1
|
Evripidou N, Antoniou A, Lazarou G, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Workflow of a Preclinical Robotic Magnetic Resonance Imaging-guided Focused Ultrasound Body System. J Med Ultrasound 2025; 33:1-14. [PMID: 40206982 PMCID: PMC11978271 DOI: 10.4103/jmu.jmu_135_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Establishing an efficient workflow is crucial for the success of magnetic resonance-guided focused ultrasound (MRgFUS) procedures. The current study provides a comprehensive description of the workflow of a customized MRgFUS robotic body device for preclinical use and accompanied software through experiments in excised porcine tissue. METHODS The employed system comprises a single-element spherically focused transducer of 2.6 MHz that can be moved along four PC-controlled axes. A detailed description of essential software functionalities and its integration with a 3T Siemens magnetic resonance imaging (MRI) scanner through Access-I for interactive remote control of the scanner and real-time access to imaging data is provided. Following treatment planning on preoperative MR images, porcine tissue samples were sonicated in rectangular and irregular grid patterns with varying ultrasonic parameters and spatial step under software-based monitoring. RESULTS MRgFUS ablations of ex vivo porcine tissue were successfully performed utilizing a multimodal monitoring approach combining MRI-based temperature, thermal dose, and necrotic area mapping, thus demonstrating an efficient procedural workflow. The simulated necrotic regions were in excellent agreement with the actual lesions revealed upon tissue dissection and highly consistent with the planned sonication patterns. The software's ability to accurately identify regions where necrosis did not occur and indicate to the user the specific points to be re-sonicated was demonstrated. CONCLUSION Overall, the study highlights critical aspects in accurately planning and executing preclinical MRgFUS protocols within an efficient workflow. The provided data could serve as the basis for other researchers in the field.
Collapse
Affiliation(s)
- Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - George Lazarou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Center, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
2
|
Kim S, Jo Y, Im GH, Lee C, Oh C, Kook G, Kim SG, Lee HJ. Miniaturized MR-compatible ultrasound system for real-time monitoring of acoustic effects in mice using high-resolution MRI. Neuroimage 2023; 276:120201. [PMID: 37269955 DOI: 10.1016/j.neuroimage.2023.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Visualization of focused ultrasound in high spatial and temporal resolution is crucial for accurately and precisely targeting brain regions noninvasively. Magnetic resonance imaging (MRI) is the most widely used noninvasive tool for whole-brain imaging. However, focused ultrasound studies employing high-resolution (> 9.4 T) MRI in small animals are limited by the small size of the radiofrequency (RF) volume coil and the noise sensitivity of the image to external systems such as bulky ultrasound transducers. This technical note reports a miniaturized ultrasound transducer system packaged directly above a mouse brain for monitoring ultrasound-induced effects using high-resolution 9.4 T MRI. Our miniaturized system integrates MR-compatible materials with electromagnetic (EM) noise reduction techniques to demonstrate echo-planar imaging (EPI) signal changes in the mouse brain at various ultrasound acoustic intensities. The proposed ultrasound-MRI system will enable extensive research in the expanding field of ultrasound therapeutics.
Collapse
Affiliation(s)
- Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Nano Century (KINC), Daejeon 34141, South Korea.
| |
Collapse
|
3
|
Giannakou M, Antoniou A, Damianou C. Preclinical robotic device for magnetic resonance imaging guided focussed ultrasound. Int J Med Robot 2023; 19:e2466. [PMID: 36169287 PMCID: PMC10078206 DOI: 10.1002/rcs.2466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND A robotic device featuring three motion axes was manufactured for preclinical research on focussed ultrasound (FUS). The device comprises a 2.75 MHz single element ultrasonic transducer and is guided by Magnetic Resonance Imaging (MRI). METHODS The compatibility of the device with the MRI was evaluated by estimating the influence on the signal-to-noise ratio (SNR). The efficacy of the transducer in generating ablative temperatures was evaluated in phantoms and excised porcine tissue. RESULTS System's activation in the MRI scanner reduced the SNR to an acceptable level without compromising the image quality. The transducer demonstrated efficient heating ability as proved by MR thermometry. Discrete and overlapping thermal lesions were inflicted in excised tissue. CONCLUSIONS The FUS system was proven effective for FUS thermal applications in the MRI setting. It can thus be used for multiple preclinical applications of the emerging MRI-guided FUS technology. The device can be scaled-up for human use with minor modifications.
Collapse
Affiliation(s)
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and InformaticsCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
4
|
Gong Y, Ye D, Chien CY, Yue Y, Chen H. Comparison of Sonication Patterns and Microbubble Administration Strategies for Focused Ultrasound-Mediated Large-Volume Drug Delivery. IEEE Trans Biomed Eng 2022; 69:3449-3459. [PMID: 35476579 PMCID: PMC9635979 DOI: 10.1109/tbme.2022.3170832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Diffuse intrinsic pontine glioma (DIPG) is the most common and deadliest brainstem tumor in children. Focused ultrasound combined with microbubble-mediated BBB opening (FUS-BBBO) is a promising technique for overcoming the frequently intact blood-brain barrier (BBB) in DIPG to enhance therapeutic drug delivery to the brainstem. Since DIPG is highly diffusive, large-volume FUS-BBBO is needed to cover the entire tumor region. The objective of this study was to determine the optimal treatment strategy to achieve efficient and homogeneous large-volume BBBO at the brainstem for the delivery of an immune checkpoint inhibitor, anti-PD-L1 antibody (aPD-L1). METHODS Two critical parameters for large-volume FUS-BBBO, multi-point sonication pattern (interleaved vs. serial) and microbubble injection method (bolus vs. infusion), were evaluated by treating mice with four combinations of these two parameters. 2D Passive cavitation imaging (PCI) was performed for monitoring the large-volume sonication. RESULTS Interleaved sonication combined with bolus injection of microbubbles resulted in 1.29 to 2.06 folds higher efficiency than other strategies as evaluated by Evans blue extravasation. The average coefficient of variation of the Evans blue delivery was 0.66 for interleaved sonication with bolus injection, compared to 0.68-0.88 for all other strategies. Similar trend was also observed in the quantified total cavitation dose and coefficient of variance of the cavitation dose. This strategy was then applied to deliver fluorescently labeled aPD-L1 which was quantified using fluorescence imaging. A strong segmented linear correlation (R2 = 0.81) was found between the total cavitation dose and the total fluorescence intensity of aPD-L1 delivered at different sonication pressures (0.15 MPa, 0.30 MPa, and 0.45 MPa). SIGNIFICANCE Findings from this study suggest that efficient and homogeneous large-volume FUS-BBBO can be achieved by interleaved sonication combined with bolus injection of microbubbles, and the efficiency and homogeneity can be monitored by PCI.
Collapse
|
5
|
Hu Z, Chen S, Yang Y, Gong Y, Chen H. An Affordable and Easy-to-Use Focused Ultrasound Device for Noninvasive and High Precision Drug Delivery to the Mouse Brain. IEEE Trans Biomed Eng 2022; 69:2723-2732. [PMID: 35157574 PMCID: PMC9443669 DOI: 10.1109/tbme.2022.3150781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Focused ultrasound (FUS) combined with microbubble-mediated blood-brain barrier (BBB) opening (FUS-BBBO) is not only a promising technique for clinical applications but also a powerful tool for preclinical research. However, existing FUS devices for preclinical research are expensive, bulky, and lack the precision needed for small animal research, which limits the broad adoption of this promising technique by the research community. Our objective was to design and fabricate an affordable, easy-to-use, high-precision FUS device for small animal research. METHODS We designed and fabricated in-house mini-FUS transducers (∼$80 each in material cost) with three frequencies (1.5, 3.0, and 6.0 MHz) and integrated them with a stereotactic frame for precise mouse brain targeting using established stereotactic procedures. The BBB opening volume by FUS at different acoustic pressures (0.20-0.57 MPa) was quantified using T1-weighted contrast-enhanced magnetic resonance imaging of gadolinium leakage and fluorescence imaging of Evans blue extravasation. RESULTS The targeting accuracy of the device as measured by the offset between the desired target location and the centroid of BBBO was 0.63 ± 0.19 mm. The spatial precision of the device in targeting individual brain structures was improved by the use of higher frequency FUS transducers. The BBB opening volume had high linear correlations with the cavitation index (defined by the ratio between acoustic pressure and frequency) and mechanical index (defined by the ratio between acoustic pressure and the square root of frequency). The correlation coefficient of the cavitation index was slightly higher than that of the mechanical index. CONCLUSION This study demonstrated that spatially accurate and precise BBB opening was achievable using an affordable and easy-to-use FUS device. The BBB opening volume was tunable by modulating the cavitation index. This device is expected to decrease the barriers to the adoption of the FUS-BBBO technique by the broad research community.
Collapse
|
6
|
Seo H, Huh H, Lee EH, Park J. Numerical Evaluation of the Effects of Transducer Displacement on Transcranial Focused Ultrasound in the Rat Brain. Brain Sci 2022; 12:216. [PMID: 35203979 PMCID: PMC8870101 DOI: 10.3390/brainsci12020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Focused ultrasound is a promising therapeutic technique, as it involves the focusing of an ultrasonic beam with sufficient acoustic energy into a target brain region with high precision. Low-intensity ultrasound transmission by a single-element transducer is mostly established for neuromodulation applications and blood-brain barrier disruption for drug delivery. However, transducer positioning errors can occur without fine control over the sonication, which can affect repeatability and lead to reliability problems. The objective of this study was to determine whether the target brain region would be stable under small displacement (0.5 mm) of the transducer based on numerical simulations. Computed-tomography-derived three-dimensional models of a rat head were constructed to investigate the effects of transducer displacement in the caudate putamen (CP) and thalamus (TH). Using three different frequencies (1.1, 0.69, and 0.25 MHz), the transducer was displaced by 0.5 mm in each of the following six directions: superior, interior, anterior, posterior, left, and right. The maximum value of the intracranial pressure field was calculated, and the targeting errors were determined by the full-width-at-half-maximum (FWHM) overlap between the free water space (FWHMwater) and transcranial transmission (FWHMbase). When the transducer was positioned directly above the target region, a clear distinction between the target regions was observed, resulting in 88.3%, 81.5%, and 84.5% FWHMwater for the CP and 65.6%, 76.3%, and 64.4% FWHMwater for the TH at 1.1, 0.69, and 0.25 MHz, respectively. Small transducer displacements induced both enhancement and reduction of the peak pressure and targeting errors, compared with when the transducer was displaced in water. Small transducer displacement to the left resulted in the lowest stability, with 34.8% and 55.0% targeting accuracy (FWHMwater) at 1.1 and 0.69 MHz in the TH, respectively. In addition, the maximum pressure was reduced by up to 11% by the transducer displacement. This work provides the targeting errors induced by transducer displacements through a preclinical study and recommends that attention be paid to determining the initial sonication foci in the transverse plane in the cases of small animals.
Collapse
Affiliation(s)
- Hyeon Seo
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
| | - Hyungkyu Huh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea; (H.S.); (H.H.); (E.-H.L.)
- Department of High-Tech Medical Device, College of Future Industry, Gachon University, Seongnam-si 13120, Korea
| |
Collapse
|
7
|
Antoniou A, Giannakou M, Evripidou N, Evripidou G, Spanoudes K, Menikou G, Damianou C. Robotic system for magnetic resonance guided focused ultrasound ablation of abdominal cancer. Int J Med Robot 2021; 17:e2299. [PMID: 34105234 DOI: 10.1002/rcs.2299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A prototype robotic system that uses magnetic resonance guided focused ultrasound (MRgFUS) technology is presented. It features three degrees of freedom (DOF) and is intended for thermal ablation of abdominal cancer. METHODS The device is equipped with three identical transducers being offset between them, thus focussing at different depths in tissue. The efficacy and safety of the system in ablating rabbit liver and kidney was assessed, both in laboratory and magnetic resonance imaging (MRI) conditions. RESULTS Despite these organs' challenging location, in situ coagulative necrosis of a tissue area was achieved. Heating of abdominal organs in rabbit was successfully monitored with MR thermometry. CONCLUSIONS The MRgFUS system was proven successful in creating lesions in the abdominal area of rabbits. The outcomes of the study are promising for future translation of the technology to the clinic.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Georgios Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Kyriakos Spanoudes
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Georgios Menikou
- Medical Physics Sector, State Health Services Organization, Nicosia General Hospital, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
8
|
Jimenez-Gambin S, Jimenez N, Pouliopoulos A, Benlloch JM, Konofagou E, Camarena F. Acoustic holograms for bilateral blood-brain barrier opening in a mouse model. IEEE Trans Biomed Eng 2021; 69:1359-1368. [PMID: 34570701 DOI: 10.1109/tbme.2021.3115553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transcranial focused ultrasound (FUS) in conjunction with circulating microbubbles injection is the sole non-invasive technique that temporally and locally opens the blood-brain barrier (BBB), allowing targeted drug delivery into the central nervous system (CNS). However, single-element FUS technologies do not allow the simultaneous targeting of several brain structures with high-resolution, and multi-element devices are required to compensate the aberrations introduced by the skull. In this work, we present the first preclinical application of acoustic holograms to perform a bilateral BBB opening in two mirrored regions in mice. The system consisted of a single-element focused transducer working at 1.68~MHz, coupled to a 3D-printed acoustic hologram designed to produce two symmetric foci in anesthetized mice \textit{in vivo} and, simultaneously, compensate the aberrations of the wavefront caused by the skull bones. T1-weighed MR images showed gadolinium extravasation at two symmetric quasi-spherical focal spots. By encoding time-reversed fields, holograms are capable of focusing acoustic energy with a resolution near the diffraction limit at multiple spots inside the skull of small preclinical animals. This work demonstrates the feasibility of hologram-assisted BBB opening for low-cost and highly-localized targeted drug delivery in the CNS in symmetric regions of separate hemispheres.
Collapse
|
9
|
Tretbar SH, Fournelle M, Speicher D, Becker FJ, Anastasiadis P, Landgraf L, Roy U, Melzer A. A novel matrix-array-based MR-conditional ultrasound system for local hyperthermia of small animals. IEEE Trans Biomed Eng 2021; 69:758-770. [PMID: 34398748 DOI: 10.1109/tbme.2021.3104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS For 3D-beam steering capabilities, a matrix array approach with 11 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS Four 11 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to 30. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.
Collapse
|
10
|
Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021; 11:15553. [PMID: 34330960 PMCID: PMC8324788 DOI: 10.1038/s41598-021-94323-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigates the use of hydralazine to enhance ultrasound hyperthermia for the treatment of hepatocellular carcinoma (HCC) by minimizing flow-mediated heat loss from the tumor. Murine HCC tumors were treated with a continuous mode ultrasound with or without an intravenous administration of hydralazine (5 mg/kg). Tumor blood flow and blood vessels were evaluated by contrast-enhanced ultrasound (CEUS) imaging and histology, respectively. Hydralazine markedly enhanced ultrasound hyperthermia through the disruption of tumor blood flow in HCC. Ultrasound treatment with hydralazine significantly reduced peak enhancement (PE), perfusion index (PI), and area under the curve (AUC) of the CEUS time-intensity curves by 91.9 ± 0.9%, 95.7 ± 0.7%, and 96.6 ± 0.5%, compared to 71.4 ± 1.9%, 84.7 ± 1.1%, and 85.6 ± 0.7% respectively without hydralazine. Tumor temperature measurements showed that the cumulative thermal dose delivered by ultrasound treatment with hydralazine (170.8 ± 11.8 min) was significantly higher than that without hydralazine (137.7 ± 10.7 min). Histological assessment of the ultrasound-treated tumors showed that hydralazine injection formed larger hemorrhagic pools and increased tumor vessel dilation consistent with CEUS observations illustrating the augmentation of hyperthermic effects by hydralazine. In conclusion, we demonstrated that ultrasound hyperthermia can be enhanced significantly by hydralazine in murine HCC tumors by modulating tumor blood flow. Future studies demonstrating the safety of the combined use of ultrasound and hydralazine would enable the clinical translation of the proposed technique.
Collapse
|
11
|
Drakos T, Giannakou M, Menikou G, Damianou C. Magnetic Resonance Imaging-Guided Focused Ultrasound Positioning System for Preclinical Studies in Small Animals. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1343-1352. [PMID: 33031567 PMCID: PMC8246715 DOI: 10.1002/jum.15514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 06/01/2023]
Abstract
OBJECTIVES A positioning device compatible with magnetic resonance imaging (MRI) used for preclinical studies in small animals was developed that fits in MRI scanners up to 7 T. The positioning device was designed with two computer-controlled linear stages. METHODS The positioning device was evaluated in an agar-based phantom, which mimics soft tissues, and in a rabbit. Experiments with this positioning device were performed in an MRI system using the agar-based phantom. The transducer used had a diameter of 50 mm, operated at 0.5 MHz, and focused energy at 60 mm. RESULTS Magnetic resonance thermometry was used to assess the functionality of the device, which showed adequate deposition of thermal energy and sufficient positional accuracy in all axes. CONCLUSIONS The proposed system fits in MRI scanners up to 7 T. Because of the size of the positioning device, at the moment, it can be used to perform preclinical studies on small animals such as mice, rats, and rabbits.
Collapse
Affiliation(s)
| | | | - Georgios Menikou
- Department of Electrical EngineeringCyprus University of TechnologyLimassolCyprus
| | - Christakis Damianou
- Department of Electrical EngineeringCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
12
|
Omura M, Takeuchi M, Nagaoka R, Hasegawa H. A study on understanding the physical mechanism of change in ultrasonic envelope statistical property during temperature elevation. Med Phys 2021; 48:3042-3054. [PMID: 33880793 DOI: 10.1002/mp.14890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Our previous studies demonstrate that the variation in ultrasonic envelope statistics is correlated with the temperature change inside scattering media. This variation is identified as the change in the scatterer structure during thermal expansion or contraction. However, no specific evidence has been verified to date. This study numerically reproduces the change in the scatterer distribution during thermal expansion or contraction using finite element simulations and also investigates how the situation is altered by different material properties. METHODS The material properties of a linear elastic solid depend on the thermal expansion coefficient, thermal conductivity, specific heat, and initial scatterer number density. Three-dimensional displacements, calculated in the simulation, were sequentially used to update the positions of the randomly distributed scatterers. Ultrasound signals from the scatterer distribution were generated by simulating a 7.5-MHz linear array transducer whose specifications were the same as those in the experimental measurements of several phantoms and excised porcine livers. To represent the change in the envelope statistical feature, the absolute value of the ratio change in the logarithmic Nakagami (NA) parameter, Δ m , at each time was calculated as a value normalized with the initial NA parameter. RESULTS The change in the scatterer number density relates to the volume change during temperature elevation. The magnitude of the Δ m shift against the temperature change increases depending on the higher thermal expansion coefficient. In contrast, the relationship between Δ m and the scatterer number density is similar with any material property. Additionally, the changes in Δ m obtained by several experimental phantoms with low to high scatterer number densities are comparable with the numerical simulation results. CONCLUSIONS The change in Δ m is indirectly related to the change in the scatterer number density owing to the volume change during thermal expansion or contraction.
Collapse
Affiliation(s)
- Masaaki Omura
- Faculty of Engineering, Academic Assembly, University of Toyama, Gofuku 3190, Toyama, 9308555, Japan
| | | | - Ryo Nagaoka
- Faculty of Engineering, Academic Assembly, University of Toyama, Gofuku 3190, Toyama, 9308555, Japan
| | - Hideyuki Hasegawa
- Faculty of Engineering, Academic Assembly, University of Toyama, Gofuku 3190, Toyama, 9308555, Japan
| |
Collapse
|
13
|
McMahon D, Deng L, Hynynen K. Comparing rapid short-pulse to tone burst sonication sequences for focused ultrasound and microbubble-mediated blood-brain barrier permeability enhancement. J Control Release 2021; 329:696-705. [PMID: 33022327 DOI: 10.1016/j.jconrel.2020.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound and microbubble (FUS + MB) exposure enables targeted, noninvasive drug delivery to the brain. Given the protective nature of the blood-brain barrier (BBB), the development of sonication strategies that maximize therapeutic efficacy while minimizing the risk of tissue damage are essential. This work aimed to compare the safety of 10 ms tone bursts, widely used in the field, to a recently described rapid short-pulse (RaSP) sequence, while accounting for drug delivery potential. MATERIALS AND METHODS Forty-one male wild-type mice received FUS + MB exposure (1.78 MHz driving frequency; 0.5 Hz burst repetition frequency; 250 s duration; 40 μl/kg Definity) at a range of fixed pressure amplitudes. A RaSP sequence (13 five-cycle pulses/10 ms burst) was compared to 10 ms tone bursts (B10). For animals in cohort #1 (n = 26), T1 mapping was used to quantify gadobutrol extravasation. Three targets, temporarily separated by 10 min, were sonicated in each brain to compare the time dependence of BBB permeability enhancement between sequences. Red blood cell (RBC) extravasation was quantified to assess vascular damage. For animals in cohort #2 (n = 18), a single target was sonicated per brain. BBB permeability enhancement was compared between sequences by T1 mapping and the extravasation of a 3 kDa fluorescent dextran. RESULTS At a peak negative pressure of 400 kPa, the B10 sequence produced an order of magnitude greater gadobutrol and dextran extravasation compared to RaSP (p < 0.01). When accounting for BBB permeability enhancement magnitude, as measure by T1 mapping, no differences were observed between sequences in the pattern of dextran or albumin extravasation in tissue sections; however, the frequency of RBC extravasation was found to be 5 times greater with the RaSP sequence (p = 0.02). At pressure amplitudes resulting in similar levels of gadobutrol extravasation, no significant differences were observed in the time dependence of BBB permeability enhancement between sequences. CONCLUSION When accounting for the magnitude of BBB permeability enhancement, and thus the potential for drug delivery, the RaSP sequence tested here did not produce measurable improvements over the B10 sequence and may present an increased risk of vascular damage.
Collapse
Affiliation(s)
- Dallan McMahon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Lulu Deng
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
14
|
Choi SW, Gerhardson TI, Duclos SE, Surowiec RK, Scheven UM, Galban S, Lee FT, Greve JM, Balter JM, Hall TL, Xu Z. Stereotactic Transcranial Focused Ultrasound Targeting System for Murine Brain Models. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:154-163. [PMID: 32746229 PMCID: PMC7814337 DOI: 10.1109/tuffc.2020.3012303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An inexpensive, accurate focused ultrasound stereotactic targeting method guided by pretreatment magnetic resonance imaging (MRI) images for murine brain models is presented. An uncertainty of each sub-component of the stereotactic system was analyzed. The entire system was calibrated using clot phantoms. The targeting accuracy of the system was demonstrated with an in vivo mouse glioblastoma (GBM) model. The accuracy was quantified by the absolute distance difference between the prescribed and ablated points visible on the pre treatment and posttreatment MR images, respectively. A precalibration phantom study ( N = 6 ) resulted in an error of 0.32 ± 0.31, 0.72 ± 0.16, and 1.06 ± 0.38 mm in axial, lateral, and elevational axes, respectively. A postcalibration phantom study ( N = 8 ) demonstrated a residual error of 0.09 ± 0.01, 0.15 ± 0.09, and 0.47 ± 0.18 mm in axial, lateral, and elevational axes, respectively. The calibrated system showed significantly reduced ( ) error of 0.20 ± 0.21, 0.34 ± 0.24, and 0.28 ± 0.21 mm in axial, lateral, and elevational axes, respectively, in the in vivo GBM tumor-bearing mice ( N = 10 ).
Collapse
|
15
|
Damianou C, Giannakou M, Evripidou N, Kegel S, Huber P, Jenne J. Focused ultrasound robotic system for very small bore magnetic resonance imaging. Int J Med Robot 2020; 16:1-9. [PMID: 32927501 PMCID: PMC7816236 DOI: 10.1002/rcs.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND A magnetic resonance imaging (MRI) compatible robotic system for focused ultrasound was developed for small animal like mice or rats that fits into a 9.4 T MRI scanner (Bruker Biospec 9420, Bruker Biospin, Ettlingen, Germany). The robotic system includes two computer-controlled linear stages. MATERIALS AND METHODS The robotic system was evaluated in a mouse-shaped, real-size agar-based mimicking material, which has similar acoustical properties as soft tissues. The agar content was 6% weight per volume (w/v), 4% w/v silica while the rest was degassed water. The transducer used has a diameter of 4 cm, operates with 2.6 MHz and focuses energy at 5 cm. RESULTS The MRI compatibility of the robotic system was evaluated in a 9.4 T small animal scanner. The efficacy of the ultrasonic transducer was evaluated in the mimicking material using temperature measurements. CONCLUSIONS The proposed robotic system can be utilized in a 9.4 T small animal MRI scanner. The proposed system is functional, compact and simple thus providing a useful tool for preclinical research in mice and rats.
Collapse
Affiliation(s)
- Christakis Damianou
- Electrical Engineering and Computer Engineering and Informatics DepartmentCyprus University of TechnologyLimassolCyprus
| | - Marinos Giannakou
- Electrical Engineering and Computer Engineering and Informatics DepartmentCyprus University of TechnologyLimassolCyprus
- MEDSONIC LTDLimassolCyprus
| | - Nikolas Evripidou
- Electrical Engineering and Computer Engineering and Informatics DepartmentCyprus University of TechnologyLimassolCyprus
| | - Stefan Kegel
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Huber
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | | |
Collapse
|
16
|
Lapin NA, Gill K, Shah BR, Chopra R. Consistent opening of the blood brain barrier using focused ultrasound with constant intravenous infusion of microbubble agent. Sci Rep 2020; 10:16546. [PMID: 33024157 PMCID: PMC7538995 DOI: 10.1038/s41598-020-73312-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
The blood brain barrier (BBB) is a major obstacle to the delivery of therapeutics to the brain. Focused ultrasound (FUS) in combination with microbubbles can non-invasively open the BBB in a targeted manner. Bolus intravenous injections of microbubbles are standard practice, but dynamic influx and clearance mechanisms prevent delivery of a uniform dose with time. When multiple targets are selected for sonication in a single treatment, uniform serum concentrations of microbubbles are important for consistent BBB opening. Herein, we show that bubble infusions were able to achieve consistent BBB opening at multiple target sites. FUS exposures were conducted with different Definity microbubble concentrations at various acoustic pressures. To quantify the effects of infusion on BBB opening, we calculated the MRI contrast enhancement rate. When infusions were performed at rates of 7.2 µl microbubbles/kg/min or below, we were able to obtain consistent BBB opening without injury at all pressures. However, when infusion rates exceeded 20 µl/kg/min, signs of injury occurred at pressures from 0.39 to 0.56 MPa. When compared to bolus injections, a bubble infusion offers a more controlled and consistent approach to multi-target BBB disruption.
Collapse
Affiliation(s)
- Norman A Lapin
- Focused Ultrasound Laboratory, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kirt Gill
- Focused Ultrasound Laboratory, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Bhavya R Shah
- Focused Ultrasound Laboratory, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rajiv Chopra
- Focused Ultrasound Laboratory, Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA. .,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Touahri Y, Dixit R, Kofoed RH, Mikloska K, Park E, Raeisossadati R, Markham-Coultes K, David LA, Rijal H, Zhao J, Lynch M, Hynynen K, Aubert I, Schuurmans C. Focused ultrasound as a novel strategy for noninvasive gene delivery to retinal Müller glia. Theranostics 2020; 10:2982-2999. [PMID: 32194850 PMCID: PMC7053200 DOI: 10.7150/thno.42611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Müller glia are specialized retinal cells with stem cell properties in fish and frogs but not in mammals. Current efforts to develop gene therapies to activate mammalian Müller glia for retinal repair will require safe and effective delivery strategies for recombinant adeno-associated viruses (AAVs), vectors of choice for clinical translation. Intravitreal and subretinal injections are currently used for AAV gene delivery in the eye, but less invasive methods efficiently targeting Müller glia have yet to be developed. Methods: As gene delivery strategies have been more extensively studied in the brain, to validate our vectors, we initially compared the glial tropism of AAV-PHP.eB, an AAV9 that crosses the blood-brain and blood-retinal barriers, for its ability to drive fluorescent protein expression in glial cells in both the brain and retina. We then tested the glial transduction of AAV2/8-GFAP-mCherry, a virus that does not cross blood-brain and blood-retinal barriers, for its effectiveness in transducing Müller glia in murine retinal explants ex vivo. For in vivo assays we used larger rat eyes, performing invasive intravitreal injections, and non-invasive intravenous delivery using focused ultrasound (FUS) (pressure amplitude: 0.360 - 0.84 MPa) and microbubbles (Definity, 0.2 ml/kg). Results: We showed that AAV-PHP.eB carrying a ubiquitous promoter (CAG) and green fluorescent protein (GFP) reporter, readily crossed the blood-brain and blood-retinal barriers after intravenous delivery in mice. However, murine Müller glia did not express GFP, suggesting that they were not transduced by AAV-PHP.eB. We thus tested an AAV2/8 variant, which was selected based on its safety record in multiple clinical trials, adding a glial fibrillary acidic protein (GFAP) promoter and mCherry (red fluorescent protein) reporter. We confirmed the glial specificity of AAV2/8-GFAP-mCherry, showing effective expression of mCherry in astrocytes after intracranial injection in the mouse brain, and of Müller glia in murine retinal explants. For in vivo experiments we switched to rats because of their larger size, injecting AAV2/8-GFAP-mCherry intravitreally, an invasive procedure, demonstrating passage across the inner limiting membrane, leading to Müller glia transduction. We then tested an alternative non-invasive delivery approach targeting a different barrier - the inner blood-retinal-barrier, applying focused ultrasound (FUS) to the retina after intravenous injection of AAV2/8 and microbubbles in rats, using magnetic resonance imaging (MRI) for FUS targeting. FUS permeabilized the rat blood-retinal-barrier and allowed the passage of macromolecules to the retina (Evans blue, IgG, IgM), with minimal extravasation of platelets and red blood cells. Intravenous injection of microbubbles and AAV2/8-GFAP-mCherry followed by FUS resulted in mCherry expression in rat Müller glia. However, systemic delivery of AAV2/8 also had off-target effects, transducing several murine peripheral organs, particularly the liver. Conclusions: Retinal permeabilisation via FUS in the presence of microbubbles is effective for delivering AAV2/8 across the inner blood-retinal-barrier, targeting Müller glia, which is less invasive than intravitreal injections that bypass the inner limiting membrane. However, implementing FUS in the clinic will require a comprehensive consideration of any off-target tropism of the AAV in peripheral organs, combined ideally, with the development of Müller glia-specific promoters.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Rikke Hahn Kofoed
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kristina Mikloska
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - EunJee Park
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Reza Raeisossadati
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kelly Markham-Coultes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hibo Rijal
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jiayi Zhao
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Madelaine Lynch
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Aubert
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Damianou C, Giannakou M, Menikou G, Ioannou L. Magnetic resonance imaging-guided focused ultrasound robotic system with the subject placed in the prone position. ACTA ACUST UNITED AC 2020. [DOI: 10.4103/digm.digm_2_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Chen Y, Pais-Roldan P, Chen X, Frosz MH, Yu X. MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca 2+ recording. Nat Commun 2019; 10:2536. [PMID: 31182714 PMCID: PMC6557837 DOI: 10.1038/s41467-019-10450-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/11/2019] [Indexed: 12/16/2022] Open
Abstract
Optical fiber-mediated optogenetic activation and neuronal Ca2+ recording in combination with fMRI provide a multi-modal fMRI platform. Here, we developed an MRI-guided robotic arm (MgRA) as a flexible positioning system with high precision to real-time assist optical fiber brain intervention for multi-modal animal fMRI. Besides the ex vivo precision evaluation, we present the highly reliable brain activity patterns in the projected basal forebrain regions upon MgRA-driven optogenetic stimulation in the lateral hypothalamus. Also, we show the step-wise optical fiber targeting thalamic nuclei and map the region-specific functional connectivity with whole-brain fMRI accompanied by simultaneous calcium recordings to specify its circuit-specificity. The MgRA also guides the real-time microinjection to specific deep brain nuclei, which is demonstrated by an Mn-enhanced MRI method. The MgRA represents a clear advantage over the standard stereotaxic-based fiber implantation and opens a broad avenue to investigate the circuit-specific functional brain mapping with the multi-modal fMRI platform.
Collapse
Affiliation(s)
- Yi Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72076, Tuebingen, Germany
| | - Patricia Pais-Roldan
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, University of Tuebingen, 72076, Tuebingen, Germany
| | - Xuming Chen
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan University, 430060 Wuhan, China
| | - Michael H Frosz
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
| | - Xin Yu
- Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
20
|
Noroozian Z, Xhima K, Huang Y, Kaspar BK, Kügler S, Hynynen K, Aubert I. MRI-Guided Focused Ultrasound for Targeted Delivery of rAAV to the Brain. Methods Mol Biol 2019; 1950:177-197. [PMID: 30783974 DOI: 10.1007/978-1-4939-9139-6_10] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are a promising tool for therapeutic gene delivery to the brain. However, the delivery of rAAVs across the blood-brain barrier (BBB) and entry into the brain remains a major challenge for rAAV-based gene therapy. To circumvent this limitation, transcranial MRI-guided focused ultrasound (MRIgFUS) combined with intravenously injected microbubbles has been used to transiently and reversibly increase BBB permeability in targeted brain regions. Systemic administration of rAAVs at the time of sonication with focused ultrasound (FUS) facilitates the passage of rAAVs through the BBB and into the brain parenchyma. We and others have demonstrated that FUS-mediated rAAV delivery to the brain results in efficient transduction and transgene expression in vivo. Using this approach, the dose of intravenously injected rAAV variants that can cross the BBB can be reduced by 100 times, achieving significant transgene expression in the brain parenchyma with reduced peripheral transduction. Moreover, this strategy can be used to deliver rAAV variants that do not cross the BBB from the blood to selected brain regions. Here, we provide a detailed protocol for FUS-induced BBB permeability for targeted rAAV delivery to the brain of adult mice and rats.
Collapse
Affiliation(s)
- Zeinab Noroozian
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kristiana Xhima
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yuexi Huang
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Sebastian Kügler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Isabelle Aubert
- Brain Sciences, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Barbic M, Dodd SJ, Morris HD, Dilley N, Marcheschi B, Huston A, Harris TD, Koretsky AP. Magnetocaloric materials as switchable high contrast ratio MRI labels. Magn Reson Med 2018; 81:2238-2246. [PMID: 30474159 PMCID: PMC6372314 DOI: 10.1002/mrm.27615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop switchable and tunable labels with high contrast ratio for MRI using magnetocaloric materials that have sharp first-order magnetic phase transitions at physiological temperatures and typical MRI magnetic field strengths. METHODS A prototypical magnetocaloric material iron-rhodium (FeRh) was prepared by melt mixing, high-temperature annealing, and ice-water quenching. Temperature- and magnetic field-dependent magnetization measurements of wire-cut FeRh samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of FeRh samples was performed on a 4.7T MRI. RESULTS Temperature-dependent MRI clearly demonstrated image contrast changes due to the sharp magnetic state transition of the FeRh samples in the MRI magnetic field (4.7T) and at a physiologically relevant temperature (~37°C). CONCLUSION A magnetocaloric material, FeRh, was demonstrated to act as a high contrast ratio switchable MRI contrast agent due to its sharp first-order magnetic phase transition in the DC magnetic field of MRI and at physiologically relevant temperatures. A wide range of magnetocaloric materials are available that can be tuned by materials science techniques to optimize their response under MRI-appropriate conditions and be controllably switched in situ with temperature, magnetic field, or a combination of both.
Collapse
Affiliation(s)
- Mladen Barbic
- Howard Hughes Medical Institute - Janelia Research Campus, Ashburn, Virginia
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, NIH/NINDS, Bethesda, Maryland
| | | | | | - Barbara Marcheschi
- US Naval Research Laboratory, Optical Sciences Division, Code, 5611, Washington, DC
| | - Alan Huston
- US Naval Research Laboratory, Optical Sciences Division, Code, 5611, Washington, DC
| | - Tim D Harris
- Howard Hughes Medical Institute - Janelia Research Campus, Ashburn, Virginia
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, NIH/NINDS, Bethesda, Maryland
| |
Collapse
|
22
|
Abraham CB, Loree-Spacek J, Andrew Drainville R, Pichardo S, Curiel L. Development of custom RF coils for use in a small animal platform for magnetic resonance-guided focused ultrasound hyperthermia compatible with a clinical MRI scanner. Int J Hyperthermia 2018; 35:348-360. [PMID: 30295125 DOI: 10.1080/02656736.2018.1503344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Three different magnetic resonance imaging (MRI) coils were developed and assessed for use with an experimental platform designed to generate hyperthermia in mice using magnetic resonance-guided focused ultrasound (MRgFUS). An ergonomic animal treatment bed was integrated with MRI coils. Three different coil designs optimized for small targets were tested, and performance in targeting and conducting accurate temperature imaging was evaluated. Two transmit/receive surface coils of different diameters (4 and 7 cm) and a transmit-only/receive-only (TORO) coil were used. A software platform was developed to provide real-time targeting and temperature maps and to deliver controlled ultrasound exposure. MR thermometry was conducted on different targets, including fresh chicken breasts and mouse cadavers. Multiple experiments were performed in which tissues were targeted with high reproducibility. The TORO coil was the most resilient to temperature drift, resulting in an increase in the calculated temperature of 0.29 ± 0.12 °C, compared to 1.27 ± 0.13 °C and 0.47 ± 0.04 °C for the medium and small coils, respectively. Controlled closed-loop hyperthermia exposure was successfully performed with all three coils. Considering all assessments, the TORO coil exhibited the best overall performance for thermometry acquisition when accounting for stability, precision, temperature spread and resilience to temperature drift. B1 maps of the three coils confirmed that the TORO coil exhibited the most homogeneous B1 field, which explained the improved thermometry performance. The use of coils specifically designed for small targets within the proposed experimental platform allowed accurate thermometry during hyperthermia.
Collapse
Affiliation(s)
| | - Jak Loree-Spacek
- a Electrical Engineering , Lakehead University , Thunder Bay , ON , Canada
| | | | - Samuel Pichardo
- c Radiology and Clinical Neurosciences , University of Calgary , Calgary , AB , Canada
| | - Laura Curiel
- a Electrical Engineering , Lakehead University , Thunder Bay , ON , Canada.,d Electrical and Computer Engineering , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
23
|
Bing C, Hong Y, Hernandez C, Rich M, Cheng B, Munaweera I, Szczepanski D, Xi Y, Bolding M, Exner A, Chopra R. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Sci Rep 2018; 8:7986. [PMID: 29789589 PMCID: PMC5964106 DOI: 10.1038/s41598-018-26330-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Hong
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Megan Rich
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Imalka Munaweera
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Bolding
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Agata Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
24
|
Yiannakou M, Menikou G, Yiallouras C, Ioannides C, Damianou C. MRI guided focused ultrasound robotic system for animal experiments. Int J Med Robot 2017; 13. [PMID: 28211622 DOI: 10.1002/rcs.1804] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND In this paper an MRI-guided focused ultrasound (MRgFUS) robotic system was developed that can be used for conducting experiments in small animals.The target for this robotic system regarding motion was to move a therapeutic ultrasound transducer in two Cartesian axes. METHODS A single element spherically focused transducer of 3 cm diameter, focusing at 7 cm and operating at 0.4 MHz was used. The positioning device incorporates only MRI compatible materials. The propagation of ultrasound is a bottom to top approach. The 2-D positioning device is controlled by custom-made software and a custom-made electronic system which controls the two piezoelectric motors. RESULTS The system was tested successfully in agar/silica/evaporated milk phantom for various tasks (robot motion, MR compatibility, and MR thermometry). The robotic system is capable of moving the focused ultrasound transducer to perform MR-guided focused ultrasound experiments in small animals. CONCLUSIONS This system has the potential to be deployed as a cost effective solution for performing experiments in small animals.
Collapse
Affiliation(s)
- Marinos Yiannakou
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
| | | | - Christos Yiallouras
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
- R&D, MEDSONIC LTD, Limassol, Cyprus
| | | | | |
Collapse
|
25
|
Liu M, Jevtic S, Markham-Coultes K, Ellens NPK, O'Reilly MA, Hynynen K, Aubert I, McLaurin J. Investigating the efficacy of a combination Aβ-targeted treatment in a mouse model of Alzheimer's disease. Brain Res 2017; 1678:138-145. [PMID: 29066368 DOI: 10.1016/j.brainres.2017.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/28/2017] [Accepted: 10/15/2017] [Indexed: 11/28/2022]
Abstract
Amyloid-beta peptide (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease (AD). Here, we explored the use of a combination treatment to reduce amyloid load through microglial phagocytosis in a mouse model of AD. We hypothesized that using an initial treatment of magnetic resonance image guided focused ultrasound (MRIgFUS) to transiently increase the blood-brain barrier (BBB) permeability and enhance the delivery of an Aβ-antibody (BAM-10), followed by scyllo-inositol treatment would result in accelerated clearance. TgCRND8 mice expressing both Swedish (KM670/671NL) and Indiana (V717F) APP mutations under the hamster prion (PrP) promoter at 5 months of age were either treated with scyllo-inositol or received an initial MRIgFUS treatment delivering BAM-10 prior to scyllo-inositol treatment for one month. Treated animals and untreated TgCRND8 littermates were then sacrificed at 6 months of age, and their brains were processed for immunohistochemistry and immunofluorescence. Amyloid load was quantified and analyzed through immunohistochemical staining. Astrocyte and microglial activation were quantified and analyzed through immunofluorescent staining. We found that both the scyllo-inositol treatment and combination treatment, MRIgFUS/BAM10+scyllo-inositol, significantly reduced amyloid load and astrocyte activation in the hippocampus and the cortex. Furthermore, in both treatment paradigms microglial activation and phagocytosis was increased in comparison to the untreated mice. There were no differences detected between the two treatment paradigms. We propose that the 30-day scyllo-inositol treatment saturated the early benefit of the MRIgFUS/BAM-10 treatment. In the future, multiple FUS treatments combined with BAM-10 throughout the duration of scyllo-inositol treatment may lead to more effective amyloid clearance.
Collapse
Affiliation(s)
- Mingzhe Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Stefan Jevtic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kelly Markham-Coultes
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nicholas P K Ellens
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Meaghan A O'Reilly
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Isabelle Aubert
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
26
|
Curto S, Faridi P, Shrestha TB, Pyle M, Maurmann L, Troyer D, Bossmann SH, Prakash P. An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance. Int J Hyperthermia 2017; 34:341-351. [PMID: 28728442 DOI: 10.1080/02656736.2017.1339126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Integrating small-animal experimental hyperthermia instrumentation with magnetic resonance imaging (MRI) affords real-time monitoring of spatial temperature profiles. This study reports on the development and preliminary in vivo characterisation of a 2.45 GHz microwave hyperthermia system for pre-clinical small animal investigations, integrated within a 14 T ultra-high-field MRI scanner. MATERIALS AND METHODS The presented system incorporates a 3.5 mm (OD) directional microwave hyperthermia antenna, positioned adjacent to the small-animal target, radiating microwave energy for localised heating of subcutaneous tumours. The applicator is integrated within the 30 mm bore of the MRI system. 3D electromagnetic and biothermal simulations were implemented to characterise hyperthermia profiles from the directional microwave antenna. Experiments in tissue mimicking phantoms were performed to assess hyperthermia profiles and validate MR thermometry against fibre-optic temperature measurements. The feasibility of delivering in vivo hyperthermia exposures to subcutaneous 4T1 tumours in experimental mice under simultaneous MR thermometry guidance was assessed. RESULTS Simulations and experiments in tissue mimicking phantoms demonstrated the feasibility of heating 21-982 mm3 targets with 8-12 W input power. Minimal susceptibility and electrical artefacts introduced by the hyperthermia applicator were observed on MR imaging. MR thermometry was in excellent agreement with fibre-optic temperatures measurements (max. discrepancy ≤0.6 °C). Heating experiments with the reported system demonstrated the feasibility of heating subcutaneous tumours in vivo with simultaneous MR thermometry. CONCLUSIONS A platform for small-animal hyperthermia investigations under ultra-high-field MR thermometry was developed and applied to heating subcutaneous tumours in vivo.
Collapse
Affiliation(s)
- Sergio Curto
- a Department of Electrical and Computer Engineering , Kansas State University , Manhattan , KS , USA
| | - Pegah Faridi
- a Department of Electrical and Computer Engineering , Kansas State University , Manhattan , KS , USA
| | - Tej B Shrestha
- b Department of Anatomy and Physiology , Kansas State University , Manhattan , KS , USA
| | - Marla Pyle
- b Department of Anatomy and Physiology , Kansas State University , Manhattan , KS , USA
| | - Leila Maurmann
- c Department of Chemistry , Kansas State University , Manhattan , KS , USA
| | - Deryl Troyer
- b Department of Anatomy and Physiology , Kansas State University , Manhattan , KS , USA
| | - Stefan H Bossmann
- c Department of Chemistry , Kansas State University , Manhattan , KS , USA
| | - Punit Prakash
- a Department of Electrical and Computer Engineering , Kansas State University , Manhattan , KS , USA
| |
Collapse
|
27
|
Ellens NPK, Partanen A. Preclinical MRI-Guided Focused Ultrasound: A Review of Systems and Current Practices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:291-305. [PMID: 27662675 DOI: 10.1109/tuffc.2016.2609238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective preclinical research is a vital component in the development of MRI-guided focused ultrasound (MRgFUS) and its translation to clinic. In this review, we seek to outline the challenges at hand for effective preclinical research, survey different solutions, and underline best practices. Furthermore, we summarize efforts to build and characterize dedicated preclinical MRgFUS equipment, including lab prototypes and available commercial products. Finally, we discuss constraints and considerations specific to using clinical MRgFUS equipment in preclinical research. Specifically, we examine additional hardware that has been used to adapt clinical MRgFUS equipment to better position, constrain, and image preclinical subjects, as well as software solutions that have been used to extend the potential and capabilities of clinical devices.
Collapse
|
28
|
Tavallaei MA, Johnson PM, Liu J, Drangova M. Design and evaluation of an MRI-compatible linear motion stage. Med Phys 2016; 43:62. [PMID: 26745900 DOI: 10.1118/1.4937780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To develop and evaluate a tool for accurate, reproducible, and programmable motion control of imaging phantoms for use in motion sensitive magnetic resonance imaging (MRI) appli cations. METHODS In this paper, the authors introduce a compact linear motion stage that is made of nonmagnetic material and is actuated with an ultrasonic motor. The stage can be positioned at arbitrary positions and orientations inside the scanner bore to move, push, or pull arbitrary phantoms. Using optical trackers, measuring microscopes, and navigators, the accuracy of the stage in motion control was evaluated. Also, the effect of the stage on image signal-to-noise ratio (SNR), artifacts, and B0 field homogeneity was evaluated. RESULTS The error of the stage in reaching fixed positions was 0.025 ± 0.021 mm. In execution of dynamic motion profiles, the worst-case normalized root mean squared error was below 7% (for frequencies below 0.33 Hz). Experiments demonstrated that the stage did not introduce artifacts nor did it degrade the image SNR. The effect of the stage on the B0 field was less than 2 ppm. CONCLUSIONS The results of the experiments indicate that the proposed system is MRI-compatible and can create reliable and reproducible motion that may be used for validation and assessment of motion related MRI applications.
Collapse
Affiliation(s)
- Mohammad Ali Tavallaei
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Patricia M Johnson
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada and Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Junmin Liu
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Maria Drangova
- Imaging Research Laboratories, Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada; Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario N6A 5B9, Canada; and Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
29
|
Liu J, Foiret J, Stephens DN, Le Baron O, Ferrara KW. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia. Phys Med Biol 2016; 61:5275-96. [PMID: 27353347 DOI: 10.1088/0031-9155/61/14/5275] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial) × 0.65 mm (transverse) × 0.35 mm (transverse)) defined by the -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the -3 dB focal peak intensity (17 mm (axial) × 14 mm (transverse) × 12 mm (transverse)) and -8 dB lateral grating lobes (24 mm (axial) × 18 mm (transverse) × 16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.
Collapse
Affiliation(s)
- Jingfei Liu
- Department of Biomedical Engineering, University of California, Davis, CA 95616-8686, USA
| | | | | | | | | |
Collapse
|
30
|
Magnin R, Rabusseau F, Salabartan F, Mériaux S, Aubry JF, Le Bihan D, Dumont E, Larrat B. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound 2015; 3:22. [PMID: 26705473 PMCID: PMC4690289 DOI: 10.1186/s40349-015-0044-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Focused ultrasound combined with microbubble injection is capable of locally and transiently enhancing the permeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) guidance enables to plan, monitor, and characterize the BBB disruption. Being able to precisely and remotely control the permeabilization location is of great interest to perform reproducible drug delivery protocols. METHODS In this study, we developed an MR-guided motorized focused ultrasound (FUS) system allowing the transducer displacement within preclinical MRI scanners, coupled with real-time transfer and reconstruction of MRI images, to help ultrasound guidance. Capabilities of this new device to deliver large molecules to the brain on either single locations or along arbitrary trajectories were characterized in vivo on healthy rats and mice using 1.5 MHz ultrasound sonications combined with microbubble injection. The efficacy of BBB permeabilization was assessed by injecting a gadolinium-based MR contrast agent that does not cross the intact BBB. RESULTS The compact motorized FUS system developed in this work fits into the 9-cm inner diameter of the gradient insert installed on our 7-T preclinical MRI scanners. MR images acquired after contrast agent injection confirmed that this device can be used to enhance BBB permeability along remotely controlled spatial trajectories of the FUS beam in both rats and mice. The two-axis motor stage enables reaching any region of interest in the rodent brain. The positioning error when targeting the same anatomical location on different animals was estimated to be smaller than 0.5 mm. Finally, this device was demonstrated to be useful for testing BBB opening at various acoustic pressures (0.2, 0.4, 0.7, and 0.9 MPa) in the same animal and during one single ultrasound session. CONCLUSIONS Our system offers the unique possibility to move the transducer within a high magnetic field preclinical MRI scanner, thus enabling the delivery of large molecules to virtually any rodent brain area in a non-invasive manner. It results in time-saving and reproducibility and could be used to either deliver drugs over large parts of the brain or test different acoustic conditions on the same animal during the same session, therefore reducing physiological variability.
Collapse
Affiliation(s)
- Rémi Magnin
- />UNIRS, Neurospin, I2BM, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies Alternatives, Bâtiment 145, 91191 Gif sur Yvette, France
- />Image Guided Therapy, 4 allée du doyen Brus, 33600 Pessac, France
| | - Fabien Rabusseau
- />Image Guided Therapy, 4 allée du doyen Brus, 33600 Pessac, France
| | | | - Sébastien Mériaux
- />UNIRS, Neurospin, I2BM, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies Alternatives, Bâtiment 145, 91191 Gif sur Yvette, France
| | - Jean-François Aubry
- />CNRS UMR 7587, INSERM U979, ESPCI ParisTech, Institut Langevin Ondes et Images, 1 rue Jussieu, 75005 Paris, France
| | - Denis Le Bihan
- />UNIRS, Neurospin, I2BM, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies Alternatives, Bâtiment 145, 91191 Gif sur Yvette, France
| | - Erik Dumont
- />Image Guided Therapy, 4 allée du doyen Brus, 33600 Pessac, France
| | - Benoit Larrat
- />UNIRS, Neurospin, I2BM, Direction des Sciences du Vivant, Commissariat à l’Energie Atomique et aux Energies Alternatives, Bâtiment 145, 91191 Gif sur Yvette, France
| |
Collapse
|
31
|
Huisman M, Staruch RM, Ladouceur-Wodzak M, van den Bosch MA, Burns DK, Chhabra A, Chopra R. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model. PLoS One 2015; 10:e0144742. [PMID: 26659073 PMCID: PMC4682836 DOI: 10.1371/journal.pone.0144742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/22/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Ultrasound (US)-guided high intensity focused ultrasound (HIFU) has been proposed for noninvasive treatment of neuropathic pain and has been investigated in in-vivo studies. However, ultrasound has important limitations regarding treatment guidance and temperature monitoring. Magnetic resonance (MR)-imaging guidance may overcome these limitations and MR-guided HIFU (MR-HIFU) has been used successfully for other clinical indications. The primary purpose of this study was to evaluate the feasibility of utilizing 3D MR neurography to identify and guide ablation of peripheral nerves using a clinical MR-HIFU system. METHODS Volumetric MR-HIFU was used to induce lesions in the peripheral nerves of the lower limbs in three pigs. Diffusion-prep MR neurography and T1-weighted images were utilized to identify the target, plan treatment and immediate post-treatment evaluation. For each treatment, one 8 or 12 mm diameter treatment cell was used (sonication duration 20 s and 36 s, power 160-300 W). Peripheral nerves were extracted < 3 hours after treatment. Ablation dimensions were calculated from thermal maps, post-contrast MRI and macroscopy. Histological analysis included standard H&E staining, Masson's trichrome and toluidine blue staining. RESULTS All targeted peripheral nerves were identifiable on MR neurography and T1-weighted images and could be accurately ablated with a single exposure of focused ultrasound, with peak temperatures of 60.3 to 85.7°C. The lesion dimensions as measured on MR neurography were similar to the lesion dimensions as measured on CE-T1, thermal dose maps, and macroscopy. Histology indicated major hyperacute peripheral nerve damage, mostly confined to the location targeted for ablation. CONCLUSION Our preliminary results indicate that targeted peripheral nerve ablation is feasible with MR-HIFU. Diffusion-prep 3D MR neurography has potential for guiding therapy procedures where either nerve targeting or avoidance is desired, and may also have potential for post-treatment verification of thermal lesions without contrast injection.
Collapse
Affiliation(s)
- Merel Huisman
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- Clinical Sites Research Program, Philips Research North America, Briarcliff Manor, NY, United States of America
| | | | | | - Dennis K. Burns
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Avneesh Chhabra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bing C, Nofiele J, Staruch R, Ladouceur-Wodzak M, Chatzinoff Y, Ranjan A, Chopra R. Localised hyperthermia in rodent models using an MRI-compatible high-intensity focused ultrasound system. Int J Hyperthermia 2015; 31:813-22. [PMID: 26540488 DOI: 10.3109/02656736.2015.1094833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Localised hyperthermia in rodent studies is challenging due to the small target size. This study describes the development and characterisation of an MRI-compatible high-intensity focused ultrasound (HIFU) system to perform localised mild hyperthermia treatments in rodent models. MATERIAL AND METHODS The hyperthermia platform consisted of an MRI-compatible small animal HIFU system, focused transducers with sector-vortex lenses, a custom-made receive coil, and means to maintain systemic temperatures of rodents. The system was integrated into a 3T MR imager. Control software was developed to acquire images, process temperature maps, and adjust output power using a proportional-integral-derivative feedback control algorithm. Hyperthermia exposures were performed in tissue-mimicking phantoms and in a rodent model (n = 9). During heating, an ROI was assigned in the heated region for temperature control and the target temperature was 42 °C; 30 min mild hyperthermia treatment followed by a 10-min cooling procedure was performed on each animal. RESULTS 3D-printed sector-vortex lenses were successful at creating annular focal regions which enables customisation of the heating volume. Localised mild hyperthermia performed in rats produced a mean ROI temperature of 42.1 ± 0.3 °C. The T10 and T90 percentiles were 43.2 ± 0.4 °C and 41.0 ± 0.3 °C, respectively. For a 30-min treatment, the mean time duration between 41-45 °C was 31.1 min within the ROI. CONCLUSIONS The MRI-compatible HIFU system was successfully adapted to perform localised mild hyperthermia treatment in rodent models. A target temperature of 42 °C was well-maintained in a rat thigh model for 30 min.
Collapse
Affiliation(s)
- Chenchen Bing
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas
| | - Joris Nofiele
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas
| | - Robert Staruch
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas .,b Clinical Sites Research Program, Philips Research , Briarcliff Manor , New York
| | | | - Yonatan Chatzinoff
- c Applied Research Center, University of Texas at Dallas , Dallas , Texas
| | - Ashish Ranjan
- d Center of Veterinary Health Sciences, Oklahoma State University , Stillwater , Oklahoma , USA , and
| | - Rajiv Chopra
- a Department of Radiology , University of Texas Southwestern Medical Center , Dallas , Texas .,e Advanced Imaging Research Center, University of Texas Southwestern Medical Center , Dallas , Texas
| |
Collapse
|
33
|
Abstract
Advances in medical imaging have enabled the development of new minimally and completely noninvasive therapies that produce a desired biological effect in a target, such as a tumor, with minimal damage to the surrounding tissue. One means of noninvasively achieving bioeffects in tissue is the use of ultrasound to generate heat. Specialized ultrasound transducers can be used to generate focal regions of heating non invasively, without inserting anything into the body or affecting the tissue outside the target region. Ultrasound thermal therapy can be used with magnetic resonance (MR) imaging (MRI) guidance and MRI temperature feedback to automatically control temperature distributions during heating, producing accurate thermal lesions, or maintaining optimal conditions to enhance drug delivery.
Collapse
|
34
|
Nofiele J, Yuan Q, Kazem M, Tatebe K, Torres Q, Sawant A, Pedrosa I, Chopra R. An MRI-compatible platform for one-dimensional motion management studies in MRI. Magn Reson Med 2015; 76:702-12. [PMID: 26493684 DOI: 10.1002/mrm.25903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/17/2015] [Accepted: 07/30/2015] [Indexed: 01/17/2023]
Abstract
PURPOSE Abdominal MRI remains challenging because of respiratory motion. Motion compensation strategies are difficult to compare clinically because of the variability across human subjects. The goal of this study was to evaluate a programmable system for one-dimensional motion management MRI research. METHODS A system comprised of a programmable motorized linear stage and computer was assembled and tested in the MRI environment. Tests of the mutual interference between the platform and a whole-body MRI were performed. Organ trajectories generated from a high-temporal resolution scan of a healthy volunteer were used in phantom tests to evaluate the effects of motion on image quality and quantitative MRI measurements. RESULTS No interference between the motion platform and the MRI was observed, and reliable motion could be produced across a wide range of imaging conditions. Motion-related artifacts commensurate with motion amplitude, frequency, and waveform were observed. T2 measurement of a kidney lesion in an abdominal phantom showed that its value decreased by 67% with physiologic motion, but could be partially recovered with navigator-based motion-compensation. CONCLUSION The motion platform can produce reliable linear motion within a whole-body MRI. The system can serve as a foundation for a research platform to investigate and develop motion management approaches for MRI. Magn Reson Med 76:702-712, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joris Nofiele
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qing Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Ken Tatebe
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Quinn Torres
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amit Sawant
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Sunnybrook Research Institute, Toronto, Ontario, Canada.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Oakden W, Kwiecien JM, O'Reilly MA, Dabrowski W, Whyne C, Finkelstein J, Hynynen K, Stanisz GJ. Quantitative MRI in a non-surgical model of cervical spinal cord injury. NMR IN BIOMEDICINE 2015; 28:925-936. [PMID: 26053102 DOI: 10.1002/nbm.3326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Quantitative T2 (qT2), diffusion tensor imaging (DTI), and histology were used to investigate a cervical model of spinal cord injury (SCI) in the rat. While quantitative MRI can significantly increase the specificity in the presence of pathology, it must be validated for each type of injury or disease. In the case of traumatic SCI most models are difficult to image, either due to the location of the injury, or as a result of damage to surrounding tissues resulting from invasive surgical procedures. In this study a non-surgical cervical model of SCI, produced using a combination of focused ultrasound and microbubbles, was used to produce pathology similar to that seen in models of contusive and compressive injuries. qT2 and DTI were performed at 24 h and 1 and 2 weeks following injury, and compared with H&E and luxol fast blue histology. In the injured spinal cord, in addition to intra/extracellular (I/E) water and myelin water in white matter, qT2 revealed a large component with very short T2 of about 3 ms, which was highly correlated with the presence of hemorrhage in both gray and white matter at 24 h, and with the presence of hemosiderin in gray matter at 2 weeks following injury. The T2 of the I/E water peak was also elevated at 24 h in both gray and white matter, which was correlated with the presence of vacuolation/edema on histology. Cystic cavities were only seen at the 1 or 2 week timepoints, and were correlated with the presence of a water peak with T2 > 250 ms. No significant changes in diffusivity parameters were observed. Pathologies were often co-occurring, with opposite effects on the average T2 in a given voxel, reducing the visibility of injured tissue on standard T2 -weighted MR images.
Collapse
Affiliation(s)
- Wendy Oakden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Meaghan A O'Reilly
- Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Joel Finkelstein
- Division of Orthopaedics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Yiallouras C, Damianou C. Review of MRI positioning devices for guiding focused ultrasound systems. Int J Med Robot 2015; 11:247-255. [PMID: 25045075 DOI: 10.1002/rcs.1601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND This article contains a review of positioning devices that are currently used in the area of magnetic resonance imaging (MRI) guided focused ultrasound surgery (MRgFUS). METHODS The paper includes an extensive review of literature published since the first prototype system was invented in 1991. RESULTS The technology has grown into a fast developing area with application to any organ accessible to ultrasound. The initial design operated using hydraulic principles, while the latest technology incorporates piezoelectric motors. Although, in the beginning there were fears regarding MRI safety, during recent years, the deployment of MR-safe positioning devices in FUS has become routine. Many of these positioning devices are now undergoing testing in clinical trials. CONCLUSION Existing MRgFUS systems have been utilized mostly in oncology (fibroids, brain, liver, kidney, bone, pancreas, eye, thyroid, and prostate). It is anticipated that, in the near future, there will be a positioning device for every organ that is accessible by focused ultrasound.
Collapse
Affiliation(s)
- C Yiallouras
- Department of Bioengineering, City University, London, UK
- R&D, MEDSONIC LTD, Limassol, Cyprus
| | - C Damianou
- Electrical Engineering Department, Cyprus University of Technology, Cyprus
- R&D, MEDSONIC LTD, Limassol, Cyprus
| |
Collapse
|
37
|
Gene delivery to the spinal cord using MRI-guided focused ultrasound. Gene Ther 2015; 22:568-77. [PMID: 25781651 PMCID: PMC4490035 DOI: 10.1038/gt.2015.25] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
Non-invasive gene delivery across the blood-spinal cord barrier (BSCB) remains a challenge for treatment of spinal cord injury and disease. Here, we demonstrate the use of magnetic resonance image-guided focused ultrasound (MRIgFUS) to mediate non-surgical gene delivery to the spinal cord using self-complementary adeno-associated virus serotype 9 (scAAV9). scAAV9 encoding green fluorescent protein (GFP) was injected intravenously in rats at three dosages: 4 × 10(8), 2 × 10(9) and 7 × 10(9) vector genomes per gram (VG g(-1)). MRIgFUS allowed for transient, targeted permeabilization of the BSCB through the interaction of focused ultrasound (FUS) with systemically injected Definity lipid-shelled microbubbles. Viral delivery at 2 × 10(9) and 7 × 10(9) VG g(-1) leads to robust GFP expression in FUS-targeted regions of the spinal cord. At a dose of 2 × 10(9) VG g(-1), GFP expression was found in 36% of oligodendrocytes, and in 87% of neurons in FUS-treated areas. FUS applications to the spinal cord could address a long-term goal of gene therapy: delivering vectors from the circulation to diseased areas in a non-invasive manner.
Collapse
|
38
|
Rodrigues DB, Stauffer PR, Vrba D, Hurwitz MD. Focused ultrasound for treatment of bone tumours. Int J Hyperthermia 2015; 31:260-71. [DOI: 10.3109/02656736.2015.1006690] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
39
|
Ellens NPK, Kobelevskiy I, Chau A, Waspe AC, Staruch RM, Chopra R, Hynynen K. The targeting accuracy of a preclinical MRI-guided focused ultrasound system. Med Phys 2014; 42:430-9. [DOI: 10.1118/1.4903950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
40
|
Seo J, Kim SK, Kim YS, Choi K, Kong DG, Bang WC. Motion Compensation for Ultrasound Thermal Imaging Using Motion-Mapped Reference Model: An in vivo Mouse Study. IEEE Trans Biomed Eng 2014; 61:2669-78. [DOI: 10.1109/tbme.2014.2325070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Burgess A, Dubey S, Yeung S, Hough O, Eterman N, Aubert I, Hynynen K. Alzheimer disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior. Radiology 2014; 273:736-45. [PMID: 25222068 DOI: 10.1148/radiol.14140245] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To validate whether repeated magnetic resonance (MR) imaging-guided focused ultrasound treatments targeted to the hippocampus, a brain structure relevant for Alzheimer disease ( AD Alzheimer disease ), could modulate pathologic abnormalities, plasticity, and behavior in a mouse model. MATERIALS AND METHODS All animal procedures were approved by the Animal Care Committee and are in accordance with the Canadian Council on Animal Care. Seven-month-old transgenic (TgCRND8) (Tg) mice and their nontransgenic (non-Tg) littermates were entered in the study. Mice were treated weekly with MR imaging-guided focused ultrasound in the bilateral hippocampus (1.68 MHz, 10-msec bursts, 1-Hz burst repetition frequency, 120-second total duration). After 1 month, spatial memory was tested in the Y maze with the novel arm prior to sacrifice and immunohistochemical analysis. The data were compared by using unpaired t tests and analysis of variance with Tukey post hoc analysis. RESULTS Untreated Tg mice spent 61% less time than untreated non-Tg mice exploring the novel arm of the Y maze because of spatial memory impairments (P < .05). Following MR imaging-guided focused ultrasound, Tg mice spent 99% more time exploring the novel arm, performing as well as their non-Tg littermates. Changes in behavior were correlated with a reduction of the number and size of amyloid plaques in the MR imaging-guided focused ultrasound-treated animals (P < .01). Further, after MR imaging-guided focused ultrasound treatment, there was a 250% increase in the number of newborn neurons in the hippocampus (P < .01). The newborn neurons had longer dendrites and more arborization after MR imaging-guided focused ultrasound, as well (P < .01). CONCLUSION Repeated MR imaging-guided focused ultrasound treatments led to spatial memory improvement in a Tg mouse model of AD Alzheimer disease . The behavior changes may be mediated by decreased amyloid pathologic abnormalities and increased neuronal plasticity.
Collapse
Affiliation(s)
- Alison Burgess
- From the Physical Sciences Platform (A.B., S.Y., O.H., N.E., K.H.) and Biological Sciences Platform (S.D., I.A.), Sunnybrook Research Institute, 2075 Bayview Ave, C713, Toronto, ON, Canada M4N 3M5; Department of Laboratory Medicine and Pathobiology (S.D., I.A.) and Department of Medical Biophysics (K.H.), University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles. J Neurosci Methods 2014; 235:92-100. [DOI: 10.1016/j.jneumeth.2014.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022]
|
43
|
Pajek D, Burgess A, Huang Y, Hynynen K. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2151-61. [PMID: 25023095 PMCID: PMC4130783 DOI: 10.1016/j.ultrasmedbio.2014.03.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain.
Collapse
Affiliation(s)
- Daniel Pajek
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Alison Burgess
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Bing C, Ladouceur-Wodzak M, Wanner CR, Shelton JM, Richardson JA, Chopra R. Trans-cranial opening of the blood-brain barrier in targeted regions using a stereotaxic brain atlas and focused ultrasound energy. J Ther Ultrasound 2014; 2:13. [PMID: 25232482 PMCID: PMC4160001 DOI: 10.1186/2050-5736-2-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/11/2014] [Indexed: 11/13/2022] Open
Abstract
Objective The blood-brain barrier (BBB) protects the brain by preventing the entry of large
molecules; this poses a major obstacle for the delivery of drugs to the brain. A
novel technique using focused ultrasound (FUS) energy combined with microbubble
contrast agents has been widely used for non-invasive trans-cranial BBB opening.
Traditionally, FUS research is conducted with magnetic resonance imaging (MRI)
guidance, which is expensive and poses physical limitations due to the magnetic
field. A system that could allow researchers to test brain therapies without MR
intervention could facilitate and accelerate translational research. Methods In this study, we present a novel FUS system that uses a custom-built FUS
generator mounted on a motorized stereotaxic apparatus with embedded brain atlas
to locally open the BBB in rodents. The system was initially characterized using a
tissue-mimicking phantom. Rodent studies were also performed to evaluate whether
non-invasive, localized BBB opening could be achieved using brain atlas-based
targeting. Brains were exposed to pulsed focused ultrasound energy at
1.06 MHz in rats and 3.23 MHz in mice, with the focal pressure estimated
to be 0.5–0.6 MPa through the skull. BBB opening was confirmed in gross
tissue sections by the presence of Evans blue leakage in the exposed region of the
brain and by histological assessment. Results The targeting accuracy of the stereotaxic system was better than 0.5 mm in
the tissue-mimicking phantom. Reproducible localized BBB opening was verified with
Evans blue dye leakage in 32/33 rats and had a targeting accuracy of
±0.3 mm. The use of higher frequency exposures in mice enabled a similar
precision of localized BBB opening as was observed with the low frequency in the
rat model. Conclusions With this dedicated small-animal motorized stereotaxic-FUS system, we achieved
accurate targeting of focused ultrasound exposures in the brain for non-invasive
opening of the BBB. This system can be used as an alternative to MR-guided FUS and
offers researchers the ability to perform efficient studies (30 min per
experiment including preparation) at a reduced cost in a conventional laboratory
environment.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA
| | - Michelle Ladouceur-Wodzak
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA
| | - Clinton R Wanner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA
| | - James A Richardson
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA ; Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9061, USA
| |
Collapse
|
45
|
Yiallouras C, Mylonas N, Damianou C. MRI-compatible positioning device for guiding a focused ultrasound system for transrectal treatment of prostate cancer. Int J Comput Assist Radiol Surg 2014; 9:745-753. [PMID: 24337790 DOI: 10.1007/s11548-013-0964-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/12/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is a promising treatment method for many common cancers, including prostate cancer. Magnetic resonance image (MRI) guidance of HIFU permits targeting and monitoring of therapy. A prototype MRI-compatible positioning device that navigates a HIFU transducer was designed, fabricated and tested. MATERIALS AND METHODS The positioning device has two PC-controlled and one manually driven stage that allow endorectal access to the prostate. The positioning device was constructed using a 3-D rapid prototype manufacturing device. Software was developed that controls the motion of the positioning device and enables activation of a HIFU transducer. In vitro testing of the system was performed in a 1.5T MRI scanner using ex vivo turkey tissue. Optical encoders were employed to enhance the accuracy of this positioning device. RESULT The positioning device was successfully tested for MRI compatibility. The movement error of the positioning device is approximately 20 [Formula: see text]m. The robot has the ability to accurately move the transducer for creation of discrete and overlapping lesions. CONCLUSION An MRI-compatible HIFU positioning system was developed that has the ability to create thermal lesions with MRI guidance for endorectal treatment of prostate cancer.
Collapse
|
46
|
Mylonas N, Damianou C. MR compatible positioning device for guiding a focused ultrasound system for the treatment of brain deseases. Int J Med Robot 2014; 10:1-10. [PMID: 23744569 DOI: 10.1002/rcs.1501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/28/2013] [Accepted: 02/11/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND A prototype magnetic resonance imaging (MRI)-compatible positioning device that navigates a high intensity focused ultrasound (HIFU) transducer is presented. The positioning device has three user-controlled degrees of freedom that allow access to brain targets using a lateral coupling approach. The positioning device can be used for the treatment of brain cancer (thermal mode ultrasound) or ischemic stroke (mechanical mode ultrasound). MATERIALS AND METHODS The positioning device incorporates only MRI compatible materials such as piezoelectric motors, ABS plastic, brass screws, and brass rack and pinion. RESULT The robot has the ability to accurately move the transducer thus creating overlapping lesions in rabbit brain in vivo. The registration and repeatability of the system was evaluated using tissues in vitro and gel phantom and was also tested in vivo in the brain of a rabbit. CONCLUSION A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be placed on the table of the MRI scanner. This system can be used to treat in the future patients with brain cancer and ischemic stroke.
Collapse
Affiliation(s)
- N Mylonas
- City University, London, UK; Frederick Institute of Technology, Limassol, Cyprus
| | | |
Collapse
|
47
|
Zucconi F, Colombo PE, Pasetto S, Lascialfari A, Ticca C, Torresin A. Analysis and reduction of thermal dose errors in MRgFUS treatment. Phys Med 2014; 30:111-6. [DOI: 10.1016/j.ejmp.2013.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 02/27/2013] [Accepted: 04/25/2013] [Indexed: 11/27/2022] Open
|
48
|
Scarcelli T, Jordão JF, O'Reilly MA, Ellens N, Hynynen K, Aubert I. Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul 2014; 7:304-7. [PMID: 24629831 DOI: 10.1016/j.brs.2013.12.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/16/2013] [Accepted: 12/20/2013] [Indexed: 01/17/2023] Open
Abstract
Transcranial focused ultrasound (FUS) and microbubble contrast agent, applied at parameters known to transiently increase blood-brain barrier permeability, were tested for the potential to stimulate hippocampal neurogenesis. In adult mice, FUS treatment significantly increased the number of proliferating cells and newborn neurons in the dentate gyrus of the dorsal hippocampus. This provides evidence that FUS with microbubbles can stimulate hippocampal neurogenesis, a process involved in learning and memory and affected in neurological disorders, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Tiffany Scarcelli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jessica F Jordão
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Nicholas Ellens
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Isabelle Aubert
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
49
|
Dervishi E, Larrat B, Pernot M, Adam C, Marie Y, Fink M, Delattre JY, Boch AL, Tanter M, Aubry JF. Transcranial high intensity focused ultrasound therapy guided by 7 TESLA MRI in a rat brain tumour model: a feasibility study. Int J Hyperthermia 2013; 29:598-608. [PMID: 23941242 DOI: 10.3109/02656736.2013.820357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Transcranial high intensity focused ultrasound (HIFU) therapy guided by magnetic resonance imaging (MRI) is a promising approach for the treatment of brain tumours. Our objective is to validate a dedicated therapy monitoring system for rodents for transcranial HIFU therapy under MRI guidance in an in vivo brain tumour model. MATERIALS AND METHODS A dedicated MR-compatible ultrasound therapy system and positioning frame was developed. Three MR-compatible prefocused ultrasonic monoelement transducers were designed, operating at 1.5 MHz and 2.5 MHz with different geometries. A full protocol of transcranial HIFU brain therapy under MRI guidance was applied in n = 19 rats without and n = 6 rats with transplanted tumours (RG2). Different heating strategies were tested. After treatment, histological study of the brain was performed in order to confirm thermal lesions. RESULTS Relying on a larger aperture and a higher frequency, the 2.5 MHz transducer was found to give better results than other ones. This single element transducer optimised the ratio of the temperature elevation at the focus to the one at the skull surface. Using optimised transducer and heating strategies enabled thermal necrosis both in normal and tumour tissues as verified by histology while limiting overheating in the tissues in contact with the skull. CONCLUSIONS In this study, a system for transcranial HIFU therapy guided by MRI was developed and tested in an in vivo rat brain tumour model. The feasibility of this therapy set-up to induce thermal lesions within brain tumours was demonstrated.
Collapse
Affiliation(s)
- Elvis Dervishi
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, INSERM - UMRS 975, CNRS 7225, Hôpital de la Pitié-Salpêtrière, Paris
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Huang Y, Vykhodtseva NI, Hynynen K. Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1420-8. [PMID: 23743099 PMCID: PMC4042243 DOI: 10.1016/j.ultrasmedbio.2013.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 05/07/2023]
Abstract
Low-intensity focused ultrasound was applied with microbubbles (Definity, Lantheus Medical Imaging, North Billerica, MA, USA; 0.02 mL/kg) to produce brain lesions in 50 rats at 558 kHz. Burst sonications (burst length: 10 ms; pulse repetition frequency: 1 Hz; total exposure: 5 min; acoustic power: 0.47-1.3 W) generated ischemic or hemorrhagic lesions at the focal volume revealed by both magnetic resonance imaging and histology. Shorter burst time (2 ms) or shorter sonication time (1 min) reduced the probability of lesion production. Longer pulses (200 ms, 500 ms and continuous wave) caused significant near-field damage. Using microbubbles with focused ultrasound significantly reduced acoustic power levels and, therefore, avoided skull heating issues and potentially can extend the treatable volume of transcranial focused ultrasound to brain tissues close to the skull.
Collapse
Affiliation(s)
- Yuexi Huang
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Natalia I. Vykhodtseva
- Department of Radiology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Correspondence to: K.H., Imaging Research, Rm S665B, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada. Kullervo Hynynen Phone: (416) 480-5717 Fax: (416) 480-5714
| |
Collapse
|