils using the same energy deposition within the conductors. Since mammalian cortical neurons have no known sensitivity to static magnetic fields, and if there is no evidence of effect on spike timing to oscillating magnetic fields, we can presume that the induced electrical currents within the brain are below the molecular shot noise where any interaction with tissue is purely thermal.Approach.In this study, we examined a range of frequencies produced from micromagnetic coils operating below the molecular shot noise threshold for electrical interaction with single neurons.Main results.We found that small temperature increases and decreases of 1∘C caused consistent transient suppression and excitation of neurons during temperature change. Numerical modeling of the biophysics demonstrated that the Na-K pump, and to a lesser extent the Nernst potential, could account for these transient effects. Such effects are dependent upon compartmental ion fluxes and the rate of temperature change.Significance.A new bifurcation is described in the model dynamics that accounts for the transient suppression and excitation; in addition, we note the remarkable similarity of this bifurcation's rate dependency with other thermal rate-dependent tipping points in planetary warming dynamics. These experimental and theoretical findings demonstrate that stimulation of the brain must take into account small thermal effects that are ubiquitously present in electrical and magnetic stimulation. More sophisticated models of electrical current interaction with neurons combined with thermal effects will lead to more accurate modulation of neuronal activity.
Collapse
Affiliation(s)
- TaeKen Kim
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
| | - Herve Kadji
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Radiation Oncology, Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ, United States of America
| | - Andrew J Whalen
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
| | - Arian Ashourvan
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
| | - Eugene Freeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Honeywell International Aerospace Advanced Technology, Plymouth, MN, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
- Boston VA Healthcare System, Boston 02130, United States of America
| | - Srinivas Tadigadapa
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Steven J Schiff
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Department of Neurosurgery, Yale University, 333 Cedar Street, TMP 410, New Haven, CT 06510, United States of America
| |
Collapse
|
6
|
Adams WR, Gautam R, Locke A, Masson LE, Borrachero-Conejo AI, Dollinger B, Throckmorton GA, Duvall C, Jansen ED, Mahadevan-Jansen A. Visualizing Lipid Dynamics Role in Infrared Neural Stimulation using Stimulated Raman Scattering. Biophys J 2022; 121:1525-1540. [PMID: 35276133 PMCID: PMC9072573 DOI: 10.1016/j.bpj.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/14/2021] [Accepted: 03/04/2022] [Indexed: 11/02/2022] Open
Abstract
Infrared neural stimulation, or INS, uses pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, INS's mechanistic and biophysical underpinnings have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. We used hyperspectral stimulated Raman scattering (hsSRS) microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. Findings suggest that lipid bilayer structural changes are occurring during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell SRS spectra varied with stimulation energy and radiant exposure. Spectroscopic observations agree with high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, di-4-ANNEPS. Overall, the presented findings support the hypothesis that INS causes changes in the lipid membrane of neural cells by changing lipid membrane packing order. Furthermore, this work highlights the potential of hsSRS as a method to study biophysical and biochemical dynamics safely in live cells.
Collapse
Affiliation(s)
- Wilson R Adams
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rekha Gautam
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Andrea Locke
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Laura E Masson
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Bryan Dollinger
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Craig Duvall
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - E Duco Jansen
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Dept. of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anita Mahadevan-Jansen
- Dept. of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Dept. of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Tolstykh GP, Valdez CM, Montgomery ND, Cantu JC, Sedelnikova A, Ibey BL. Intrinsic properties of primary hippocampal neurons contribute to PIP 2 depletion during nsEP-induced physiological response. Bioelectrochemistry 2021; 142:107930. [PMID: 34450563 DOI: 10.1016/j.bioelechem.2021.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
High-energy, short-duration electric pulses (EPs) are known to be effective in neuromodulation, but the biological mechanisms underlying this effect remain unclear. Recently, we discovered that nanosecond electric pulses (nsEPs) could initiate the phosphatidylinositol4,5-bisphosphate (PIP2) depletion in non-excitable cells identical to agonist-induced activation of the Gq11 coupled receptors. PIP2 is the precursor for multiple intracellular second messengers critically involved in the regulation of intracellular Ca2+ homeostasis and plasma membrane (PM) ion channels responsible for the control of neuronal excitability. In this paper we demonstrate a novel finding that five day in vitro (DIV5) primary hippocampal neurons (PHNs) undergo significantly higher PIP2 depletion after 7.5 kV/cm 600 ns EP exposure than DIV1 PHNs and day 1-5 (D1-D5) non-excitable Chinese hamster ovarian cells with muscarinic receptor 1 (CHO-hM1). Despite the age of development, the stronger 15 kV/cm 600 ns or longer 7.5 kV/cm 12 µs EP initiated profound PIP2 depletion in all cells studied, outlining damage of the cellular PM and electroporation. Therefore, the intrinsic properties of PHNs in concert with nanoporation explain the stronger neuronal response to nsEP at lower intensity exposures. PIP2 reduction in neurons could be a primary biological mechanism responsible for the stimulation or inhibition of neuronal tissues.
Collapse
Affiliation(s)
- Gleb P Tolstykh
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA.
| | - Christopher M Valdez
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | - Noel D Montgomery
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | - Jody C Cantu
- General Dynamics Information Technology, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| | | | - Bennett L Ibey
- Air Force Research Laboratory, 711th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, 4141 Petroleum Road, JBSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
8
|
Kaszas A, Szalay G, Slézia A, Bojdán A, Vanzetta I, Hangya B, Rózsa B, O'Connor R, Moreau D. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021; 11:9775. [PMID: 33963220 PMCID: PMC8105372 DOI: 10.1038/s41598-021-89163-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo. The number of neurons exhibiting infrared-induced calcium response as well as the amplitude of those signals are shown to be both increasing with the energy density applied. By studying as well the spatial extent of the stimulation, we show that reproducibility of the stimulation is achieved mainly in the central part of the infrared beam path. Stimulating in vivo at such a degree of precision and without any exogenous chromophores enables multiple applications, from mapping the brain's connectome to applications in systems neuroscience and the development of new therapeutic tools for investigating the pathological brain.
Collapse
Affiliation(s)
- Attila Kaszas
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Slézia
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Alexandra Bojdán
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Two-Photon Laboratory, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France.
| |
Collapse
|
9
|
Throckmorton G, Cayce J, Ricks Z, Adams WR, Jansen ED, Mahadevan-Jansen A. Identifying optimal parameters for infrared neural stimulation in the peripheral nervous system. NEUROPHOTONICS 2021; 8:015012. [PMID: 33816649 PMCID: PMC8010905 DOI: 10.1117/1.nph.8.1.015012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/17/2021] [Indexed: 05/19/2023]
Abstract
Significance: Infrared neural stimulation (INS) utilizes pulsed infrared light to selectively elicit neural activity without exogenous compounds. Despite its versatility in a broad range of biomedical applications, no comprehensive comparison of factors pertaining to the efficacy and safety of INS such as wavelength, radiant exposure, and optical spot size exists in the literature. Aim: Here, we evaluate these parameters using three of the wavelengths commonly used for INS, 1450 nm, 1875 nm, and 2120 nm. Approach: In an in vivo rat sciatic nerve preparation, the stimulation threshold and transition rate to 100% activation probability were used to compare the effects of each parameter. Results: The pulsed diode lasers at 1450 nm and 1875 nm had a consistently higher ( ∼ 1.0 J / cm 2 ) stimulation threshold than that of the Ho:YAG laser at 2120 nm ( ∼ 0.7 J / cm 2 ). In addition, the Ho:YAG produced a faster transition rate to 100% activation probability compared to the diode lasers. Our data suggest that the superior performance of the Ho:YAG is a result of the high-intensity microsecond spike at the onset of the pulse. Acute histological evaluation of diode irradiated nerves revealed a safe range of radiant exposures for stimulation. Conclusion: Together, our results identify measures to improve the safety, efficacy, and accessibility of INS technology for research and clinical applications.
Collapse
Affiliation(s)
- Graham Throckmorton
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Jonathan Cayce
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Zane Ricks
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Wilson R. Adams
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
| | - Eric Duco Jansen
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Keck FEL Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Neurological Surgery, Nashville, Tennessee, United States
| |
Collapse
|
10
|
Zhu X, Lin JW, Sander MY. Infrared inhibition impacts on locally initiated and propagating action potentials and the downstream synaptic transmission. NEUROPHOTONICS 2020; 7:045003. [PMID: 33094124 PMCID: PMC7554448 DOI: 10.1117/1.nph.7.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 05/15/2023]
Abstract
Significance: Systematic studies of the physiological outputs induced by infrared (IR)-mediated inhibition of motor nerves can provide guidance for therapeutic applications and offer critical insights into IR light modulation of complex neural networks. Aim: We explore the IR-mediated inhibition of action potentials (APs) that either propagate along single axons or are initiated locally and their downstream synaptic transmission responses. Approach: APs were evoked locally by two-electrode current clamp or at a distance for propagating APs. The neuromuscular transmission was recorded with intracellular electrodes in muscle cells or macro-patch pipettes on terminal bouton clusters. Results: IR light pulses completely and reversibly terminate the locally initiated APs firing at low frequencies, which leads to blocking of the synaptic transmission. However, IR light pulses only suppress but do not block the amplitude and duration of propagating APs nor locally initiated APs firing at high frequencies. Such suppressed APs do not influence the postsynaptic responses at a distance. While the suppression of AP amplitude and duration is similar for propagating and locally evoked APs, only the former exhibits a 7% to 21% increase in the maximum time derivative of the AP rising phase. Conclusions: The suppressed APs of motor axons can resume their waveforms after passing the localized IR light illumination site, leaving the muscular and synaptic responses unchanged. IR-mediated modulation on propagating and locally evoked APs should be considered as two separate models for axonal and somatic modulations.
Collapse
Affiliation(s)
- Xuedong Zhu
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Jen-Wei Lin
- Boston University, Department of Biology, Boston, Massachusetts, United States
| | - Michelle Y. Sander
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Division of Materials Science and Engineering, Brookline, Massachusetts, United States
- Address all correspondence to Michelle Y. Sander,
| |
Collapse
|
11
|
Borrachero-Conejo AI, Adams WR, Saracino E, Mola MG, Wang M, Posati T, Formaggio F, De Bellis M, Frigeri A, Caprini M, Hutchinson MR, Muccini M, Zamboni R, Nicchia GP, Mahadevan-Jansen A, Benfenati V. Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light. FASEB J 2020; 34:6539-6553. [PMID: 32202681 DOI: 10.1096/fj.201903049r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 06/14/2024]
Abstract
Astrocytes are non-neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+ -mediated signaling. As they are tightly integrated into neural networks, label-free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live-cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3 R, TRPA1, TRPV4, and Aquaporin-4 are all involved in shaping the dynamics of infrared pulse-evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect that targeted control over calcium dynamics and water transport will help to study the crucial role of astrocytes in edema, ischemia, glioma progression, stroke, and epilepsy.
Collapse
Affiliation(s)
- Ana I Borrachero-Conejo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Wilson R Adams
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
| | - Emanuela Saracino
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Manqing Wang
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Bioengineering College, Chongqing University, Chongqing, China
| | - Tamara Posati
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Francesco Formaggio
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Marco Caprini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Mark R Hutchinson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michele Muccini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Grazia Paola Nicchia
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Anita Mahadevan-Jansen
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valentina Benfenati
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
12
|
Ganguly M, Jenkins MW, Jansen ED, Chiel HJ. Thermal block of action potentials is primarily due to voltage-dependent potassium currents: a modeling study. J Neural Eng 2019; 16:036020. [PMID: 30909171 PMCID: PMC11190670 DOI: 10.1088/1741-2552/ab131b] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Thermal block of action potential conduction using infrared lasers is a new modality for manipulating neural activity. It could be used for analysis of the nervous system and for therapeutic applications. We sought to understand the mechanisms of thermal block. APPROACH To analyze the mechanisms of thermal block, we studied both the original Hodgkin/Huxley model, and a version modified to more accurately match experimental data on thermal responses in the squid giant axon. MAIN RESULTS Both the original and modified models suggested that thermal block, especially at higher temperatures, is primarily due to a depolarization-activated hyperpolarization as increased temperature leads to faster activation of voltage-gated potassium ion channels. The minimum length needed to block an axon scaled with the square root of the axon's diameter. SIGNIFICANCE The results suggest that voltage-dependent potassium ion channels play a major role in thermal block, and that relatively short lengths of axon could be thermally manipulated to selectively block fine, unmyelinated axons, such as C fibers, that carry pain and other sensory information.
Collapse
Affiliation(s)
- Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Michael W Jenkins
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
13
|
Wang A, Yang T, Zhang L, Jia L, Wu Q, Yao S, Xu J, Yang H. IP3-Mediated Calcium Signaling Is Involved in the Mechanism of Fractalkine-Induced Hyperalgesia Response. Med Sci Monit 2018; 24:8804-8811. [PMID: 30517088 PMCID: PMC6290586 DOI: 10.12659/msm.913787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Fractalkine is widely expressed throughout the brain and spinal cord, where it can exert effects on pain enhancement and hyperalgesia by activating microglia through CX3C chemokine receptor 1 (CX3CR1), which triggers the release of several pro-inflammatory cytokines in the spinal cord. Fractalkine has also been shown to increase cytosolic calcium ([Ca2+]i) in microglia. Material/Methods Based on the characteristics of CX3CR1, a G protein-coupled receptor, we explored the role of inositol 1,4,5-trisphosphate (IP3) signaling in fractalkine-induced inflammatory response in BV-2 cells in vitro. The effect and the underlying mechanism induced by fractalkine in the brain were observed using a mouse model with intracerebroventricular (i.c.v.) injection of exogenous fractalkine. Results [Ca2+]i was significantly increased and IL-1β and TNF-α levels were higher in the fractalkine-treated cell groups than in the farctalkine+ 2-APB groups. We found that i.c.v. injection of fractalkine significantly increased p-p38MAPK, IL-1β, and TNF-α expression in the brain, while i.c.v. injection of a fractalkine-neutralizing antibody (anti-CX3CR1), trisphosphate receptor (IP3R) antagonist (2-APB), or p38MAPK inhibitor (SB203580) prior to fractalkine addition yielded an effective and reliable anti-allodynia effect, following the reduction of p-p38MAPK, IL-1β, and TNF-α expression. Conclusions Our results suggest that fractalkine leads to hyperalgesia, and the underlying mechanism may be associated with IP3/p38MAPK-mediated calcium signaling and its phlogogenic properties.
Collapse
Affiliation(s)
- Aitao Wang
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Tingting Yang
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| | - Lizhou Jia
- Key Laboratory of Antibody Technique of National Health and Family Planning Commission, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jianjun Xu
- Department of Anesthesiology, General Hospital of Daqing Oil Field, Daqing, Heilongjiang, China (mainland)
| | - Hongxin Yang
- Department of Pharmacy, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China (mainland)
| |
Collapse
|