1
|
Yuan H, Na W, Li B, Miao S, Tang W, Kang L, Pi C, Yang C, Xie W, Wang T, Zhai D, Zhao D, Liu R, Yu S. Optogenetic cortical spreading depression originating from the primary visual cortex induces migraine-like pain and anxiety behaviors in freely moving C57BL/6 J mice. J Headache Pain 2025; 26:44. [PMID: 40011818 PMCID: PMC11866570 DOI: 10.1186/s10194-025-01983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Migraine is the second disabling neurological disorder with a high prevalence. Aura occurs in one-third of migraineurs and visual aura accounts for over 90%. Cortical spreading depression (CSD) underlies aura and might trigger migraine headaches. Compared with CSD induction by invasive electrical, chemical, or mechanical stimulation, optogenetics avoids direct influences on meninges in the stimulation process. However, previous optogenetic CSD models mainly use Thy1-ChR2-YFP or CaMKIIα-cre transgenic mice. They are limited when the pathogenesis study requires transgenic mice to express other specific promotor, such as the dopamine or serotonin transporter promotor. In addition, reported behavioral paradigms were based on CSD induction under anesthesia. This study aimed to establish an optogenetic CSD-induced migraine model originating in the primary visual cortex (VISp) in C57BL/6 J mice and presented the behavioral paradigm when CSD induction was under awake condition. METHODS We performed viral transduction for the expression of light-sensitive channelrhodopsin-2 in pyramidal neurons of VISp in C57BL/6 J mice. Regional cerebral blood flow (rCBF) was measured by laser speckle flowmetry to confirm CSD induction. The von Frey, light-dark box, elevated plus maze, and open field test were conducted to verify migraine-related behaviors in freely moving mice. RESULTS An optogenetic stimulus induced typical spreading triphasic rCBF change with a reduction of over 20%, confirming CSD induction. A single unilateral CSD in freely moving C57BL/6 J mice triggered bilateral periorbital and hind-paw allodynia lasting for 4-24 h. Notably, the ipsilateral periorbital mechanical threshold was significantly lower than the contralateral at 1 h. It also generated photophobia and anxiety behaviors persisting for 24-48 h. Furthermore, cutaneous allodynia and anxiety behaviors were alleviated by sumatriptan. CONCLUSIONS This study proposes an optogenetic CSD-induced migraine model originating from VISp in awake and freely moving C57BL/6 J mice and presents the behavioral paradigm in detail. The CSD model in wild-type mice is promising to be wildly used to study the pathogenesis of MwA.
Collapse
Affiliation(s)
- Huijuan Yuan
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Weinan Na
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Li Kang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenghui Pi
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chunxiao Yang
- Department of Neurology, the Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Tao Wang
- Department of Critical Care Medicine, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Ruozhuo Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
2
|
Yuan Y, Liu T, Wang J. Enhancing anesthetic techniques for improving whisker stimulation response in the barrel cortex. PLoS One 2025; 20:e0318306. [PMID: 39999042 PMCID: PMC12051488 DOI: 10.1371/journal.pone.0318306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
This study adopts and validates an anesthetic protocol designed for rat whisker stimulation experiments, achieving significant enhancements in the neural response of the barrel field cortex. By combining alpha-chloralose, low-dose Isoflurane (0.5%) and Dexdomitor, the protocol not only maintains a stable anesthetic state but also markedly improves the amplitude and latency of local field potential (LFP) signals. Experimental results reveal that LFP amplitudes in the barrel field under this protocol are twice as high as those achieved with Isoflurane and four times as high as those with Ketamine-Xylazine, with significantly shortened latencies and reduced noise interference. For the first time, power spectral analysis reveals a distinct enhancement of oscillatory power in the alpha (8-13 Hz) and beta (13-30 Hz) bands under alpha-chloralose anesthesia, diverging from the traditional dominance of delta (0.5-4 Hz) oscillations observed with other anesthetics. Mechanistically, this phenomenon may be attributed to alpha-chloralose's unique modulation of GABAergic and glutamatergic pathways, promoting cortical desynchronization and enhanced sensory processing. This protocol offers new insights into optimizing sensory-evoked neural signal acquisition and provides a reference for future studies exploring neural modulation in sensory neuroscience.
Collapse
Affiliation(s)
- Ye Yuan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Tian Liu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jue Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
Gao S, Li M, Smith JT, Intes X. Design and characterization of a time-domain optical tomography platform for mesoscopic lifetime imaging. BIOMEDICAL OPTICS EXPRESS 2022; 13:4637-4651. [PMID: 36187247 PMCID: PMC9484415 DOI: 10.1364/boe.460216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
We report on the system design and instrumental characteristics of a novel time-domain mesoscopic fluorescence molecular tomography (TD-MFMT) system for multiplexed molecular imaging in turbid media. The system is equipped with a supercontinuum pulsed laser for broad spectral excitation, based on a high-density descanned raster scanning intensity-based acquisition for 2D and 3D imaging and augmented with a high-dynamical range linear time-resolved single-photon avalanche diode (SPAD) array for lifetime quantification. We report on the system's spatio-temporal and spectral characteristics and its sensitivity and specificity in controlled experimental settings. Also, a phantom study is undertaken to test the performance of the system to image deeply-seated fluorescence inclusions in tissue-like media. In addition, ex vivo tumor xenograft imaging is performed to validate the system's applicability to the biological sample. The characterization results manifest the capability to sense small fluorescence concentrations (on the order of nanomolar) while quantifying fluorescence lifetimes and lifetime-based parameters at high resolution. The phantom results demonstrate the system's potential to perform 3D multiplexed imaging thanks to spectral and lifetime contrast in the mesoscopic range (at millimeters depth). The ex vivo imaging exhibits the prospect of TD-MFMT to resolve intra-tumoral heterogeneity in a depth-dependent manner.
Collapse
Affiliation(s)
- Shan Gao
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mengzhou Li
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
4
|
Rhee JK, Iwamoto Y, Baker BJ. Visualizing Oscillations in Brain Slices With Genetically Encoded Voltage Indicators. Front Neuroanat 2021; 15:741711. [PMID: 34795565 PMCID: PMC8592998 DOI: 10.3389/fnana.2021.741711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) expressed pan-neuronally were able to optically resolve bicuculline induced spontaneous oscillations in brain slices of the mouse motor cortex. Three GEVIs were used that differ in their timing of response to voltage transients as well as in their voltage ranges. The duration, number of cycles, and frequency of the recorded oscillations reflected the characteristics of each GEVI used. Multiple oscillations imaged in the same slice never originated at the same location, indicating the lack of a “hot spot” for induction of the voltage changes. Comparison of pan-neuronal, Ca2+/calmodulin-dependent protein kinase II α restricted, and parvalbumin restricted GEVI expression revealed distinct profiles for the excitatory and inhibitory cells in the spontaneous oscillations of the motor cortex. Resolving voltage fluctuations across space, time, and cell types with GEVIs represent a powerful approach to dissecting neuronal circuit activity.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | | | - Bradley J Baker
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea.,Brain Science Creative Research Center, Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|