1
|
Bayburt KA, Diker N, Aydin MS, Dolanmaz D. The effect of high-intensity versus photobiomodulation therapy (PBM) on the regeneration of the sciatic nerve following crush injury: an animal study. Lasers Med Sci 2025; 40:81. [PMID: 39921755 PMCID: PMC11807069 DOI: 10.1007/s10103-025-04334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
The purpose of this research was to evaluate the therapeutics effects of photobiomodulation and high intensity laser therapy after a sciatic nerve crush injury. Following the crush injuries of sciatic nerve, 33 rats were randomly divided into three groups. The injured sciatic nerves of the rats in the control group were left to heal spontaneously, whereas HILT (120 J/session and 1064 nm) and photobiomodulation therapy (PBM) (2.4 J/session and 650 nm) were started immediately after surgery and performed once every 3 days (10 session in total) during the postoperative period. Electrophysiological evaluations were conducted before surgery and at the end of the healing period. The Sciatic Functional Index (SFI) was assessed before surgery and at the end of the healing period. The ratio of the inner axonal diameter to the total outer axonal diameter (g-ratio) and schwann cells per square micrometer were histomorphometrically evaluated. At the end of the 30-day healing period, significantly better SFI scores were noted in the HILT group compared with PBM (p=0.002) and control (p < 0.001) groups. HILT exhibited positive effects on latency and duration values when compared PBM (p=0.002, p=0.014) and control (p=0.003, p < 0.001) groups. The number of nerves with an optimum g-ratio was higher in the HILT group which indicates a better rate of myelination. Functional, histomorphometric, and electrophysiological investigations of the present study revealed that HILT seems to be a superior treatment modality for peripheral nerve regeneration.
Collapse
|
2
|
Qiu S, Pan Z, Jiang X, Lv G, Feng A, Chen H. The synergistic effect of phototherapy and active substances on hair growth. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113008. [PMID: 39146875 DOI: 10.1016/j.jphotobiol.2024.113008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Androgenic alopecia (AGA) typically manifests post-puberty, resulting in decreases in hair density, disruptions in the hair growth cycle, and alterations in hair follicle micro structure. Dihydrotestosterone (DHT) is a key hormone implicated in hair loss, especially on male. In this study, we found that each of arginine (Arg), arterial extract (AE) or biotin tripeptide-1 (BT-1), when combined with low level light therapy (LLLT, at 630 nm, 2 J/cm2), showed the efficacy in enhancing mitochondrial functions, cell proliferation and collagen synthesis in fibroblasts. Additionally, CARRIPOWER (the complexes of AE, BT-1, Arg, and Diaminopyrimidine derivatives), in conjunction with LLLT (630 nm, 2 J/cm2), showed promising results in dermal papilla cells (DPCs). The promising results contained not also inflammatory cytokines (IL-1β and IL-6) and cell pro apoptotic factor (TGF-β2) reduction, but also Wnt pathway inhibition by decreasing DKK1 level, and pro-hair growth factors (vascular endothelial growth factor (VEGF) and β-catenin) increase. This innovative combination therapy offers a potential solution for the treatment of AGA, addressing both hormonal and cellular factors involved in hair loss.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Zhi Pan
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao Jiang
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Guowen Lv
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anqi Feng
- Guangzhou Stars Pulse Co., Ltd., Guangzhou, Guangdong, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Shahdadian S, Wang X, Liu H. Directed physiological networks in the human prefrontal cortex at rest and post transcranial photobiomodulation. Sci Rep 2024; 14:10242. [PMID: 38702415 PMCID: PMC11068774 DOI: 10.1038/s41598-024-59879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin (Δ[HbO]) and redox-state cytochrome c oxidase (Δ[CCO]) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the prefrontal cortex (PFC). Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.
Collapse
Affiliation(s)
- Sadra Shahdadian
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
4
|
Garrido-Peña A, Sanchez-Martin P, Reyes-Sanchez M, Levi R, Rodriguez FB, Castilla J, Tornero J, Varona P. Modulation of neuronal dynamics by sustained and activity-dependent continuous-wave near-infrared laser stimulation. NEUROPHOTONICS 2024; 11:024308. [PMID: 38764942 PMCID: PMC11100521 DOI: 10.1117/1.nph.11.2.024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Significance Near-infrared laser illumination is a non-invasive alternative/complement to classical stimulation methods in neuroscience but the mechanisms underlying its action on neuronal dynamics remain unclear. Most studies deal with high-frequency pulsed protocols and stationary characterizations disregarding the dynamic modulatory effect of sustained and activity-dependent stimulation. The understanding of such modulation and its widespread dissemination can help to develop specific interventions for research applications and treatments for neural disorders. Aim We quantified the effect of continuous-wave near-infrared (CW-NIR) laser illumination on single neuron dynamics using sustained stimulation and an open-source activity-dependent protocol to identify the biophysical mechanisms underlying this modulation and its time course. Approach We characterized the effect by simultaneously performing long intracellular recordings of membrane potential while delivering sustained and closed-loop CW-NIR laser stimulation. We used waveform metrics and conductance-based models to assess the role of specific biophysical candidates on the modulation. Results We show that CW-NIR sustained illumination asymmetrically accelerates action potential dynamics and the spiking rate on single neurons, while closed-loop stimulation unveils its action at different phases of the neuron dynamics. Our model study points out the action of CW-NIR on specific ionic-channels and the key role of temperature on channel properties to explain the modulatory effect. Conclusions Both sustained and activity-dependent CW-NIR stimulation effectively modulate neuronal dynamics by a combination of biophysical mechanisms. Our open-source protocols can help to disseminate this non-invasive optical stimulation in novel research and clinical applications.
Collapse
Affiliation(s)
- Alicia Garrido-Peña
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Sanchez-Martin
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Reyes-Sanchez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Levi
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco B. Rodriguez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Castilla
- Hospital los Madroños, Center for Clinical Neuroscience, Brunete, Spain
| | - Jesus Tornero
- Hospital los Madroños, Center for Clinical Neuroscience, Brunete, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
6
|
O’Donnell CM, Barrett DW, O’Connor P, Gonzalez-Lima F. Prefrontal photobiomodulation produces beneficial mitochondrial and oxygenation effects in older adults with bipolar disorder. Front Neurosci 2023; 17:1268955. [PMID: 38027522 PMCID: PMC10644301 DOI: 10.3389/fnins.2023.1268955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
There is growing evidence of mitochondrial dysfunction and prefrontal cortex (PFC) hypometabolism in bipolar disorder (BD). Older adults with BD exhibit greater decline in PFC-related neurocognitive functions than is expected for age-matched controls, and clinical interventions intended for mood stabilization are not targeted to prevent or ameliorate mitochondrial deficits and neurocognitive decline in this population. Transcranial infrared laser stimulation (TILS) is a non-invasive form of photobiomodulation, in which photons delivered to the PFC photo-oxidize the mitochondrial respiratory enzyme, cytochrome-c-oxidase (CCO), a major intracellular photon acceptor in photobiomodulation. TILS at 1064-nm can significantly upregulate oxidized CCO concentrations to promote differential levels of oxygenated vs. deoxygenated hemoglobin (HbD), an index of cerebral oxygenation. The objective of this controlled study was to use non-invasive broadband near-infrared spectroscopy to assess if TILS to bilateral PFC (Brodmann area 10) produces beneficial effects on mitochondrial oxidative energy metabolism (oxidized CCO) and cerebral oxygenation (HbD) in older (≥50 years old) euthymic adults with BD (N = 15). As compared to sham, TILS to the PFC in adults with BD increased oxidized CCO both during and after TILS, and increased HbD concentrations after TILS. By significantly increasing oxidized CCO and HbD concentrations above sham levels, TILS has the potential ability to stabilize mitochondrial oxidative energy production and prevent oxidative damage in the PFC of adults with BD. In conclusion, TILS was both safe and effective in enhancing metabolic function and subsequent hemodynamic responses in the PFC, which might help alleviate the accelerated neurocognitive decline and dysfunctional mitochondria present in BD.
Collapse
Affiliation(s)
- Courtney M. O’Donnell
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Patrick O’Connor
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Shahdadian S, Wang X, Liu H. Directed physiological networks in the human prefrontal cortex at rest and post transcranial photobiomodulation. RESEARCH SQUARE 2023:rs.3.rs-3393702. [PMID: 37886539 PMCID: PMC10602070 DOI: 10.21203/rs.3.rs-3393702/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Cerebral infra-slow oscillation (ISO) is a source of vasomotion in endogenic (E; 0.005-0.02 Hz), neurogenic (N; 0.02-0.04 Hz), and myogenic (M; 0.04-0.2 Hz) frequency bands. In this study, we quantified changes in prefrontal concentrations of oxygenated hemoglobin ( Δ [ H b O ] ) and redox-state cytochrome c oxidase ( Δ [ C C O ] ) as hemodynamic and metabolic activity metrics, and electroencephalogram (EEG) powers as electrophysiological activity, using concurrent measurements of 2-channel broadband near-infrared spectroscopy and EEG on the forehead of 22 healthy participants at rest. After preprocessing, the multi-modality signals were analyzed using generalized partial directed coherence to construct unilateral neurophysiological networks among the three neurophysiological metrics (with simplified symbols of HbO, CCO, and EEG) in each E/N/M frequency band. The links in these networks represent neurovascular, neurometabolic, and metabolicvascular coupling (NVC, NMC, and MVC). The results illustrate that the demand for oxygen by neuronal activity and metabolism (EEG and CCO) drives the hemodynamic supply (HbO) in all E/N/M bands in the resting prefrontal cortex. Furthermore, to investigate the effect of transcranial photobiomodulation (tPBM), we performed a sham-controlled study by delivering an 800-nm laser beam to the left and right prefrontal cortex of the same participants. After performing the same data processing and statistical analysis, we obtained novel and important findings: tPBM delivered on either side of the prefrontal cortex triggered the alteration or reversal of directed network couplings among the three neurophysiological entities (i.e., HbO, CCO, and EEG frequency-specific powers) in the physiological network in the E and N bands, demonstrating that during the post-tPBM period, both metabolism and hemodynamic supply drive electrophysiological activity in directed network coupling of the PFC. Overall, this study revealed that tPBM facilitates significant modulation of the directionality of neurophysiological networks in electrophysiological, metabolic, and hemodynamic activities.
Collapse
|
8
|
Wade ZS, Barrett DW, Davis RE, Nguyen A, Venkat S, Gonzalez-Lima F. Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Front Neurosci 2023; 17:1243527. [PMID: 37700747 PMCID: PMC10493319 DOI: 10.3389/fnins.2023.1243527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction This is the first study mapping the duration of action of in vivo photobiomodulation (PBM) on cytochrome-c-oxidase (CCO). In cellular bioenergetics, CCO is the terminal rate-limiting enzyme in the mitochondrial electron transport chain, which catalyzes oxygen utilization for aerobic energy production. PBM using transcranial infrared laser stimulation (TILS) is a promising intervention for non-invasively modulating CCO in the brain. TILS of the human prefrontal cortex directly causes CCO photo-oxidation, which is associated with increased cerebral oxygenation and improved cognition. Methods This experiment aimed to map the duration of action of in vivo PBM on CCO activity in discrete neuroanatomic locations within rat brains up to 4 weeks after a single TILS session (50 s, 1064 nm CW, 250 mW/cm2). Control brains from rats treated with a sham session without TILS (laser off) were compared to brains from TILS-treated rats that were collected 1 day, 2 weeks, or 4 weeks post-TILS. Cryostat sections of the 36 collected brains were processed using quantitative enzyme histochemistry and digitally imaged. Densitometric readings of 28 regions of interest were recorded and converted to CCO activity units of oxygen utilization using calibration standards. Data analysis (ANCOVA) compared each laser-treated group to sham with whole-brain average as a covariate. Results The prefrontal infralimbic cortex showed the earliest significant increase in CCO activity between 1-day post-TILS and sham groups, which continued elevated for 2-4 weeks post-TILS. Significant differences in CCO activity between 2-weeks and sham groups were also found in the lateral septum, accumbens core, CA3 of the hippocampus, and the molecular layer of the hippocampus. The medial amygdala showed a significant decrease in CCO activity between 4-weeks and sham. Further analyses showed significant inter-regional CCO activity correlations among the brain regions as the result of TILS, with the most pronounced changes at 4-weeks post-stimulation. Discussion The time course of changes in CCO activity and network connectivity suggested that TILS caused different neuroplasticity types of bioenergetic changes at different time scales, depending on brain region and its depth from the cortex. In conclusion, this controlled CCO histochemical study demonstrated a long-lasting duration of action of PBM in the rat brain.
Collapse
Affiliation(s)
| | | | | | | | | | - F. Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Shahdadian S, Wang X, Wanniarachchi H, Chaudhari A, Truong NCD, Liu H. Neuromodulation of brain power topography and network topology by prefrontal transcranial photobiomodulation. J Neural Eng 2022; 19:10.1088/1741-2552/ac9ede. [PMID: 36317341 PMCID: PMC9795815 DOI: 10.1088/1741-2552/ac9ede] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
Objective.Transcranial photobiomodulation (tPBM) has shown promising benefits, including cognitive improvement, in healthy humans and in patients with Alzheimer's disease. In this study, we aimed to identify key cortical regions that present significant changes caused by tPBM in the electroencephalogram (EEG) oscillation powers and functional connectivity in the healthy human brain.Approach. A 64-channel EEG was recorded from 45 healthy participants during a 13 min period consisting of a 2 min baseline, 8 min tPBM/sham intervention, and 3 min recovery. After pre-processing and normalizing the EEG data at the five EEG rhythms, cluster-based permutation tests were performed for multiple comparisons of spectral power topographies, followed by graph-theory analysis as a topological approach for quantification of brain connectivity metrics at global and nodal/cluster levels.Main results. EEG power enhancement was observed in clusters of channels over the frontoparietal regions in the alpha band and the centroparietal regions in the beta band. The global measures of the network revealed a reduction in synchronization, global efficiency, and small-worldness of beta band connectivity, implying an enhancement of brain network complexity. In addition, in the beta band, nodal graphical analysis demonstrated significant increases in local information integration and centrality over the frontal clusters, accompanied by a decrease in segregation over the bilateral frontal, left parietal, and left occipital regions.Significance.Frontal tPBM increased EEG alpha and beta powers in the frontal-central-parietal regions, enhanced the complexity of the global beta-wave brain network, and augmented local information flow and integration of beta oscillations across prefrontal cortical regions. This study sheds light on the potential link between electrophysiological effects and human cognitive improvement induced by tPBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Authors to whom any correspondence should be addressed,
| |
Collapse
|
10
|
Cardoso FDS, Salehpour F, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front Neurosci 2022; 16:1006031. [PMID: 36203812 PMCID: PMC9531128 DOI: 10.3389/fnins.2022.1006031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Farzad Salehpour
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Norberto Cysne Coimbra
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| |
Collapse
|
11
|
Photobiomodulation regulates adult neurogenesis in the hippocampus in a status epilepticus animal model. Sci Rep 2022; 12:15246. [PMID: 36085308 PMCID: PMC9463127 DOI: 10.1038/s41598-022-19607-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Status epilepticus (SE) refers to a single seizure that lasts longer than typical seizures or a series of consecutive seizures. The hippocampus, which is vulnerable to the effects of SE, has a critical role in memory storage and retrieval. The trisynaptic loop in the hippocampus connects the substructures thereof, namely the dentate gyrus (DG), CA3, and CA1. In an animal model of SE, abnormal neurogenesis in the DG and aberrant neural network formation result in sequential neural degeneration in CA3 and CA1. Photobiomodulation (PBM) therapy, previously known as low-level laser (light) therapy (LLLT), is a novel therapy for the treatment of various neurological disorders including SE. However, the effects of this novel therapeutic approach on the recovery process are poorly understood. In the present study, we found that PBM transformed SE-induced abnormal neurogenesis to normal neurogenesis. We demonstrated that PBM plays a key role in normal hippocampal neurogenesis by enhancing the migration of maturing granular cells (early neuronal cells) to the GCL, and that normal neurogenesis induced by PBM prevents SE-induced hippocampal neuronal loss in CA1. Thus, PBM is a novel approach to prevent seizure-induced neuronal degeneration, for which light devices may be developed in the future.
Collapse
|
12
|
Truong NCD, Wang X, Wanniarachchi H, Liu H. Enhancement of Frequency-Specific Hemodynamic Power and Functional Connectivity by Transcranial Photobiomodulation in Healthy Humans. Front Neurosci 2022; 16:896502. [PMID: 35757526 PMCID: PMC9226485 DOI: 10.3389/fnins.2022.896502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022] Open
Abstract
Transcranial photobiomodulation (tPBM) has been considered a safe and effective brain stimulation modality being able to enhance cerebral oxygenation and neurocognitive function. To better understand the underlying neurophysiological effects of tPBM in the human brain, we utilized a 111-channel functional near infrared spectroscopy (fNIRS) system to map cerebral hemodynamic responses over the whole head to 8-min tPBM with 1,064-nm laser given on the forehead of 19 healthy participants. Instead of analyzing broad-frequency hemodynamic signals (0–0.2 Hz), we investigated frequency-specific effects of tPBM on three infra-slow oscillation (ISO) components consisting of endogenic, neurogenic, and myogenic vasomotions. Significant changes induced by tPBM in spectral power of oxygenated hemoglobin concentration (Δ[HbO]), functional connectivity (FC), and global network metrics at each of the three ISO frequency bands were identified and mapped topographically for frequency-specific comparisons. Our novel findings revealed that tPBM significantly increased endogenic Δ[HbO] powers over the right frontopolar area near the stimulation site. Also, we demonstrated that tPBM enabled significant enhancements of endogenic and myogenic FC across cortical regions as well as of several global network metrics. These findings were consistent with recent reports and met the expectation that myogenic oscillation is highly associated with endothelial activity, which is stimulated by tPBM-evoked nitric oxide (NO) release.
Collapse
Affiliation(s)
- Nghi Cong Dung Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hashini Wanniarachchi
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
13
|
Wang X, Wanniarachchi H, Wu A, Liu H. Combination of Group Singular Value Decomposition and eLORETA Identifies Human EEG Networks and Responses to Transcranial Photobiomodulation. Front Hum Neurosci 2022; 16:853909. [PMID: 35620152 PMCID: PMC9127055 DOI: 10.3389/fnhum.2022.853909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial Photobiomodulation (tPBM) has demonstrated its ability to alter electrophysiological activity in the human brain. However, it is unclear how tPBM modulates brain electroencephalogram (EEG) networks and is related to human cognition. In this study, we recorded 64-channel EEG from 44 healthy humans before, during, and after 8-min, right-forehead, 1,064-nm tPBM or sham stimulation with an irradiance of 257 mW/cm2. In data processing, a novel methodology by combining group singular value decomposition (gSVD) with the exact low-resolution brain electromagnetic tomography (eLORETA) was implemented and performed on the 64-channel noise-free EEG time series. The gSVD+eLORETA algorithm produced 11 gSVD-derived principal components (PCs) projected in the 2D sensor and 3D source domain/space. These 11 PCs took more than 70% weight of the entire EEG signals and were justified as 11 EEG brain networks. Finally, baseline-normalized power changes of each EEG brain network in each EEG frequency band (delta, theta, alpha, beta and gamma) were quantified during the first 4-min, second 4-min, and post tPBM/sham periods, followed by comparisons of frequency-specific power changes between tPBM and sham conditions. Our results showed that tPBM-induced increases in alpha powers occurred at default mode network, executive control network, frontal parietal network and lateral visual network. Moreover, the ability to decompose EEG signals into individual, independent brain networks facilitated to better visualize significant decreases in gamma power by tPBM. Many similarities were found between the cortical locations of SVD-revealed EEG networks and fMRI-identified resting-state networks. This consistency may shed light on mechanistic associations between tPBM-modulated brain networks and improved cognition outcomes.
Collapse
|
14
|
Oh Y, Nguyen N, Jung HJ, Choe Y, Kim JG. Changes in Cytochrome C Oxidase Redox State and Hemoglobin Concentration in Rat Brain During 810 nm Irradiation Measured by Broadband Near-Infrared Spectroscopy. Photobiomodul Photomed Laser Surg 2022; 40:315-324. [DOI: 10.1089/photob.2021.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoonho Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Nam Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
15
|
Tsai CM, Chang SF, Chang H. Transcranial photobiomodulation add-on therapy to valproic acid for pentylenetetrazole-induced seizures in peripubertal rats. BMC Complement Med Ther 2022; 22:81. [PMID: 35313886 PMCID: PMC8935768 DOI: 10.1186/s12906-022-03562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. Methods A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine’s scale in a non-blinded manner. Results Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4–7 seizures, and shortened the latency to stage 6 seizures. Conclusions Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, Taipei Medical University Hospital, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
16
|
Cardoso FDS, Barrett DW, Wade Z, Gomes da Silva S, Gonzalez-Lima F. Photobiomodulation of Cytochrome c Oxidase by Chronic Transcranial Laser in Young and Aged Brains. Front Neurosci 2022; 16:818005. [PMID: 35368252 PMCID: PMC8971717 DOI: 10.3389/fnins.2022.818005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
In cellular bioenergetics, cytochrome c oxidase (CCO) is the enzyme responsible for oxygen consumption in the mitochondrial electron transport chain, which drives oxidative phosphorylation for adenosine triphosphate (ATP) production. CCO is also the major intracellular acceptor of photons in the light wavelengths used for photobiomodulation (PBM). Brain function is critically dependent on oxygen consumption by CCO for ATP production. Therefore, our objectives were (1) to conduct the first detailed brain mapping study of the effects of PBM on regional CCO activity, and (2) to compare the chronic effects of PBM on young and aged brains. Specifically, we used quantitative CCO histochemistry to map the differences in CCO activity of brain regions in healthy young (4 months old) and aged (20 months old) rats from control groups with sham stimulation and from treated groups with 58 consecutive days of transcranial laser PBM (810 nm wavelength and 100 mW power). We found that aging predominantly decreased regional brain CCO activity and systems-level functional connectivity, while the chronic laser stimulation predominantly reversed these age-related effects. We concluded that chronic PBM modified the effects of aging by causing the CCO activity on brain regions in laser-treated aged rats to reach levels similar to those found in young rats. Given the crucial role of CCO in bioenergetics, PBM may be used to augment brain and behavioral functions of older individuals by improving oxidative energy metabolism.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Douglas W. Barrett
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Zachary Wade
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil
- Centro Universitário UNIFAMINAS, Muriaé, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella, Muriaé, Brazil
| | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: F. Gonzalez-Lima,
| |
Collapse
|
17
|
Wang X, Ma LC, Shahdadian S, Wu A, Truong NCD, Liu H. Metabolic Connectivity and Hemodynamic-Metabolic Coherence of Human Prefrontal Cortex at Rest and Post Photobiomodulation Assessed by Dual-Channel Broadband NIRS. Metabolites 2022; 12:42. [PMID: 35050164 PMCID: PMC8778041 DOI: 10.3390/metabo12010042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Billions of neurons in the human brain form neural networks with oscillation rhythms. Infra-slow oscillation (ISO) presents three main physiological sources: endogenic, neurogenic, and myogenic vasomotions. Having an in vivo methodology for the absolute quantification of ISO from the human brain can facilitate the detection of brain abnormalities in cerebral hemodynamic and metabolic activities. In this study, we introduced a novel measurement-plus-analysis framework for the non-invasive quantification of prefrontal ISO by (1) taking dual-channel broadband near infrared spectroscopy (bbNIRS) measurements from 12 healthy humans during a 6-min rest and 4-min post transcranial photobiomodulation (tPBM) and (2) performing wavelet transform coherence (WTC) analysis on the measured time series data. The WTC indexes (IC, between 0 and 1) enabled the assessment of ipsilateral hemodynamic-metabolic coherence and bilateral functional connectivity in each ISO band of the human prefrontal cortex. At rest, bilateral hemodynamic connectivity was consistent across the three ISO bands (IC ≅ 0.66), while bilateral metabolic connectivity was relatively weaker. For post-tPBM/sham comparison, our analyses revealed three key findings: 8-min, right-forehead, 1064-nm tPBM (1) enhanced the amplitude of metabolic oscillation bilaterally, (2) promoted the bilateral metabolic connectivity of neurogenic rhythm, and (3) made the main effect on endothelial cells, causing alteration of hemodynamic-metabolic coherence on each side of the prefrontal cortex.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (X.W.); (L.-C.M.); (S.S.); (A.W.); (N.C.D.T.)
| |
Collapse
|
18
|
Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci Rep 2021; 11:18917. [PMID: 34556692 PMCID: PMC8460746 DOI: 10.1038/s41598-021-97987-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
Our recent study demonstrated that prefrontal transcranial photobiomodulation (tPBM) with 1064-nm laser enables significant changes in EEG rhythms, but these changes might result from the laser-induced heat rather than tPBM. This study hypothesized that tPBM-induced and heat-induced alterations in EEG power topography were significantly distinct. We performed two sets of measurements from two separate groups of healthy humans under tPBM (n = 46) and thermal stimulation (thermo_stim; n = 11) conditions. Each group participated in the study twice under true and respective sham stimulation with concurrent recordings of 64-channel EEG before, during, and after 8-min tPBM at 1064 nm or thermo_stim with temperature of 33-41 °C, respectively. After data preprocessing, EEG power spectral densities (PSD) per channel per subject were quantified and normalized by respective baseline PSD to remove the power-law effect. At the group level for each group, percent changes of EEG powers per channel were statistically compared between (1) tPBM vs light-stimulation sham, (2) thermo_stim vs heat-stimulation sham, and (3) tPBM vs thermo_stim after sham exclusion at five frequency bands using the non-parametric permutation tests. By performing the false discovery rate correction for multi-channel comparisons, we showed by EEG power change topographies that (1) tPBM significantly increased EEG alpha and beta powers, (2) the thermal stimulation created opposite effects on EEG power topographic patterns, and (3) tPBM and thermal stimulations induced significantly different topographies of changes in EEG alpha and beta power. Overall, this study provided evidence to support our hypothesis, showing that the laser-induced heat on the human forehead is not a mechanistic source causing increases in EEG power during and after tPBM.
Collapse
|
19
|
Cardoso FDS, Mansur FCB, Lopes-Martins RÁB, Gonzalez-Lima F, Gomes da Silva S. Transcranial Laser Photobiomodulation Improves Intracellular Signaling Linked to Cell Survival, Memory and Glucose Metabolism in the Aged Brain: A Preliminary Study. Front Cell Neurosci 2021; 15:683127. [PMID: 34539346 PMCID: PMC8446546 DOI: 10.3389/fncel.2021.683127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Aging is often accompanied by exacerbated activation of cell death-related signaling pathways and decreased energy metabolism. We hypothesized that transcranial near-infrared laser may increase intracellular signaling pathways beneficial to aging brains, such as those that regulate brain cell proliferation, apoptosis, and energy metabolism. To test this hypothesis, we investigated the expression and activation of intracellular signaling proteins in the cerebral cortex and hippocampus of aged rats (20 months old) treated with the transcranial near-infrared laser for 58 consecutive days. As compared to sham controls, transcranial laser treatment increased intracellular signaling proteins related to cell proliferation and cell survival, such as signal transducer and activator of transcription 3 (STAT3), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), p70 ribosomal protein S6 kinase (p70S6K) and protein kinase B (PKB), also known as Akt that is linked to glucose metabolism. In addition, ERK is linked to memory, while ERK and JNK signaling pathways regulate glucose metabolism. Specifically, the laser treatment caused the activation of STAT3, ERK, and JNK signaling proteins in the cerebral cortex. In the hippocampus, the laser treatment increased the expression of p70S6K and STAT3 and the activation of Akt. Taken together, the data support the hypothesis that transcranial laser photobiomodulation improves intracellular signaling pathways linked to cell survival, memory, and glucose metabolism in the brain of aged rats.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil.,Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | | | | | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, Brazil.,Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, Brazil.,Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, Brazil
| |
Collapse
|
20
|
Cardoso FDS, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the aging brain. Ageing Res Rev 2021; 70:101415. [PMID: 34325071 DOI: 10.1016/j.arr.2021.101415] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Longevity is one of the great triumphs of humanity. Worldwide, the elderly is the fastest growing segment of the population. As a consequence, the number of cases of age-related cognitive decline and neurological diseases associated with aging, such as Alzheimer's and Parkinson's, has been increasing. Among the non-pharmacological interventions studied for the treatment or prevention of age-related neurocognitive impairment, photobiomodulation (PBM) has gained prominence for its beneficial effects on brain functions relevant to aging brains. In animal models, the neuroprotective and neuromodulatory capacity of PBM has been observed. Studies using both animals and humans have shown promising metabolic and hemodynamic effects of PBM on the brain, such as improved mitochondrial and vascular functions. Studies in humans have shown that PBM can improve electrophysiological activity and cognitive functions such as attention, learning, memory and mood in older people. In this paper we will review the main brain effects of PBM during aging, discuss its mechanisms of action relevant to the aging brain, and call for more controlled studies in older populations.
Collapse
Affiliation(s)
- Fabrízio Dos Santos Cardoso
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - F Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Sérgio Gomes da Silva
- Núcleo de Pesquisas Tecnológicas, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil; Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil.
| |
Collapse
|
21
|
Chan AS, Lee TL, Hamblin MR, Cheung MC. Photobiomodulation Enhances Memory Processing in Older Adults with Mild Cognitive Impairment: A Functional Near-Infrared Spectroscopy Study. J Alzheimers Dis 2021; 83:1471-1480. [PMID: 33998541 DOI: 10.3233/jad-201600] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies of photobiomodulation (PBM) in patients with cognitive or psychological disorders (including traumatic brain injury, stroke, and dementia) have yielded some encouraging results. OBJECTIVE In this study, we aimed to investigate the effect of a single stimulation on memory in older adults with mild cognitive impairment (MCI). METHODS After PBM, hemodynamic changes, as a measure of functional brain activity, were evaluated using functional near-infrared spectroscopy (fNIRS). Eighteen subjects who met the criteria of MCI were randomly assigned to control and experimental groups. A single real or sham PBM session was administered to the forehead of each patient in the experimental and control groups, respectively. All subjects performed a visual memory span test before and after the stimulation, and their hemodynamic responses during the tasks were measured using fNIRS. RESULTS The results showed that among the MCI subjects, only those who received PBM, but not those who received the sham stimulation, demonstrated significant improvement in the visual memory performance and a reduction in the hemodynamic response during the tasks. CONCLUSION These findings suggest that PBM may reduce the cognitive efforts needed to complete tasks that require high memory loads, and thus improve the cognitive performance of individuals with MCI.
Collapse
Affiliation(s)
- Agnes S Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China.,Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, China
| | - Tsz-Lok Lee
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Ghaderi AH, Jahan A, Akrami F, Moghadam Salimi M. Transcranial photobiomodulation changes topology, synchronizability, and complexity of resting state brain networks. J Neural Eng 2021; 18. [PMID: 33873167 DOI: 10.1088/1741-2552/abf97c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Objective. Transcranial photobiomodulation (tPBM) is a recently proposed non-invasive brain stimulation approach with various effects on the nervous system from the cells to the whole brain networks. Specially in the neural network level, tPBM can alter the topology and synchronizability of functional brain networks. However, the functional properties of the neural networks after tPBM are still poorly clarified.Approach. Here, we employed electroencephalography and different methods (conventional and spectral) in the graph theory analysis to track the significant effects of tPBM on the resting state brain networks. The non-parametric statistical analysis showed that just one short-term tPBM session over right medial frontal pole can significantly change both topological (i.e. clustering coefficient, global efficiency, local efficiency, eigenvector centrality) and dynamical (i.e. energy, largest eigenvalue, and entropy) features of resting state brain networks.Main results. The topological results revealed that tPBM can reduce local processing, centrality, and laterality. Furthermore, the increased centrality of central electrode was observed.Significance. These results suggested that tPBM can alter topology of resting state brain network to facilitate the neural information processing. On the other hand, the dynamical results showed that tPBM reduced stability of synchronizability and increased complexity in the resting state brain networks. These effects can be considered in association with the increased complexity of connectivity patterns among brain regions and the enhanced information propagation in the resting state brain networks. Overall, both topological and dynamical features of brain networks suggest that although tPBM decreases local processing (especially in the right hemisphere) and disrupts synchronizability of network, but it can increase the level of information transferring and processing in the brain network.
Collapse
Affiliation(s)
- Amir Hossein Ghaderi
- Centre for Vision Research, York University, Toronto, Canada.,Department of psychology, University of Calgary, Calgary, Canada.,Iranian Neurowave Lab, Isfahan, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Akrami
- Iranian Neurowave Lab, Isfahan, Iran.,Faculty of Health Management and Information, Iran University of Medical Science, Tehran, Iran
| | - Maryam Moghadam Salimi
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 2021; 37:11-18. [PMID: 33624187 DOI: 10.1007/s10103-021-03277-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghadas Fazeli
- Occupational Medicine Research Center (OMRC), Iran University of Medical Sciences, Tehran, Iran.,International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
24
|
Transcranial laser stimulation: Mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimul 2021; 14:440-449. [PMID: 33636401 DOI: 10.1016/j.brs.2021.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Transcranial laser stimulation is a novel method of noninvasive brain stimulation found safe and effective for improving prefrontal cortex neurocognitive functions in healthy young adults. This method is different from electric and magnetic stimulation because it causes the photonic oxidation of cytochrome-c-oxidase, the rate-limiting enzyme for oxygen consumption and the major intracellular acceptor of photons from near-infrared light. This photobiomodulation effect promotes mitochondrial respiration, cerebrovascular oxygenation and neurocognitive function. Pilot studies suggest that transcranial photobiomodulation may also induce beneficial effects in aging individuals. OBJECTIVES Randomized, sham-controlled study to test photobiomodulation effects caused by laser stimulation on cytochrome-c-oxidase oxidation and hemoglobin oxygenation in the prefrontal cortex of 68 healthy younger and older adults, ages 18-85. METHODS Broadband near-infrared spectroscopy was used for the noninvasive quantification of bilateral cortical changes in oxidized cytochrome-c-oxidase and hemoglobin oxygenation before, during and after 1064-nm wavelength laser (IR-A laser, area: 13.6 cm2, power density: 250 mW/cm2) or sham stimulation of the right anterior prefrontal cortex (Brodmann Area 10). RESULTS As compared to sham control, there was a significant laser-induced increase in oxidized cytochrome-c-oxidase during laser stimulation, followed by a significant post-stimulation increase in oxygenated hemoglobin and a decrease in deoxygenated hemoglobin. Furthermore, there was a greater laser-induced effect on cytochrome-c-oxidase with increasing age, while laser-induced effects on cerebral hemodynamics decreased with increasing age. No adverse laser effects were found. CONCLUSION The findings support the use of transcranial photobiomodulation for cerebral oxygenation and alleviation of age-related decline in mitochondrial respiration. They justify further research on its therapeutic potential in neurologic and psychiatric diseases.
Collapse
|
25
|
Borshchenko I, Sobol E, Shekhter A, Baskov A, Grin A, Borshchenko M. Biological non-ablative repair of lumbar discs by transforaminal intradiscal laser irradiation: MRI quantitative analysis of the effects-preliminary report. Lasers Med Sci 2020; 37:155-162. [PMID: 33180214 DOI: 10.1007/s10103-020-03191-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
Degenerative disc disease is a significant reason for low back pain. Low-level laser irradiation (LLLI) of cartilage results in its reshaping and combines with regenerative reaction. A certain pattern of lumbar disc irradiation induces healing reaction and formation of new cartilage. Quantitative MRI analysis of regenerative response of the cartilage is the subject of this investigation. Fifty-one lumbar discs of 28 patients with discogenic low back pain underwent irradiation with 1.56-μm Er fiber laser (1.2 W). Quantitative MRI analysis is performed in STIR regime within 0.93-14.80 months. Signal intensity is estimated from irradiated discs and control measured from adjacent non-irradiated discs and vertebral bones. T2 WI follow-up is performed within a long period (up to 5 years) in selected cases. The mean value of MRI signal intensity from the irradiated discs increased by 14% (p <<< 0.001). The control bone measurement revealed no difference in signal intensity (p = 0.83). The adjacent non-irradiated discs slightly increased their signal (p < 0.05). T2 WI follow-up within 5 years revealed a steady increase of the signal and the irradiated discs healing. LLLI of degenerated intervertebral discs by 1.56-μm Er fiber laser produces increase of MRI disc signal within the first year after treatment that confirms regenerative response of the disc and could lay in the basis of clinical improvement. Further assessment on the effect is mandatory.
Collapse
Affiliation(s)
- Igor Borshchenko
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, 3 Bolshaya Sukharevskaya Square, Moscow, 129090, Russia. .,Orthospine Clinic, Moscow, Russia.
| | | | - Anatoly Shekhter
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Andrey Grin
- N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, 3 Bolshaya Sukharevskaya Square, Moscow, 129090, Russia
| | | |
Collapse
|
26
|
Effects of photobiomodulation and swimming on gene expression in rats with the tibialis anterior muscle injury. Lasers Med Sci 2020; 36:1379-1387. [PMID: 33106989 DOI: 10.1007/s10103-020-03168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to evaluate the effects of photobiomodulation (low-level laser therapy (LLLT)) and aquatic exercise on the expression of genes related to muscle regeneration in rats. Wistar rats were divided into five groups: control group (n = 15), non-treated injury group (n = 15), injury+LLLT group (n = 15), injury+aquatic exercise group (n = 15), and injury+LLLT+aquatic exercise group (n = 15). Cryoinjury was performed on the belly of the tibialis anterior (TA) muscle. LLLT was performed daily with an AlGaAs laser (830 nm; beam spot of 0.0324 cm2, output power of 100 mW, energy density of 180 J/cm2, and 58-s exposure time). Animals were euthanized at 7, 14, and 21 days. The TA muscles were removed for gene expression analysis of TGF-β, Myogenin, and MyoD. The results were statistically analyzed at a significance level of 5%. The cryoinjury increased the expression of genes related to muscle regeneration-MyoD, Myogenin, and TGF-β-compared to the control group (p < 0.05); the photobiomodulation increased the expression of these genes at day 7 (p < 0.05), decreasing until day 21; and the aquatic exercise increases the expression of the three genes over time. When the two treatments were combined, the expression of the analyzed genes also increased over time. In summary, the results of our study suggest that photobiomodulation (LLLT), when applied alone in cryoinjury, is able to increase the gene expression of MyoD, Myogenin, and TGF-β at the acute phase, while when combined with aquatic exercises, there is an increase in expression of these genes specially at the long-term treatment.
Collapse
|
27
|
Arias JL, Mendez M, Martínez JÁ, Arias N. Differential effects of photobiomodulation interval schedules on brain cytochrome c-oxidase and proto-oncogene expression. NEUROPHOTONICS 2020; 7:045011. [PMID: 33313338 PMCID: PMC7723391 DOI: 10.1117/1.nph.7.4.045011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Significance: Transcranial photobiomodulation (PBM) is a noninvasive neuromodulation technique capable of producing changes in the mitochondrial cytochrome c-oxidase (CCO) activity of neurons. Although the application of PBM in clinical practice and as a neurophysiological tool is increasing, less is known about how different treatment time intervals may result in different outcomes. Aim: We evaluated the effects of different PBM treatment intervals on brain metabolic activity through the CCO and proto-oncogene expression (c-Fos). Approach: We studied PBM effects on brain CCO and c-Fos expression in three groups of animals: Control (CN, n = 8 ), long interval PBM treatment (LI, n = 5 ), and short interval PBM treatment (SI, n = 5 ). Results: Increased CCO activity in the LI group, compared to the SI and CN groups, was found in the prefrontal cortices, dorsal and ventral striatum, and hippocampus. Regarding c-Fos expression, we found a significant increase in the SI group compared to LI and CN, whereas LI showed increased c-Fos expression compared to CN in the cingulate and infralimbic cortices. Conclusions: We show the effectiveness of different PBM interval schedules in increasing brain metabolic activity or proto-oncogene expression.
Collapse
Affiliation(s)
- Jorge L. Arias
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Marta Mendez
- University of Oviedo, Neuroscience Laboratory, Department of Psychology, Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Juan Ángel Martínez
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- University of Oviedo, Escuela Politécnica de Gijón, Departamento Ingeniería Eléctrica, Electrónica, Computadores y Sistemas, Gijón, Spain
| | - Natalia Arias
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
- Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King´s College London, Department of Basic and Clinical Neuroscience, London, United Kingdom
| |
Collapse
|
28
|
Hanna R, Dalvi S, Sălăgean T, Bordea IR, Benedicenti S. Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants (Basel) 2020; 9:E875. [PMID: 32947974 PMCID: PMC7555229 DOI: 10.3390/antiox9090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic has taken the entire globe by storm. The pathogenesis of this virus has shown a cytokine storm release, which contributes to critical or severe multi-organ failure. Currently the ultimate treatment is palliative; however, many modalities have been introduced with effective or minimal outcomes. Meanwhile, enormous efforts are ongoing to produce safe vaccines and therapies. Phototherapy has a wide range of clinical applications against various maladies. This necessitates the exploration of the role of phototherapy, if any, for COVID-19. This critical review was conducted to understand COVID-19 disease and highlights the prevailing facts that link phototherapy utilisation as a potential treatment modality for SARS-CoV-2 viral infection. The results demonstrated phototherapy's efficacy in regulating cytokines and inflammatory mediators, increasing angiogenesis and enhancing healing in chronic pulmonary inflammatory diseases. In conclusion, this review answered the following research question. Which molecular and cellular mechanisms of action of phototherapy have demonstrated great potential in enhancing the immune response and reducing host-viral interaction in COVID-19 patients? Therefore, phototherapy is a promising treatment modality, which needs to be validated further for COVID-19 by robust and rigorous randomised, double blind, placebo-controlled, clinical trials to evaluate its impartial outcomes and safety.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 441110, India
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
| |
Collapse
|
29
|
Effect of photobiomodulation on cellular migration and survival in diabetic and hypoxic diabetic wounded fibroblast cells. Lasers Med Sci 2020; 36:365-374. [PMID: 32483750 DOI: 10.1007/s10103-020-03041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
A disrupted wound repair process often leads to the development of chronic wounds, and pose a major physical, social and economic inconvenience on patients and the public health sector. Chronic wounds are a common complication seen in diabetes mellitus (DM), and often the severity necessitates amputation of the lower limbs. Recently, there has been increasing evidence that photobiomodulation (PBM) initiates wound healing, including increased protein transcription for cell proliferation, viability, migration and tissue reepithelialisation. Here, the hypothesis that PBM at a wavelength of 660 nm and energy density of 5 J/cm2 regulates wound repair in diabetic wounded and hypoxic diabetic wounded fibroblasts by enhancing cell migration and survival was investigated. PBM increased migration and survival in diabetic wounded and hypoxic diabetic wounded fibroblasts. Our findings suggest that PBM enhances migration and survival in diabetic wounded and hypoxic diabetic wounded fibroblasts, indicating that this therapeutic method may be beneficial against chronic wounds in diabetic patients.
Collapse
|
30
|
De Moraes TF, Filho JCC, Oishi JC, Almeida-Lopes L, Parizotto NA, Rodrigues GJ. Energy-dependent effect trial of photobiomodulation on blood pressure in hypertensive rats. Lasers Med Sci 2019; 35:1041-1046. [PMID: 31664552 DOI: 10.1007/s10103-019-02883-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
The main purpose of this work was to construct an energy-dependent response curve of photobiomodulation on arterial pressure in hypertension animal model. To reach this objective, we have used a two-kidney one clip (2K-1C) rat model. Animals received acute laser light irradiation (660 nm) on abdominal region using different energy (0.6, 1.8, 3.6, 7.2, 13.8, 28.2, 55.8, and 111.6 J), the direct arterial pressure was measured by femoral cannulation, and systolic arterial pressure (SAP), diastolic arterial pressure (DAP), heart rate (HR), and time of effect were obtained. Our results indicated that 660 nm laser light presents an energy-dependent hypotensive effect, and 28.2 J energy irradiation reached the maximum hypotensive effect, inducing a decreased SAP, DAP, and HR (decrease in SAP: - 19.23 ± 1.82 mmHg, n = 11; DAP: - 9.57 ± 2.23 mmHg, n = 11; HR: - 39.15 ± 5.10 bpm, n = 11; and time of hypotensive effect: 3068.00 ± 719.00 s, n = 11). The higher energy irradiation evaluated (111.6 J) did not induce a hypotensive effect and induced an increase in HR (21.69 ± 7.89 bpm, n = 7). Taken together, our results indicate that red laser energy irradiation from 7.2 to 55.8 J is the effective therapeutic window to reduce SAP, DAP, MAP, and HR and induce a long-lasting hypotensive effect in rats, with effect loss at higher energy irradiation (111.6 J).
Collapse
Affiliation(s)
- T F De Moraes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - J C C Filho
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - J C Oishi
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil
| | - L Almeida-Lopes
- Nucleus of Research and Teaching of Phototherapy in Health Sciences - NUPEN, São Carlos, SP, Brazil
| | - N A Parizotto
- Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - G J Rodrigues
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rod. Washington Luis, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
31
|
Low-level laser therapy improves pain in postcesarean section: a randomized clinical trial. Lasers Med Sci 2019; 35:1095-1102. [PMID: 31659541 DOI: 10.1007/s10103-019-02893-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
This study aimed to evaluate the effect of low-level laser therapy (LLLT) on immediate postpartum pain relief during cesarean section. A randomized, parallel controlled trial was carried out. In total, 88 women with immediate postpartum were divided into 4 groups: control group (n = 22), placebo group (n = 22), experimental group I (n = 22, dose of 4 J/cm2), and experimental group II (n = 22, dose of 2 J/cm2). The pain measured by Numeric Rating Scale (NRS), algometry, and Global Change Perception Scale (GCPS) was assessed at 12, 20-24, and 44-48 h postpartum. Two LLLT sessions were performed at 12 and 24 h postpartum. A significant interaction was observed between time versus group for NRS F (2.40) = 36.80, p < 0.001 and algometry F (1.70) = 27.18, p < 0.001. GCPS revealed a significant difference between the groups during second (p = 0.04) and third evaluation (p = 0.04). The NRS and algometry presented a large effect size for the experimental groups. LLLT is an efficient method to reduce pain and enhance the GCP in postcesarean section. No significant clinical differences were found between the laser doses.
Collapse
|
32
|
Acute effects of photobiomodulation therapy applied to respiratory muscles of chronic obstructive pulmonary disease patients: a double-blind, randomized, placebo-controlled crossover trial. Lasers Med Sci 2019; 35:1055-1063. [PMID: 31654154 DOI: 10.1007/s10103-019-02885-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
Abstract
To investigate the effects of photobiomodulation applied to respiratory muscles on lung function, thoracoabdominal mobility, respiratory muscle strength, and functional capacity in COPD patients. This is a randomized double-blind crossover clinical trial. Twelve male COPD patients participated in the study. Participants were randomly allocated to receive two photobiomodulation sessions, 1 week apart: (1) an effective photobiomodulation session applied at the main respiratory muscles by means of a cluster with 69 light-emitting diodes (LEDs), containing 35 red (630 ± 10 nm; 10 mW; 0.2 cm2) and 34 near-infrared (830 ± 20 nm; 10 mW; 0.2 cm2) LEDs and (2) a sham photobiomodulation session, following the same procedures without emitting light. The primary outcomes were pulmonary function (spirometric indexes); thoracoabdominal mobility (cirtometry); respiratory muscle strength (maximal respiratory pressures), assessed at three moments: (1) baseline, (2) 1 h after intervention, and (3) 24 h after intervention; and the functional capacity, assessed by the 6-min walk test (6MWT) at baseline and 24 h after intervention. No significant interactions were found for spirometric variables, maximal respiratory pressures, and cirtometry. However, there was a Time × Condition interaction (F = 18.63; p = 0.001; η2p = 0.62) in the walked distance on the 6MWT, with a significant increase after photobiomodulation intervention (p < 0.01) compared with the baseline. Photobiomodulation applied to respiratory muscles was effective in improving acute functional capacity in COPD patients. To the best of our knowledge, this is the first study assessing the effects of photobiomodulation applied to respiratory muscles in patients with COPD.
Collapse
|
33
|
Holmes E, Barrett DW, Saucedo CL, O’Connor P, Liu H, Gonzalez-Lima F. Cognitive Enhancement by Transcranial Photobiomodulation Is Associated With Cerebrovascular Oxygenation of the Prefrontal Cortex. Front Neurosci 2019; 13:1129. [PMID: 31680847 PMCID: PMC6813459 DOI: 10.3389/fnins.2019.01129] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Transcranial infrared laser stimulation (TILS) is a novel, safe, non-invasive method of brain photobiomodulation. Laser stimulation of the human prefrontal cortex causes cognitive enhancement. To investigate the hemodynamic effects in prefrontal cortex by which this cognitive enhancement occurs, we used functional near-infrared spectroscopy (fNIRS), which is a safe, non-invasive method of monitoring hemodynamics. We measured concentration changes in oxygenated and deoxygenated hemoglobin, total hemoglobin and differential effects in 18 healthy adults during sustained attention and working memory performance, before and after laser of the right prefrontal cortex. We also measured 16 sham controls without photobiomodulation. fNIRS revealed large effects on prefrontal oxygenation during cognitive enhancement post-laser and provided the first demonstration that cognitive enhancement by transcranial photobiomodulation is associated with cerebrovascular oxygenation of the prefrontal cortex. Sham control data served to rule out that the laser effects were due to pre-post task repetition or other non-specific effects. A laser-fNIRS combination may be useful to stimulate and monitor cerebrovascular oxygenation associated with neurocognitive enhancement in healthy individuals and in those with prefrontal hypometabolism, such as in cognitive aging, dementia and many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emma Holmes
- Department of Psychology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Douglas W. Barrett
- Department of Psychology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Celeste L. Saucedo
- Department of Psychology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Patrick O’Connor
- Department of Psychology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
34
|
Salehpour F, Majdi A, Pazhuhi M, Ghasemi F, Khademi M, Pashazadeh F, Hamblin MR, Cassano P. Transcranial Photobiomodulation Improves Cognitive Performance in Young Healthy Adults: A Systematic Review and Meta-Analysis. Photobiomodul Photomed Laser Surg 2019; 37:635-643. [PMID: 31549906 PMCID: PMC6818490 DOI: 10.1089/photob.2019.4673] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Transcranial photobiomodulation (t-PBM) is a noninvasive modality that may improve cognitive function in both healthy and diseased subjects. Objective: This systematic review and meta-analysis addresses the question of whether t-PBM improves cognitive function in healthy adults. Methods: We searched MEDLINE using PubMed, EMBASE, SCOPUS, Web of Science, and Cochrane Library up to March 2019. We also searched ProQuest and Google Scholar databases for unpublished material. The search was limited to articles on the procognitive effects of t-PBM in healthy adults. The initial search resulted in 871 studies, of which nine publications met our criteria for inclusion and exclusion. Seven studies were performed on young, healthy subjects (17-35 years), and two studies were conducted on older (≥49 years), normal subjects. A meta-analysis was performed on six full-text publications whose subjects were young adults. Results: t-PBM administration improved cognition-related outcomes by an 0.833 standardized mean difference (SMD; 95% confidence interval (CI): 0.458-1.209, 14 comparisons) in young, healthy participants. Funnel plotting revealed asymmetry, which was validated using Egger's (p = 0.030) and Begg's regression (p = 0.006) tests. However after reanalysis, this asymmetry disappeared in the attention subgroup, but not in the memory subgroup. The trim-and-fill analysis indicated two studies were lacking required data. Thus, the effect size was adjusted from an SMD of 0.761 (95% CI: 0.573-0.949) to 0.949 (0.779-1.120). The overall quality score of the studies was modest. Conclusions: We demonstrated a significant, beneficial effect of t-PBM on cognitive performance of young, healthy individuals; however, the heterogeneity of the data was high. This could be due to the modest quality or to the low number of included studies, or to the differences between the various subdomains assessed. These shortcomings should be meticulously addressed before concluding that t-PBM is a cognitive-enhancing intervention in healthy individuals.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Niraxx Light Therapeutics, Inc., Irvine, California
- ProNeuroLIGHT LLC, Phoenix, Arizona
| | - Alireza Majdi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faranak Ghasemi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Khademi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Center: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Paolo Cassano
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Department of Psychiatry, Center for Anxiety and Traumatic Stress Disorders, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
35
|
Lee Y, Kim H, Hong N, Ahn J, Kang HW. Combined treatment of low‐level laser therapy and phloroglucinol for inhibition of fibrosis. Lasers Surg Med 2019; 52:276-285. [DOI: 10.1002/lsm.23131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yeachan Lee
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
| | - Hyejin Kim
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
| | - Namgue Hong
- Department of Biomedical Science, College of MedicineDankook UniversityCheonan 31116 Republic of Korea
| | - Jin‐Chul Ahn
- Department of Biomedical Science, College of MedicineDankook UniversityCheonan 31116 Republic of Korea
| | - Hyun Wook Kang
- Interdisciplinary Program of Biomedical Mechanical & Electrical EngineeringPukyong National UniversityBusan 48513 South Korea
- Department of Biomedical Engineering and Center for Marine‐Integrated Biomedical TechnologyPukyong National UniversityBusan 48513 South Korea
| |
Collapse
|
36
|
Comparative effects of photobiomodulation therapy at wavelengths of 660 and 808 nm on regeneration of inferior alveolar nerve in rats following crush injury. Lasers Med Sci 2019; 35:413-420. [PMID: 31273571 DOI: 10.1007/s10103-019-02838-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to investigate the therapeutic effects of 660-nm and 880-nm photobiomodulation therapy (PBMT) following inferior alveolar nerve (IAN) crush injury. Following the nerve crush injuries of IAN, 36 Wistar rats were randomly divided into three groups as follows: (1) control, (2) 660-nm PBMT, and (3) 808-nm PBMT (GaAlAs laser, 100 J/cm2, 70 mW, 0.028-cm2 beam). PBMT was started immediately after surgery and performed once every 3 days during the postoperative period. At the end of the 30-day treatment period, histopathological and histomorphometric evaluations of tissue sections were made under a light and electron microscope. The ratio of the inner axonal diameter to the total outer axonal diameter (g-ratio) and the number of axons per square micrometer were evaluated. In the 808-nm PBMT group, the number of nerve fibers with suboptimal g-ratio ranges of 0-0.49 (p < 0.001) is significantly lower than expected, which indicates better rate of myelinization in the 808-nm PBMT group. The number of axons per square micrometer was significantly higher in the 808-nm PBMT group when compared with the control (p < 0.001) and 660-nm PBMT group (p = 0.010). The data and the histopathological investigations suggest that the PBMT with the 808-nm wavelength along with its settings was able to enhance IAN regeneration after nerve crush injury.
Collapse
|
37
|
Effect of single and multiple doses of low-level laser therapy on viability and proliferation of stem cells from human exfoliated deciduous teeth (SHED). Lasers Med Sci 2019; 34:1917-1924. [PMID: 31267320 DOI: 10.1007/s10103-019-02836-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/25/2019] [Indexed: 01/09/2023]
Abstract
The present study aimed to evaluate in vitro whether the low-level laser (LLL) delivering fractionated total energy (multiple irradiation) or single irradiation stimulates regeneration-associated events (viability and proliferation) in stem cells from human exfoliated deciduous teeth (SHED). Cells received LLL irradiation (InGaAlP-660 nm), according to the following experimental groups: G1 (single irradiation 2.5 J/cm2, 10 mW, 10 s, 0.10 J), G2 (single irradiation 5.0 J/cm2, 10 mW, 20 s, 0.20 J), G3 (single irradiation 7.5 J/cm2, 10 mW, 30 s, 0.30 J), G4 (two irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.20 J), G5 (three irradiations 2.5 J/cm2, 10 mW, 10 s; total energy 0.30 J), and G6 (non-irradiated). Cell viability was assessed by MTT and trypan blue exclusion (TBE) methods, while cell proliferation was evaluated by crystal violet (CV) and sulforhodamine B (SRB) assays after 24, 48, and 72 h after the first irradiation. By MTT, there was no difference between groups at 24 and 72 h. At 48 h, the groups subjected to multiple irradiation (G4 and G5) presented higher cell viability rates. The average percentages of viable cells for all groups by TBE method were 91.04%, 96.63%, and 97.48% at 24, 48, and 72 h, respectively. By CV, there was no significant difference between groups at 24 and 48 h; at 72 h, G2, G3, and G4 presented higher cell proliferation. By SRB, G1 and G4 presented lower proliferation rates in all the periods. When the groups presenting the same total energy were compared, G2 (0.20 J) presented lower cell viability rates and higher cell proliferation rates in comparison with G4; G3 (0.30 J) presented similar results to those of G5, with higher cell viability and proliferation. The application of laser delivering fractionated total energy (two or three applications of 2.5 J/cm2) induced higher cell viability at 48 h, while the single irradiation with 2.5 J/cm2 did not stimulate metabolic activity in such period and the proliferation over time. The 5.0 and 7.5 J/cm2 single doses and the three applications of 2.5 J/cm2 maintained cell viability and stimulated proliferation of SHED at 72 h.
Collapse
|
38
|
Acute low-level laser therapy effects on peripheral muscle strength and resistance in patients with fibromyalgia. Lasers Med Sci 2019; 35:505-510. [DOI: 10.1007/s10103-019-02816-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022]
|
39
|
Castro dos Santos N, Andere NMRB, Miguel MMV, dos Santos LM, Santamaria M, Mathias IF, Jardini MAN, Santamaria MP. Photobiomodulation for the treatment of periodontal pockets in patients with type 2 diabetes: 1-year results of a randomized clinical trial. Lasers Med Sci 2019; 34:1897-1904. [DOI: 10.1007/s10103-019-02799-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
|
40
|
Wang X, Dmochowski JP, Zeng L, Kallioniemi E, Husain M, Gonzalez-Lima F, Liu H. Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. NEUROPHOTONICS 2019; 6:025013. [PMID: 31259198 PMCID: PMC6563945 DOI: 10.1117/1.nph.6.2.025013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Noninvasive transcranial photobiomodulation (tPBM) with a 1064-nm laser has been reported to improve human performance on cognitive tasks as well as locally upregulate cerebral oxygen metabolism and hemodynamics. However, it is unknown whether 1064-nm tPBM also modulates electrophysiology, and specifically neural oscillations, in the human brain. The hypothesis guiding our study is that applying 1064-nm tPBM of the right prefrontal cortex enhances neurophysiological rhythms at specific frequency bands in the human brain under resting conditions. To test this hypothesis, we recorded the 64-channel scalp electroencephalogram (EEG) before, during, and after the application of 11 min of 4-cm-diameter tPBM (CW 1064-nm laser with 162 mW / cm 2 and 107 J / cm 2 ) to the right forehead of human subjects ( n = 20 ) using a within-subject, sham-controlled design. Time-resolved scalp topographies of EEG power at five frequency bands were computed to examine the tPBM-induced EEG power changes across the scalp. The results show time-dependent, significant increases of EEG spectral powers at the alpha (8 to 13 Hz) and beta (13 to 30 Hz) bands at broad scalp regions, exhibiting a front-to-back pattern. The findings provide the first sham-controlled topographic mapping that tPBM increases the strength of electrophysiological oscillations (alpha and beta bands) while also shedding light on the mechanisms of tPBM in the human brain.
Collapse
Affiliation(s)
- Xinlong Wang
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| | - Jacek P. Dmochowski
- City College of New York, Department of Biomedical Engineering, New York, United States
| | - Li Zeng
- Texas A&M University, Department of Industrial and Systems Engineering, College Station, Texas, United States
| | - Elisa Kallioniemi
- University of Texas Southwestern Medical Center at Dallas, Department of Psychiatry, Dallas, Texas, United States
| | - Mustafa Husain
- University of Texas Southwestern Medical Center at Dallas, Department of Psychiatry, Dallas, Texas, United States
| | - F. Gonzalez-Lima
- University of Texas at Austin, Department of Psychology and Institute for Neuroscience, Austin, Texas, United States
| | - Hanli Liu
- University of Texas at Arlington, Department of Bioengineering, Arlington, Texas, United States
| |
Collapse
|
41
|
Zupin L, Celsi F, Ottaviani G, Crovella S. Photobiomodulation therapy at different wavelength impacts on retinoid acid-dependent SH-SY5Y differentiation. Lasers Med Sci 2019; 35:221-226. [PMID: 30911931 DOI: 10.1007/s10103-019-02765-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy.
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Sergio Crovella
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Via dell'Istria 65/1, 34137, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
42
|
Alinca SB, Saglam E, Kandas NO, Okcu O, Yilmaz N, Goncu B, Dogan MA. Comparison of the efficacy of low-level laser therapy and photodynamic therapy on oral mucositis in rats. Lasers Med Sci 2019; 34:1483-1491. [PMID: 30826950 DOI: 10.1007/s10103-019-02757-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
Abstract
Cancer treatment with chemotherapy or radiotherapy is associated with some side effects including in the oral cavity. One of the more significant oral complications is oral mucositis (OM) which induces severe pain and limits fundamental life behaviors such as eating, drinking, and talking. Although advancements in cancer treatment improved the survival rate, severe OM and opportunistic infection affect treatment adversely. Therefore, the control of OM is important for oral health quality of life and prognosis. Low-level laser therapy (LLLT) and photodynamic therapy (PT) are noninvasive methods that reduce inflammation and pain during wound healing. The aim of this study is to evaluate immunohistochemical and histological examination of the OM region of the PT comparing LLLT. In this study, 24 Sprague-Dawley rats were divided into three groups as control, LLLT, and PT groups. All groups received 5-fluorouracil intraperitoneally and a linear trauma to the mouth pouch with a needle. After the formation of OM in the mouth, the control group had no treatment; the LLLT group was administered LLLT, and the PT group had LLLT after indocyanine green application. Then all groups were sacrificed, and histological analyses and protein level detection of basic fibroblast growth factor (bFGF), transforming growth factor (TGF-β), and platelet-derived growth factor (PDGF-BB) were evaluated in all groups. PT was determined to be more statistically significantly than LLLT with bFGF and PDGF-BB. However, regarding TGF-β, no statistically significant difference was observed between the groups. Within the limitations of this study, indocyanine green may accelerate the LLLT effect. However, further studies on this subject are required.
Collapse
Affiliation(s)
- Suzan Bayer Alinca
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul Aydin University, Istanbul, Turkey.
| | - Ebru Saglam
- Department of Periodontology, Faculty of Dentistry, Health Sciences University, İstanbul, Turkey
| | - Nur Ozten Kandas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Oguzhan Okcu
- Department of Pathology, Recep Tayyip Erdogan University Education and Research Hospital, Rize, Turkey
| | - Nergiz Yilmaz
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Izmir Katip Celebi University, Izmir, Turkey
| | - Beyza Goncu
- Experimental Research Center, Bezmialem Vakif University, Istanbul, Turkey
| | | |
Collapse
|
43
|
Felizatti AL, do Bomfim FRC, Bovo JL, de Aro AA, do Amaral MEC, Esquisatto MAM. Effects of low-level laser therapy on the organization of articular cartilage in an experimental microcrystalline arthritis model. Lasers Med Sci 2019; 34:1401-1412. [PMID: 30762197 DOI: 10.1007/s10103-019-02740-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the effects of low-level laser therapy using the gallium arsenide laser (λ = 830 nm) on the articular cartilage (AC) organization from knee joint in an experimental model of microcrystalline arthritis in adult male Wistar rats. Seventy-two animals were divided into three groups: A (control), B (induced arthritis), and C (induced arthritis + laser therapy). The arthritis was induced in the right knee using 2 mg of Na4P2O7 in 0.5 mL of saline solution. The treatments were daily applied in the patellar region of the right knee after 48 h of induction. On the 7th, 14th, and 21st days of treatment, the animals were euthanized and their right knees were removed and processed for structural and biochemical analysis of the AC. The chondrocytes positively labeled for the TUNEL reaction were lower in C than in B on the 14th and 21st days. The content of glycosaminoglycans and hydroxyproline in A and C was higher than B on the 21st day. The amount of tibial TNF-α in B and C was lower than in A. The amount of tibial BMP-7 in B and C was higher than in A. The femoral MMP-13 was lower in B and C than for A. The tibial TGF-β for C was higher than the others. The femoral ADAMT-S4 content of A and C presented similar and inferior data to B on the 21st day. The AsGa-830 nm therapy preserved the content of glycosaminoglycans, reduced the cellular changes and the inflammatory process compared to the untreated group.
Collapse
Affiliation(s)
- Airton Luiz Felizatti
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Fernando Russo Costa do Bomfim
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Julia Leme Bovo
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Andrea Aparecida de Aro
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Maria Esméria Corezzola do Amaral
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Marcelo Augusto Marretto Esquisatto
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil.
| |
Collapse
|
44
|
Liu KH, Liu D, Chen YT, Chin SY. Comparative effectiveness of low-level laser therapy for adult androgenic alopecia: a system review and meta-analysis of randomized controlled trials. Lasers Med Sci 2019; 34:1063-1069. [DOI: 10.1007/s10103-019-02723-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
|
45
|
Comparison of high-intensity laser therapy and combination of ultrasound treatment and transcutaneous nerve stimulation in patients with cervical spondylosis: a randomized controlled trial. Lasers Med Sci 2018; 34:947-953. [PMID: 30443883 DOI: 10.1007/s10103-018-2682-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022]
Abstract
The aim of the study was to compare the effect of high-intensity laser therapy (HILT) and a combination of ultrasound (US) treatment and transcutaneous nerve stimulation (TENS) on pain, range of motion (ROM), and functional activity in patients with cervical spondylosis (CS). A total of 84 patients with a mean age of 51.54 years (52 women and 32 men) affected by CS were enrolled in this study. Patients were randomly divided into two groups. In group A (42 subjects), patients received 12 sessions of HILT plus exercise, while in group B (42 subjects), they received a combination of US, TENS, and exercise. The outcomes measured were cervical segment ROM, pain level measured by visual analogue scale (VAS), and functional activity measured by neck disability index (NDI) at the end of the therapy. The level of statistical significance was set as p < 0.05. In the two groups, cervical ROM, VAS, and functional scores showed significant changes. Both HILT plus exercise and US/TENS plus exercise effectively increased cervical ROM and reduced pain (with a significant greater decrease in group A). Statistically significant differences in NDI scores were observed after treatment sessions with better results for participants enrolled in group A (HILT plus exercise) Both therapeutic modalities demonstrated analgesic efficacy and improved function in patients affected by cervical spondylosis 4 weeks after the therapy. HILT plus exercise was more effective than US/TENS plus exercise. HILT can be promoted and used in this pathology with positive outcomes. However, further studies are needed to optimize the dose and duration of HILT therapy.
Collapse
|
46
|
Zaizar ED, Gonzalez-Lima F, Telch MJ. Singular and combined effects of transcranial infrared laser stimulation and exposure therapy: A randomized clinical trial. Contemp Clin Trials 2018; 72:95-102. [PMID: 30092284 DOI: 10.1016/j.cct.2018.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
This RCT will test whether transcranial infrared laser stimulation (TILS) administered immediately following standard exposure therapy enhances the retention of fear extinction for naturally acquired pathological fear. A second aim is to investigate the efficacy of TILS as a stand-alone intervention for reducing pathological fear. Participants with elevated fear in any one of the following four domains: (a) fear of enclosed spaces, (b) fear of contamination, (c) fear of public speaking, or (d) fear of anxiety (i.e., anxiety sensitivity) will be recruited from introductory psychology classes and the greater Austin community. Participants displaying marked fear responding will be stratified on baseline fear responding and fear domain and randomized to one of four treatment arms: (1) Exposure + TILS, (2) Exposure + sham TILS, (3) TILS alone, or (4) Sham TILS alone. We anticipate that TILS will enhance exposure therapy outcome relative to sham TILS and that this enhancement effect will be most pronounced for (a) those displaying higher baseline fear responding, and (b) those showing greater fear reduction during exposure. Study rationale as well as additional predictions and clinical implications are discussed.
Collapse
Affiliation(s)
- Eric D Zaizar
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States
| | - F Gonzalez-Lima
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States
| | - Michael J Telch
- Department of Psychology, Laboratory for the Study of Anxiety Disorders, The University of Texas at Austin, United States.
| |
Collapse
|
47
|
Bicknell B, Liebert A, Johnstone D, Kiat H. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med Sci 2018; 34:317-327. [PMID: 30074108 DOI: 10.1007/s10103-018-2594-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
The human microbiome is intimately associated with human health, with a role in obesity, metabolic diseases such as type 2 diabetes, and divergent diseases such as cardiovascular and neurodegenerative diseases. The microbiome can be changed by diet, probiotics, and faecal transplants, which has flow-on effects to health outcomes. Photobiomodulation has a therapeutic effect on inflammation and neurological disorders (amongst others) and has been reported to influence metabolic disorders and obesity. The aim of this study was to examine the possibility that PBM could influence the microbiome of mice. Mice had their abdomen irradiated with red (660 nm) or infrared (808 nm) low-level laser, either as single or multiple doses, over a 2-week period. Genomic DNA extracted from faecal pellets was pyrosequenced for the 16S rRNA gene. There was a significant (p < 0.05) difference in microbial diversity between PBM- and sham-treated mice. One genus of bacterium (Allobaculum) significantly increased (p < 0.001) after infrared (but not red light) PBM by day 14. Despite being a preliminary trial with small experimental numbers, we have demonstrated for the first time that PBM can alter microbiome diversity in healthy mice and increase numbers of Allobaculum, a bacterium associated with a healthy microbiome. This change is most probably a result of PBMt affecting the host, which in turn influenced the microbiome. If this is confirmed in humans, the possibility exists for PBMt to be used as an adjunct therapy in treatment of obesity and other lifestyle-related disorders, as well as cardiovascular and neurodegenerative diseases. The clinical implications of altering the microbiome using PBM warrants further investigation.
Collapse
Affiliation(s)
- Brian Bicknell
- Australasian Research Institute, Wahroonga, Australia. .,Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia.
| | - Ann Liebert
- Australasian Research Institute, Wahroonga, Australia.,Department of Medicine, University of Sydney, Camperdown, Australia
| | | | - Hosen Kiat
- Faculty of Medicine and Health Sciences, Macquarie University, West Ryde, Australia.,School of Medical Sciences, University of New South Wales, Kensington, Australia
| |
Collapse
|
48
|
Dos Santos JGRP, Paiva WS, Teixeira MJ. Transcranial light-emitting diode therapy for neuropsychological improvement after traumatic brain injury: a new perspective for diffuse axonal lesion management. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:139-146. [PMID: 29731669 PMCID: PMC5927185 DOI: 10.2147/mder.s155356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cost of traumatic brain injury (TBI) for public health policies is undeniable today. Even patients who suffer from mild TBI may persist with cognitive symptoms weeks after the accident. Most of them show no lesion in computed tomography or conventional magnetic resonance imaging, but microstructural white matter abnormalities (diffuse axonal lesion) can be found in diffusion tensor imaging. Different brain networks work together to form an important part of the cognition process, and they can be affected by TBI. The default mode network (DMN) plays an important central role in normal brain activities, presenting greater relative deactivation during more cognitively demanding tasks. After deactivation, it allows a distinct network to activate. This network (the central executive network) acts mainly during tasks involving executive functions. The salience network is another network necessary for normal executive function, and its activation leads to deactivation of the DMN. The use of red or near-infrared (NIR) light to stimulate or regenerate tissue is known as photobiomodulation. It was discovered that NIR (wavelength 800-900 nm) and red (wavelength 600 nm) light-emitting diodes (LEDs) are able to penetrate through scalp and skull and have the potential to improve the subnormal, cellular activity of compromised brain tissue. Based on this, different experimental and clinical studies were done to test LED therapy for TBI, and promising results were found. It leads us to consider developing different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients.
Collapse
Affiliation(s)
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|