1
|
Ezhov I, Scibilia K, Giannoni L, Kofler F, Iliash I, Hsieh F, Shit S, Caredda C, Lange F, Montcel B, Tachtsidis I, Rueckert D. Learnable real-time inference of molecular composition from diffuse spectroscopy of brain tissue. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:093509. [PMID: 39318967 PMCID: PMC11421663 DOI: 10.1117/1.jbo.29.9.093509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Significance Diffuse optical modalities such as broadband near-infrared spectroscopy (bNIRS) and hyperspectral imaging (HSI) represent a promising alternative for low-cost, non-invasive, and fast monitoring of living tissue. Particularly, the possibility of extracting the molecular composition of the tissue from the optical spectra deems the spectroscopy techniques as a unique diagnostic tool. Aim No established method exists to streamline the inference of the biochemical composition from the optical spectrum for real-time applications such as surgical monitoring. We analyze a machine learning technique for inference of changes in the molecular composition of brain tissue. Approach We propose modifications to the existing learnable methodology based on the Beer-Lambert law. We evaluate the method's applicability to linear and nonlinear formulations of this physical law. The approach is tested on data obtained from the bNIRS- and HSI-based monitoring of brain tissue. Results The results demonstrate that the proposed method enables real-time molecular composition inference while maintaining the accuracy of traditional methods. Preliminary findings show that Beer-Lambert law-based spectral unmixing allows contrasting brain anatomy semantics such as the vessel tree and tumor area. Conclusion We present a data-driven technique for inferring molecular composition change from diffuse spectroscopy of brain tissue, potentially enabling intra-operative monitoring.
Collapse
Affiliation(s)
- Ivan Ezhov
- Technical University of Munich, Department of Computer Science, Munich, Germany
| | - Kevin Scibilia
- Technical University of Munich, Department of Computer Science, Munich, Germany
| | - Luca Giannoni
- University of Florence, Department of Physics and Astronomy, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy, Florence, Italy
| | | | - Ivan Iliash
- Technical University of Munich, Department of Computer Science, Munich, Germany
| | - Felix Hsieh
- Technical University of Munich, Department of Computer Science, Munich, Germany
| | - Suprosanna Shit
- Technical University of Munich, Department of Computer Science, Munich, Germany
| | - Charly Caredda
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR, Lyon, France
| | - Frédéric Lange
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Bruno Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR, Lyon, France
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Daniel Rueckert
- Technical University of Munich, Department of Computer Science, Munich, Germany
- Imperial College London, Department of Computing, London, United Kingdom
| |
Collapse
|
2
|
Moffat R, Cross ES. Awareness of embodiment enhances enjoyment and engages sensorimotor cortices. Hum Brain Mapp 2024; 45:e26786. [PMID: 38994692 PMCID: PMC11240146 DOI: 10.1002/hbm.26786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Whether in performing arts, sporting, or everyday contexts, when we watch others move, we tend to enjoy bodies moving in synchrony. Our enjoyment of body movements is further enhanced by our own prior experience with performing those movements, or our 'embodied experience'. The relationships between movement synchrony and enjoyment, as well as embodied experience and movement enjoyment, are well known. The interaction between enjoyment of movements, synchrony, and embodiment is less well understood, and may be central for developing new approaches for enriching social interaction. To examine the interplay between movement enjoyment, synchrony, and embodiment, we asked participants to copy another person's movements as accurately as possible, thereby gaining embodied experience of movement sequences. Participants then viewed other dyads performing the same or different sequences synchronously, and we assessed participants' recognition of having performed these sequences, as well as their enjoyment of each movement sequence. We used functional near-infrared spectroscopy to measure cortical activation over frontotemporal sensorimotor regions while participants performed and viewed movements. We found that enjoyment was greatest when participants had mirrored the sequence and recognised it, suggesting that awareness of embodiment may be central to enjoyment of synchronous movements. Exploratory analyses of relationships between cortical activation and enjoyment and recognition implicated the sensorimotor cortices, which subserve action observation and aesthetic processing. These findings hold implications for clinical research and therapies seeking to foster successful social interaction.
Collapse
Affiliation(s)
- Ryssa Moffat
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Emily S. Cross
- Professorship for Social Brain Sciences, ETH ZurichZurichSwitzerland
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- MARCS InstituteWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Yang Z, Lange F, Xia Y, Chertavian C, Cabolis K, Sajic M, Werring DJ, Tachtsidis I, Smith KJ. Nimodipine Protects Vascular and Cognitive Function in an Animal Model of Cerebral Small Vessel Disease. Stroke 2024; 55:1914-1922. [PMID: 38860370 PMCID: PMC11251505 DOI: 10.1161/strokeaha.124.047154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Cerebral small vessel disease is a common cause of vascular cognitive impairment and dementia. There is an urgent need for preventative treatments for vascular cognitive impairment and dementia, and reducing vascular dysfunction may provide a therapeutic route. Here, we investigate whether the chronic administration of nimodipine, a central nervous system-selective dihydropyridine calcium channel blocking agent, protects vascular, metabolic, and cognitive function in an animal model of cerebral small vessel disease, the spontaneously hypertensive stroke-prone rat. METHODS Male spontaneously hypertensive stroke-prone rats were randomly allocated to receive either a placebo (n=24) or nimodipine (n=24) diet between 3 and 6 months of age. Animals were examined daily for any neurological deficits, and vascular function was assessed in terms of neurovascular and neurometabolic coupling at 3 and 6 months of age, and cerebrovascular reactivity at 6 months of age. Cognitive function was evaluated using the novel object recognition test at 6 months of age. RESULTS Six untreated control animals were terminated prematurely due to strokes, including one due to seizure, but no treated animals experienced strokes and so had a higher survival (P=0.0088). Vascular function was significantly impaired with disease progression, but nimodipine treatment partially preserved neurovascular coupling and neurometabolic coupling, indicated by larger (P<0.001) and more prompt responses (P<0.01), and less habituation upon repeated stimulation (P<0.01). Also, animals treated with nimodipine showed greater cerebrovascular reactivity, indicated by larger dilation of arterioles (P=0.015) and an increase in blood flow velocity (P=0.001). This protection of vascular and metabolic function achieved by nimodipine treatment was associated with better cognitive function (P<0.001) in the treated animals. CONCLUSIONS Chronic treatment with nimodipine protects from strokes, and vascular and cognitive deficits in spontaneously hypertensive stroke-prone rat. Nimodipine may provide an effective preventive treatment for stroke and cognitive decline in cerebral small vessel disease.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering (F.L., I.T.), University College London, United Kingdom
| | - Yiqing Xia
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Casey Chertavian
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Katerina Cabolis
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - Marija Sajic
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| | - David J. Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology (D.J.W.), University College London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering (F.L., I.T.), University College London, United Kingdom
| | - Kenneth J. Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology (Z.Y., Y.X., C.C., K.C., M.S., K.J.S.), University College London, United Kingdom
| |
Collapse
|
4
|
Moffat R, Caruana N, Cross ES. Inhibiting responses under the watch of a recently synchronized peer increases self-monitoring: evidence from functional near-infrared spectroscopy. Open Biol 2024; 14:230382. [PMID: 38378138 PMCID: PMC10878812 DOI: 10.1098/rsob.230382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Developing motor synchrony with a peer (through interventions such as the mirror game) can yield collaborative, cognitive and social benefits. However, it is also well established that observation by an audience can improve cognition. The combined and relative advantages offered by motor synchronization and audience effects are not yet understood. It is important to address this gap to determine the extent to which synchronizing activities might interact with the positive effects of an audience. In this preregistered study, we investigate the extent to which response inhibition may be improved when observed by a peer after motor synchronization with this peer. We compare behavioural and cortical (functional near-infrared spectroscopy; fNIRS) measures of inhibition between synchronized and non-synchronized dyads and find that the presence of a synchronized peer-audience introduces a speed-accuracy trade-off, consisting of slower reaction times and improved accuracy. This co-occurs with cortical activation in bilateral inferior frontal and middle prefrontal cortices, which are implicated in monitoring and maintenance of social alignment. Our findings have implications for carers and support people, who may benefit from synchronizing activities for rehabilitating inhibition and social skills in clinical settings.
Collapse
Affiliation(s)
- R. Moffat
- School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Professorship for Social Brain Sciences, ETH Zurich, Zurich 8092, Switzerland
| | - N. Caruana
- School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- College of Education, Psychology and Social Work, Flinders University, Bedford Park, South Australia, Australia
| | - E. S. Cross
- School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead Innovation Quarter Building U, Westmead New South Wales 2145, Australia
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
- Professorship for Social Brain Sciences, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
5
|
Harvey-Jones K, Lange F, Verma V, Bale G, Meehan C, Avdic-Belltheus A, Hristova M, Sokolska M, Torrealdea F, Golay X, Parfentyeva V, Durduran T, Bainbridge A, Tachtsidis I, Robertson NJ, Mitra S. Early assessment of injury with optical markers in a piglet model of neonatal encephalopathy. Pediatr Res 2023; 94:1675-1683. [PMID: 37308684 PMCID: PMC10624614 DOI: 10.1038/s41390-023-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Opportunities for adjunct therapies with cooling in neonatal encephalopathy are imminent; however, robust biomarkers of early assessment are lacking. Using an optical platform of broadband near-infrared spectroscopy and diffuse correlation spectroscopy to directly measure mitochondrial metabolism (oxCCO), oxygenation (HbD), cerebral blood flow (CBF), we hypothesised optical indices early (1-h post insult) after hypoxia-ischaemia (HI) predicts insult severity and outcome. METHODS Nineteen newborn large white piglets underwent continuous neuromonitoring as controls or following moderate or severe HI. Optical indices were expressed as mean semblance (phase difference) and coherence (spectral similarity) between signals using wavelet analysis. Outcome markers included the lactate/N-acetyl aspartate (Lac/NAA) ratio at 6 h on proton MRS and TUNEL cell count. RESULTS CBF-HbD semblance (cerebrovascular dysfunction) correlated with BGT and white matter (WM) Lac/NAA (r2 = 0.46, p = 0.004, r2 = 0.45, p = 0.004, respectively), TUNEL cell count (r2 = 0.34, p = 0.02) and predicted both initial insult (r2 = 0.62, p = 0.002) and outcome group (r2 = 0.65 p = 0.003). oxCCO-HbD semblance (cerebral metabolic dysfunction) correlated with BGT and WM Lac/NAA (r2 = 0.34, p = 0.01 and r2 = 0.46, p = 0.002, respectively) and differentiated between outcome groups (r2 = 0.43, p = 0.01). CONCLUSION Optical markers of both cerebral metabolic and vascular dysfunction 1 h after HI predicted injury severity and subsequent outcome in a pre-clinical model. IMPACT This study highlights the possibility of using non-invasive optical biomarkers for early assessment of injury severity following neonatal encephalopathy, relating to the outcome. Continuous cot-side monitoring of these optical markers can be useful for disease stratification in the clinical population and for identifying infants who might benefit from future adjunct neuroprotective therapies beyond cooling.
Collapse
Affiliation(s)
| | - Frederic Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Vinita Verma
- Institute for Women's Health, University College London, London, UK
| | - Gemma Bale
- Department of Engineering and Department of Physics, University of Cambridge, Cambridge, UK
| | | | | | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Francisco Torrealdea
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Veronika Parfentyeva
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
6
|
Moffat R, Başkent D, Luke R, McAlpine D, Van Yper L. Cortical haemodynamic responses predict individual ability to recognise vocal emotions with uninformative pitch cues but do not distinguish different emotions. Hum Brain Mapp 2023; 44:3684-3705. [PMID: 37162212 PMCID: PMC10203806 DOI: 10.1002/hbm.26305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/11/2023] Open
Abstract
We investigated the cortical representation of emotional prosody in normal-hearing listeners using functional near-infrared spectroscopy (fNIRS) and behavioural assessments. Consistent with previous reports, listeners relied most heavily on F0 cues when recognizing emotion cues; performance was relatively poor-and highly variable between listeners-when only intensity and speech-rate cues were available. Using fNIRS to image cortical activity to speech utterances containing natural and reduced prosodic cues, we found right superior temporal gyrus (STG) to be most sensitive to emotional prosody, but no emotion-specific cortical activations, suggesting that while fNIRS might be suited to investigating cortical mechanisms supporting speech processing it is less suited to investigating cortical haemodynamic responses to individual vocal emotions. Manipulating emotional speech to render F0 cues less informative, we found the amplitude of the haemodynamic response in right STG to be significantly correlated with listeners' abilities to recognise vocal emotions with uninformative F0 cues. Specifically, listeners more able to assign emotions to speech with degraded F0 cues showed lower haemodynamic responses to these degraded signals. This suggests a potential objective measure of behavioural sensitivity to vocal emotions that might benefit neurodiverse populations less sensitive to emotional prosody or hearing-impaired listeners, many of whom rely on listening technologies such as hearing aids and cochlear implants-neither of which restore, and often further degrade, the F0 cues essential to parsing emotional prosody conveyed in speech.
Collapse
Affiliation(s)
- Ryssa Moffat
- School of Psychological SciencesMacquarie UniversitySydneyNew South WalesAustralia
- International Doctorate of Experimental Approaches to Language and Brain (IDEALAB)Universities of Potsdam, Germany; Groningen, Netherlands; Newcastle University, UK; and Macquarie UniversityAustralia
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Research School of Behavioral and Cognitive Neuroscience, Graduate School of Medical SciencesUniversity of GroningenGroningenThe Netherlands
| | - Robert Luke
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
- Bionics InstituteEast MelbourneVictoriaAustralia
| | - David McAlpine
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
| | - Lindsey Van Yper
- Macquarie University Hearing, and Department of LinguisticsMacquarie UniversitySydneyNew South WalesAustralia
- Institute of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
7
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Kaynezhad P, Jeffery G, Bainbridge J, Sivaprasad S, Tachtsidis I, Hay-Schmidt A, Rajendram R. The Role of Neuroglobin in Retinal Hemodynamics and Metabolism: A Real-Time Study. Transl Vis Sci Technol 2022; 11:2. [PMID: 35802369 PMCID: PMC9279924 DOI: 10.1167/tvst.11.7.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In this study, we used broadband near-infrared spectroscopy, a non-invasive optical technique, to investigate in real time the possible role of neuroglobin in retinal hemodynamics and metabolism. Methods Retinae of 12 C57 mice (seven young and five old) and seven young neuroglobin knockouts (Ngb-KOs) were exposed to light from a low-power halogen source, and the back-reflected light was used to calculate changes in the concentration of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and oxidized cytochrome c oxidase (oxCCO). Results The degree of change in the near-infrared spectroscopy signals associated with HHb, HbO2, and oxCCO was significantly greater in young C57 mice compared to the old C57 mice (P < 0.05) and the Ngb-KO model (P < 0.005). Conclusions Our results reveal a possible role of Ngb in regulating retinal function, as its absence in the retinae of a knockout mouse model led to suppressed signals that are associated with hemodynamics and oxidative metabolism. Translational Relevance Near-infrared spectroscopy enabled the non-invasive detection of characteristic signals that differentiate between the retina of a neuroglobin knockout mouse model and that of a wild-type model. Further work is needed to evaluate the source of the signal differences and how these differences relate to the presence or absence of neuroglobin in the ganglion, bipolar, or amacrine cells of the retina.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- Institute of Ophthalmology, University College London, London, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| | - James Bainbridge
- Institute of Ophthalmology, University College London, London, UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology, University College London, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Anders Hay-Schmidt
- Department of Odontology, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ranjan Rajendram
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
9
|
Rajaram A, Milej D, Suwalski M, Kebaya L, Kewin M, Yip L, de Ribaupierre S, Han V, Diop M, Bhattacharya S, St Lawrence K. Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm infants during the first 3 days after birth. Sci Rep 2022; 12:181. [PMID: 34996949 PMCID: PMC8741949 DOI: 10.1038/s41598-021-03830-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Lilian Kebaya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Lawrence Yip
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Sandrine de Ribaupierre
- Department of Medical Biophysics, Western University, London, Canada
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Victor Han
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON, N6A 3K7, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, Canada.
| |
Collapse
|
10
|
The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optical techniques based on diffuse optics have been around for decades now and are making their way into the day-to-day medical applications. Even though the physics foundations of these techniques have been known for many years, practical implementation of these technique were hindered by technological limitations, mainly from the light sources and/or detection electronics. In the past 20 years, the developments of supercontinuum laser (SCL) enabled to unlock some of these limitations, enabling the development of system and methodologies relevant for medical use, notably in terms of spectral monitoring. In this review, we focus on the use of SCL in biomedical diffuse optics, from instrumentation and methods developments to their use for medical applications. A total of 95 publications were identified, from 1993 to 2021. We discuss the advantages of the SCL to cover a large spectral bandwidth with a high spectral power and fast switching against the disadvantages of cost, bulkiness, and long warm up times. Finally, we summarize the utility of using such light sources in the development and application of diffuse optics in biomedical sciences and clinical applications.
Collapse
|
11
|
Kaynezhad P, Tachtsidis I, Aboelnour A, Sivaprasad S, Jeffery G. Watching synchronous mitochondrial respiration in the retina and its instability in a mouse model of macular degeneration. Sci Rep 2021; 11:3274. [PMID: 33558624 PMCID: PMC7870852 DOI: 10.1038/s41598-021-82811-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial function declines with age and in some diseases, but we have been unable to analyze this in vivo. Here, we optically examine retinal mitochondrial function as well as choroidal oxygenation and hemodynamics in aging C57 and complement factor H (CFH-/-) mice, proposed models of macular degeneration which suffer early retinal mitochondrial decline. In young C57s mitochondrial populations respire in coupled oscillatory behavior in cycles of ~ 8 min, which is phase linked to choroidal oscillatory hemodynamics. In aging C57s, the oscillations are less regular being ~ 14 min and more dissociated from choroidal hemodynamics. The mitochondrial oscillatory cycles are extended in CFH-/- mice being ~ 16 min and are further dissociated from choroidal hemodynamics. Mitochondrial decline occurs before age-related changes to choroidal vasculature, hence, is the likely origin of oscillatory disruption in hemodynamics. This technology offers a non-invasive technique to detect early retinal disease and its relationship to blood oxygenation in vivo and in real time.
Collapse
Affiliation(s)
- Pardis Kaynezhad
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Asmaa Aboelnour
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sobha Sivaprasad
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
| |
Collapse
|
12
|
Bale G, Rajaram A, Kewin M, Morrison L, Bainbridge A, Liu L, Anazodo U, Diop M, Lawrence KS, Tachtsidis I. Multimodal Measurements of Brain Tissue Metabolism and Perfusion in a Neonatal Model of Hypoxic-Ischaemic Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:203-208. [PMID: 33966218 DOI: 10.1007/978-3-030-48238-1_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This is the first multimodal study of cerebral tissue metabolism and perfusion post-hypoxic-ischaemic (HI) brain injury using broadband near-infrared spectroscopy (bNIRS), diffuse correlation spectroscopy (DCS), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). In seven piglet preclinical models of neonatal HI, we measured cerebral tissue saturation (StO2), cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO2), changes in the mitochondrial oxidation state of cytochrome c oxidase (oxCCO), cerebral glucose metabolism (CMRglc) and tissue biochemistry (Lac+Thr/tNAA). At baseline, the parameters measured in the piglets that experience HI (not controls) were 64 ± 6% StO2, 35 ± 11 ml/100 g/min CBF and 2.0 ± 0.4 μmol/100 g/min CMRO2. After HI, the parameters measured were 68 ± 6% StO2, 35 ± 6 ml/100 g/min CBF, 1.3 ± 0.1 μmol/100 g/min CMRO2, 0.4 ± 0.2 Lac+Thr/tNAA and 9.5 ± 2.0 CMRglc. This study demonstrates the capacity of a multimodal set-up to interrogate the pathophysiology of HIE using a combination of optical methods, MRS, and PET.
Collapse
Affiliation(s)
- Gemma Bale
- Biomedical Optics Research Laboratory, University College London, London, UK.
| | - Ajay Rajaram
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Matthew Kewin
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Laura Morrison
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Alan Bainbridge
- Medical Physics, University College London Hospital, London, UK
| | - Linshan Liu
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Udunna Anazodo
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Mamadou Diop
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Keith St Lawrence
- Medical Biophysics, Western University, and Lawson Health Research Institute, London, ON, Canada
| | - Ilias Tachtsidis
- Biomedical Optics Research Laboratory, University College London, London, UK
| |
Collapse
|
13
|
Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of Optical Neuromonitoring in Neonatal Encephalopathy-Current State and Recent Advances. Front Pediatr 2021; 9:653676. [PMID: 33898363 PMCID: PMC8062863 DOI: 10.3389/fped.2021.653676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Neonatal encephalopathy (NE) in term and near-term infants is a significant global health problem; the worldwide burden of disease remains high despite the introduction of therapeutic hypothermia. Assessment of injury severity and effective management in the neonatal intensive care unit (NICU) relies on multiple monitoring modalities from systemic to brain-specific. Current neuromonitoring tools provide information utilized for seizure management, injury stratification, and prognostication, whilst systemic monitoring ensures multi-organ dysfunction is recognized early and supported wherever needed. The neuromonitoring technologies currently used in NE however, have limitations in either their availability during the active treatment window or their reliability to prognosticate and stratify injury confidently in the early period following insult. There is therefore a real need for a neuromonitoring tool that provides cot side, early and continuous monitoring of brain health which can reliably stratify injury severity, monitor response to current and emerging treatments, and prognosticate outcome. The clinical use of near-infrared spectroscopy (NIRS) technology has increased in recent years. Research studies within this population have also increased, alongside the development of both instrumentation and signal processing techniques. Increasing use of commercially available cerebral oximeters in the NICU, and the introduction of advanced optical measurements using broadband NIRS (BNIRS), frequency domain NIRS (FDNIRS), and diffuse correlation spectroscopy (DCS) have widened the scope by allowing the direct monitoring of oxygen metabolism and cerebral blood flow, both key to understanding pathophysiological changes and predicting outcome in NE. This review discusses the role of optical neuromonitoring in NE and why this modality may provide the next significant piece of the puzzle toward understanding the real time state of the injured newborn brain.
Collapse
Affiliation(s)
- Kelly Harvey-Jones
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| | - Frederic Lange
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom.,Edinburgh Neuroscience & Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
14
|
Russell-Buckland J, Kaynezhad P, Mitra S, Bale G, Bauer C, Lingam I, Meehan C, Avdic-Belltheus A, Martinello K, Bainbridge A, Robertson NJ, Tachtsidis I. Systems Biology Model of Cerebral Oxygen Delivery and Metabolism During Therapeutic Hypothermia: Application to the Piglet Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:31-38. [PMID: 33966191 DOI: 10.1007/978-3-030-48238-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypoxic ischaemic encephalopathy (HIE) is a significant cause of death and disability. Therapeutic hypothermia (TH) is the only available standard of treatment, but 45-55% of cases still result in death or neurodevelopmental disability following TH. This work has focussed on developing a new brain tissue physiology and biochemistry systems biology model that includes temperature effects, as well as a Bayesian framework for analysis of model parameter estimation. Through this, we can simulate the effects of temperature on brain tissue oxygen delivery and metabolism, as well as analyse clinical and experimental data to identify mechanisms to explain differing behaviour and outcome. Presented here is an application of the model to data from two piglets treated with TH following hypoxic-ischaemic injury showing different responses and outcome following treatment. We identify the main mechanism for this difference as the Q10 temperature coefficient for metabolic reactions, with the severely injured piglet having a median posterior value of 0.133 as opposed to the mild injury value of 5.48. This work demonstrates the use of systems biology models to investigate underlying mechanisms behind the varying response to hypothermic treatment.
Collapse
Affiliation(s)
- Joshua Russell-Buckland
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - P Kaynezhad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - S Mitra
- Institute for Women's Health, University College London, London, UK
| | - G Bale
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - C Bauer
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - I Lingam
- Institute for Women's Health, University College London, London, UK
| | - C Meehan
- Institute for Women's Health, University College London, London, UK
| | | | - K Martinello
- Institute for Women's Health, University College London, London, UK
| | - A Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospital, London, UK
| | - N J Robertson
- Institute for Women's Health, University College London, London, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
15
|
Rajaram A, Milej D, Suwalski M, Yip LCM, Guo LR, Chu MWA, Chui J, Diop M, Murkin JM, St. Lawrence K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. BIOMEDICAL OPTICS EXPRESS 2020; 11:5967-5981. [PMID: 33149999 PMCID: PMC7587277 DOI: 10.1364/boe.404101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Linrui R. Guo
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Michael W. A. Chu
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
16
|
Bale G, Mitra S, Tachtsidis I. Metabolic brain measurements in the newborn: Advances in optical technologies. Physiol Rep 2020; 8:e14548. [PMID: 32889790 PMCID: PMC7507543 DOI: 10.14814/phy2.14548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/12/2023] Open
Abstract
Neonatal monitoring in neonatal intensive care is pushing the technological boundaries of newborn brain monitoring in order to improve patient outcome. There is an urgent need of a cot side, real time monitoring for assessment of brain injury severity and neurodevelopmental outcome, in particular for term newborn infants with hypoxic-ischemic brain injury. This topical review discusses why brain tissue metabolic monitoring is important in this group of infants and introduces the currently used neuromonitoring techniques for metabolic monitoring in the neonatal intensive care unit (NICU). New optical techniques that can monitor changes in brain metabolism together with brain hemodynamics at the cot side are presented. Early studies from these emerging technologies have demonstrated their potential to deliver continuous information regarding cerebral physiological changes in sick newborn infants in real time. The promises of these new tools as well as their potential limitations are discussed.
Collapse
Affiliation(s)
- Gemma Bale
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Subhabrata Mitra
- Neonatology, EGA Institute for Women's HealthUniversity College LondonLondonUK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| |
Collapse
|
17
|
Attention and Capacity Limits in Perception: A Cellular Metabolism Account. J Neurosci 2020; 40:6801-6811. [PMID: 32747442 PMCID: PMC7455219 DOI: 10.1523/jneurosci.2368-19.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 01/19/2023] Open
Abstract
Limits on perceptual capacity result in various phenomena of inattentional blindness. Here we propose a neurophysiological account attributing these perceptual capacity limits directly to limits on cerebral cellular metabolism. We hypothesized that overall cerebral energy supply remains constant, regardless of overall mental processing demands; therefore, an attention mechanism is required to regulate limited cellular metabolism levels in line with attended task demands. Increased perceptual load in a task (imposing a greater demand on neural computations) should thus result in increased metabolism underlying attended processing, and reduced metabolism mediating unattended processing. We tested this prediction measuring oxidation states of cytochrome c oxidase (oxCCO), an intracellular marker of cellular metabolism. Broadband near-infrared spectroscopy was used to record oxCCO levels from human visual cortex while participants (both sexes) performed a rapid sequential visual search task under either high perceptual load (complex feature-conjunction search) or low load (feature pop-out search). A task-irrelevant, peripheral checkerboard was presented on a random half of trials. Our findings showed that oxCCO levels in visual cortex regions responsive to the attended-task stimuli were increased in high versus low perceptual load, whereas oxCCO levels related to unattended processing were significantly reduced. A negative temporal correlation of these load effects further supported our metabolism trade-off account. These results demonstrate an attentional compensation mechanism that regulates cellular metabolism levels according to processing demands. Moreover, they provide novel evidence for the widely held stipulation that overall cerebral metabolism levels remain constant regardless of mental task demand and establish a neurophysiological account for capacity limits in perception. SIGNIFICANCE STATEMENT We investigated whether capacity limits in perception can be explained by the effects of attention on the allocation of limited cellular metabolic energy for perceptual processing. We measured the oxidation state of cytochrome c oxidase, an intracellular measure of metabolism, in human visual cortex during task performance. The results showed increased levels of cellular metabolism associated with attended processing and reduced levels of metabolism underlying unattended processing when the task was more demanding. A temporal correlation between these effects supported an attention-directed metabolism trade-off. These findings support an account for inattentional blindness grounded in cellular biochemistry. They also provide novel evidence for the claim that cerebral processing is limited by a constant energy supply, which thus requires attentional regulation.
Collapse
|