1
|
Kutscha N, Mahmutovic M, Bhusal B, Vu J, Chemlali C, Hansen SLJD, May MW, Knake S, Golestanirad L, Keil B. A deep brain stimulation-conditioned RF coil for 3T MRI. Magn Reson Med 2025; 93:1411-1426. [PMID: 39444303 DOI: 10.1002/mrm.30331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE To develop and test an MRI coil assembly for imaging deep brain stimulation (DBS) at 3 T with a reduced level of local specific absorption rate of RF fields near the implant. METHODS A mechanical rotatable linearly polarized birdcage transmitter outfitted with a 32-channel receive array was constructed. The coil performance and image quality were systematically evaluated using bench-level measurements and imaging performance tests, including SNR maps, array element noise correlation, and acceleration capabilities. Electromagnetic simulations and phantom experiments were performed with clinically relevant DBS device configurations to evaluate the reduction of specific absorption rate and temperature near the implant compared with a circular polarized body coil setup. RESULTS The linearly polarized birdcage coil features a block-shaped low electric field region to be co-aligned with the implanted DBS lead trajectory, while the close-fit receive array enables imaging with high SNR and enhanced encoding capabilities. CONCLUSION The 3T coil assembly, consisting of a rotating linear birdcage and a 32-channel close-fit receive array, showed DBS-conditioned imaging technology with substantially reduced heat generation at the DBS implants.
Collapse
Affiliation(s)
- Nicolas Kutscha
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jasmine Vu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Chaimaa Chemlali
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Sam-Luca J D Hansen
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Markus W May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
2
|
Silemek B, Seifert F, Petzold J, Brühl R, Ittermann B, Winter L. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging. Magn Reson Med 2023; 90:2608-2626. [PMID: 37533167 DOI: 10.1002/mrm.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS The implant, consisting of a generator case and a lead, measures RF-inducedE $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS The implant successfully measured RF-inducedE $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
3
|
Jiang F, Bhusal B, Nguyen B, Monge M, Webster G, Kim D, Bonmassar G, Popsecu AR, Golestanirad L. Modifying the trajectory of epicardial leads can substantially reduce MRI-induced RF heating in pediatric patients with a cardiac implantable electronic device at 1.5T. Magn Reson Med 2023; 90:2510-2523. [PMID: 37526134 PMCID: PMC10863853 DOI: 10.1002/mrm.29776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE After epicardial cardiac implantable electronic devices are implanted in pediatric patients, they become ineligible to receive MRI exams due to an elevated risk of RF heating. We investigated whether simple modifications in the trajectories of epicardial leads could substantially and reliably reduce RF heating during MRI at 1.5 T, with benefits extending to abandoned leads. METHODS Electromagnetic simulations were performed to assess RF heating of two common 35-cm epicardial lead trajectories exhibiting different degrees of coupling with MRI incident electric fields. Experiments in anthropomorphic phantoms implanted with commercial cardiac implantable electronic devices confirmed the findings. Both electromagnetic simulations and experimental measurements were performed using head-first and feet-first positioning and various landmarks. Transfer function approach was used to assess the performance of suggested modifications in realistic body models. RESULTS Simulations (head-first, chest landmark) of a 35-cm epicardial lead with a trajectory where the excess length of the lead was looped and placed on the inferior surface of the heart showed an 87-fold reduction in the 0.1 g-averaged specific absorption rate compared with the lead where the excess length was looped on the anterior surface. Repeated experiments with a commercial epicardial device confirmed this. For fully implanted systems following low-specific absorption rate trajectories, there was a 16-fold reduction in the average temperature rise and a 28-fold reduction for abandoned leads. The transfer function method predicted a 7-fold reduction in the RF heating in 336 realistic scenarios. CONCLUSION Surgical modification of epicardial lead trajectory can substantially reduce RF heating at 1.5 T, with benefits extending to abandoned leads.
Collapse
Affiliation(s)
- Fuchang Jiang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bach Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Monge
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Box 22, 225 E. Chicago Ave, Chicago, Illinois, 60611, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 East Chicago Avenue, Box 21, Chicago, IL, 60611, USA
| | - Daniel Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrada R. Popsecu
- Division of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Laleh Golestanirad
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Rogers T, Campbell-Washburn AE, Ramasawmy R, Yildirim DK, Bruce CG, Grant LP, Stine AM, Kolandaivelu A, Herzka DA, Ratnayaka K, Lederman RJ. Interventional cardiovascular magnetic resonance: state-of-the-art. J Cardiovasc Magn Reson 2023; 25:48. [PMID: 37574552 PMCID: PMC10424337 DOI: 10.1186/s12968-023-00956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Transcatheter cardiovascular interventions increasingly rely on advanced imaging. X-ray fluoroscopy provides excellent visualization of catheters and devices, but poor visualization of anatomy. In contrast, magnetic resonance imaging (MRI) provides excellent visualization of anatomy and can generate real-time imaging with frame rates similar to X-ray fluoroscopy. Realization of MRI as a primary imaging modality for cardiovascular interventions has been slow, largely because existing guidewires, catheters and other devices create imaging artifacts and can heat dangerously. Nonetheless, numerous clinical centers have started interventional cardiovascular magnetic resonance (iCMR) programs for invasive hemodynamic studies or electrophysiology procedures to leverage the clear advantages of MRI tissue characterization, to quantify cardiac chamber function and flow, and to avoid ionizing radiation exposure. Clinical implementation of more complex cardiovascular interventions has been challenging because catheters and other tools require re-engineering for safety and conspicuity in the iCMR environment. However, recent innovations in scanner and interventional device technology, in particular availability of high performance low-field MRI scanners could be the inflection point, enabling a new generation of iCMR procedures. In this review we review these technical considerations, summarize contemporary clinical iCMR experience, and consider potential future applications.
Collapse
Affiliation(s)
- Toby Rogers
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
- Section of Interventional Cardiology, MedStar Washington Hospital Center, 110 Irving St NW, Suite 4B01, Washington, DC, 20011, USA.
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - D Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Laurie P Grant
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Annette M Stine
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Aravindan Kolandaivelu
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Johns Hopkins Hospital, Baltimore, MD, USA
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
| | - Kanishka Ratnayaka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/Room 2C713, 9000 Rockville Pike, Bethesda, MD, 20892-1538, USA.
| |
Collapse
|
5
|
Vuorinen AM, Paakkanen R, Karvonen J, Sinisalo J, Holmström M, Kivistö S, Peltonen JI, Kaasalainen T. Magnetic resonance imaging safety in patients with abandoned or functioning epicardial pacing leads. Eur Radiol 2022; 32:3830-3838. [PMID: 34989847 DOI: 10.1007/s00330-021-08469-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The European Society of Cardiology Guidelines on cardiac pacing from 2021 allow magnetic resonance imaging (MRI) in patients with cardiac implantable electronic devices (CIEDs) but do not recommend MRI in patients with epicardial pacing leads. The clinical dilemma remains whether performing an MRI in patients with CIED and epicardial leads is safe. We aimed to evaluate the safety of performing an MRI in patients with CIED and abandoned or functioning epicardial pacing leads. METHODS We included all adult patients who underwent clinically indicated MRIs with CIED and functioning or abandoned epicardial leads in a single tertiary hospital between November 2011 and October 2019. The data were retrospectively collected. RESULTS Twenty-six MRIs were performed on 17 patients with functioning or abandoned epicardial pacing leads. Sixty-nine percent of the MRI scans (18/26) were conducted on patients with functioning epicardial pacing leads. A definite adverse event occurred in one MRI scan. This was a transient elevation of the pacing threshold in a patient with a functioning epicardial ventricular pacing lead implanted 29 years previously. An irreversible atrial pacing lead impedance elevation was detected 6 months after the MRI in another patient; the association with the previous MRI remained unclear. No adverse events were detected in MRIs performed on patients with modern (implanted in 2000 or later) functioning epicardial leads. CONCLUSIONS MRIs in patients with CIED and modern functioning epicardial pacing leads were performed without detectable adverse events. Further large-scale studies are necessary to confirm MRI safety in patients with epicardial pacing leads. KEY POINTS • Currently, MRI in patients with cardiac implantable electronic devices (CIEDs) and functioning or abandoned epicardial pacing leads is not recommended. • MRIs in patients with CIED and modern functioning epicardial leads (implanted in 2000 or later) were performed without detectable adverse events in our patient cohort. • Allowing MRI in patients with epicardial pacing leads may significantly improve the diagnostic work-up, especially in specific patient groups, such as patients with congenital heart disease.
Collapse
Affiliation(s)
- Aino-Maija Vuorinen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland.
| | - Riitta Paakkanen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Jarkko Karvonen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Miia Holmström
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Sari Kivistö
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Juha I Peltonen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| | - Touko Kaasalainen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, P.O. Box 340, 00029 HUS, Helsinki, Finland
| |
Collapse
|
6
|
Nguyen BT, Bhusal B, Rahsepar AA, Fawcett K, Lin S, Marks DS, Passman R, Nieto D, Niemzcura R, Golestanirad L. Safety of MRI in patients with retained cardiac leads. Magn Reson Med 2021; 87:2464-2480. [PMID: 34958685 PMCID: PMC8919805 DOI: 10.1002/mrm.29116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Purpose To evaluate the safety of MRI in patients with fragmented retained leads (FRLs) through numerical simulation and phantom experiments. Methods Electromagnetic and thermal simulations were performed to determine the worst‐case RF heating of 10 patient‐derived FRL models during MRI at 1.5 T and 3 T and at imaging landmarks corresponding to head, chest, and abdomen. RF heating measurements were performed in phantoms implanted with reconstructed FRL models that produced highest heating in numerical simulations. The potential for unintended tissue stimulation was assessed through a conservative estimation of the electric field induced in the tissue due to gradient‐induced voltages developed along the length of FRLs. Results In simulations under conservative approach, RF exposure at B1+ ≤ 2 µT generated cumulative equivalent minutes (CEM)43 < 40 at all imaging landmarks at both 1.5 T and 3 T, indicating no thermal damage for acquisition times (TAs) < 10 min. In experiments, the maximum temperature rise when FRLs were positioned at the location of maximum electric field exposure was measured to be 2.4°C at 3 T and 2.1°C at 1.5 T. Electric fields induced in the tissue due to gradient‐induced voltages remained below the threshold for cardiac tissue stimulation in all cases. Conclusions Simulation and experimental results indicate that patients with FRLs can be scanned safely at both 1.5 T and 3 T with most clinical pulse sequences.
Collapse
Affiliation(s)
- Bach T Nguyen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amir Ali Rahsepar
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kate Fawcett
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stella Lin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel S Marks
- Department of Electrophysiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rod Passman
- Department of Electrophysiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Donny Nieto
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard Niemzcura
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
7
|
Wang Y, Guo R, Hu W, Zheng J, Wang Q, Jiang J, Kurpad KKN, Kaula N, Long S, Chen J, Kainz W. Magnetic resonance conditionality of abandoned leads from active implantable medical devices at 1.5 T. Magn Reson Med 2021; 87:394-408. [PMID: 34378816 DOI: 10.1002/mrm.28967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/26/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE During MR scans, abandoned leads from active implantable medical devices (AIMDs) can experience excessive heating at the lead tip, depending on the type of termination applied to the proximal contacts (proximal end treatment). The influence of different proximal end treatments (ie, [1] freely exposed in the tissue, [2] terminated with metal in contact with the tissue, or [3] capped with plastic, and thereby fully insulated, on the RF-induced lead-tip heating) are studied. A technique to ensure that MR Conditional AIMD leads remain MR Conditional even when abandoned is recommended. METHODS Abandoned leads from three MR Conditional AIMDs ([1] a sacral neuromodulation system, [2] a cardiac rhythm management pacemaker system, and [3] a deep brain stimulator system) were investigated in this study. The computational lead models (ie, the transfer functions) for different proximal end treatments were measured and used to assess the in vivo lead-tip heating for four virtual human models (FATS, Duke, Ella, and Billie) and compared with the lead-tip heating of the complete MR Conditional AIMD system. RESULT The average and maximum lead-tip heating for abandoned leads proximally capped with metal is always lower than that from the complete AIMD system. Abandoned leads proximally insulated could lead to an average in vivo temperature rise up to 3.5 times higher than that from the complete AIMD system. CONCLUSION For the three investigated AIMDs under 1.5T MR scanning, our results indicate that RF-induced lead-tip heating of abandoned leads strongly depends on the proximal lead termination. A metallic cap applied to the proximal termination of the tested leads could significantly reduce the RF-induced lead-tip heating.
Collapse
Affiliation(s)
- Yu Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ran Guo
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wei Hu
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Qingyan Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Jay Jiang
- Axonics Modulation Technologies, Irvine, California, USA
| | | | | | - Stuart Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Wang Y, Zheng J, Guo R, Wang Q, Kainz W, Long S, Chen J. A technique for the reduction of RF-induced heating of active implantable medical devices during MRI. Magn Reson Med 2021; 87:349-364. [PMID: 34374457 DOI: 10.1002/mrm.28953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The paper presents a novel method to reduce the RF-induced heating of active implantable medical devices during MRI. METHODS With the addition of an energy decoying and dissipating structure, RF energy can be redirected toward the dissipating rings through the decoying conductor. Three lead groups (45 cm-50 cm) and 4 (50 cm-100 cm) were studied in 1.5 Tesla MR systems by simulation and measurement, respectively. In vivo modeling was performed using human models to estimate the RF-induced heating of an active implantable medical device for spinal cord treatment. RESULT In the simulation study, it was shown that the peak 1g-averaged specific absorption rate near the lead-tips can be reduced by 70% to 80% compared to those from the control leads. In the experimental measurements during a 2-min exposure test in a 1.5 Telsa MR system, the temperature rises dropped from the original 18.3℃, 25.8℃, 8.1℃, and 16.1℃ (control leads 1-4) to 5.4℃, 6.9℃, 1.6℃, and 3.3℃ (leads 1-4 with the energy decoying and dissipation structure). The in vivo calculation results show that the maximum induced temperature rise among all cases can be substantially reduced (up to 80%) when the energy decoying and dissipating structures were used. CONCLUSION Our studies confirm the effectiveness of the novel technique for a variety of scanning scenarios. The results also indicate that the decoying conductor length, number of rings, and ring area must be carefully chosen and validated.
Collapse
Affiliation(s)
- Yu Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ran Guo
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Qingyan Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stuart Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
9
|
Mattei E, Censi F, Calcagnini G, Lucano E, Angelone LM. A combined computational and experimental approach to assess the transfer function of real pacemaker leads for MR radiofrequency-induced heating. MAGMA (NEW YORK, N.Y.) 2021; 34:619-630. [PMID: 33555489 DOI: 10.1007/s10334-021-00909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To propose and validate a variation of the classic techniques for the estimation of the transfer function (TF) of a real pacemaker (PM) lead. METHODS The TF of three commercially available PM leads was measured by combining data from experimental measurements and numerical simulations generated by three sources: a) the experimental local SAR at the tip of the PM lead (single measurement point) exposed to a 64 MHz birdcage body coil; b) the experimental current distribution along the PM lead, obtained by directly injecting a 64 MHz signal inside the lead; c) the electric field (E-field) simulated with a computational model of the 64 MHz birdcage body coil adopted in the experimental measurement performed in a). The effect of the lead trajectory on the estimation of the TF was also estimated. RESULTS The proposed methodology was validated by comparing the SAR obtained from the PM lead TF with experimental measurements: a maximum difference of 2.2 dB was observed. It was also shown that the estimation of the TF cannot be considered independent with the lead trajectory: a variation of the SAR estimation up to 3.4 dB was observed. CONCLUSION For the three PM lead tested, the error in the SAR estimation is within the uncertainty level of SAR measurements (± 2 dB). Additionally, the estimation of the TF using the reciprocity principle is influenced by the particular lead trajectory adopted, even if the consequent variability in the SAR estimation is still close to the uncertainty level of SAR measurements.
Collapse
Affiliation(s)
- Eugenio Mattei
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | - F Censi
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - G Calcagnini
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - E Lucano
- Department of Information Engineering, Electronics and Telecommunications of the University of Rome "Sapienza", Rome, Italy
| | - L M Angelone
- Division of Biomedical Physics of the Food and Drug Administration, Washington, USA
| |
Collapse
|
10
|
Liu X, Karmarkar P, Voit D, Frahm J, Weiss CR, Kraitchman DL, Bottomley PA. Real-Time High-Resolution MRI Endoscopy at up to 10 Frames per Second. BME FRONTIERS 2021; 2021:6185616. [PMID: 37849906 PMCID: PMC10521714 DOI: 10.34133/2021/6185616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/02/2021] [Indexed: 10/19/2023] Open
Abstract
Objective. Atherosclerosis is a leading cause of mortality and morbidity. Optical endoscopy, ultrasound, and X-ray offer minimally invasive imaging assessments but have limited sensitivity for characterizing disease and therapeutic response. Magnetic resonance imaging (MRI) endoscopy is a newer idea employing tiny catheter-mounted detectors connected to the MRI scanner. It can see through vessel walls and provide soft-tissue sensitivity, but its slow imaging speed limits practical applications. Our goal is high-resolution MRI endoscopy with real-time imaging speeds comparable to existing modalities. Methods. Intravascular (3 mm) transmit-receive MRI endoscopes were fabricated for highly undersampled radial-projection MRI in a clinical 3-tesla MRI scanner. Iterative nonlinear reconstruction was accelerated using graphics processor units connected via a single ethernet cable to achieve true real-time endoscopy visualization at the scanner. MRI endoscopy was performed at 6-10 frames/sec and 200-300 μm resolution in human arterial specimens and porcine vessels ex vivo and in vivo and compared with fully sampled 0.3 frames/sec and three-dimensional reference scans using mutual information (MI) and structural similarity (3-SSIM) indices. Results. High-speed MRI endoscopy at 6-10 frames/sec was consistent with fully sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. A 20-30-fold speed-up vs. 0.3 frames/sec reference scans came at a cost of ~7% in MI and ~45% in 3-SSIM, with reduced motion sensitivity. Conclusion. High-resolution MRI endoscopy can now be performed at frame rates comparable to those of X-ray and optical endoscopy and could provide an alternative to existing modalities, with MRI's advantages of soft-tissue sensitivity and lack of ionizing radiation.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, USA
- The Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Parag Karmarkar
- The Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dirk Voit
- Biomedizinishe NMR, Max-Plank-Institut fur Biophysikalische Chemie, Gottingen, Germany
| | - Jens Frahm
- Biomedizinishe NMR, Max-Plank-Institut fur Biophysikalische Chemie, Gottingen, Germany
| | - Clifford R. Weiss
- The Division of Interventional Radiology, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dara L. Kraitchman
- The Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Paul A. Bottomley
- Department of Electrical and Computer Engineering, Johns Hopkins University, USA
- The Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Silicon Carbide and MRI: Towards Developing a MRI Safe Neural Interface. MICROMACHINES 2021; 12:mi12020126. [PMID: 33530350 PMCID: PMC7911642 DOI: 10.3390/mi12020126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
Abstract
An essential method to investigate neuromodulation effects of an invasive neural interface (INI) is magnetic resonance imaging (MRI). Presently, MRI imaging of patients with neural implants is highly restricted in high field MRI (e.g., 3 T and higher) due to patient safety concerns. This results in lower resolution MRI images and, consequently, degrades the efficacy of MRI imaging for diagnostic purposes in these patients. Cubic silicon carbide (3C-SiC) is a biocompatible wide-band-gap semiconductor with a high thermal conductivity and magnetic susceptibility compatible with brain tissue. It also has modifiable electrical conductivity through doping level control. These properties can improve the MRI compliance of 3C-SiC INIs, specifically in high field MRI scanning. In this work, the MRI compliance of epitaxial SiC films grown on various Si wafers, used to implement a monolithic neural implant (all-SiC), was studied. Via finite element method (FEM) and Fourier-based simulations, the specific absorption rate (SAR), induced heating, and image artifacts caused by the portion of the implant within a brain tissue phantom located in a 7 T small animal MRI machine were estimated and measured. The specific goal was to compare implant materials; thus, the effect of leads outside the tissue was not considered. The results of the simulations were validated via phantom experiments in the same 7 T MRI system. The simulation and experimental results revealed that free-standing 3C-SiC films had little to no image artifacts compared to silicon and platinum reference materials inside the MRI at 7 T. In addition, FEM simulations predicted an ~30% SAR reduction for 3C-SiC compared to Pt. These initial simulations and experiments indicate an all-SiC INI may effectively reduce MRI induced heating and image artifacts in high field MRI. In order to evaluate the MRI safety of a closed-loop, fully functional all-SiC INI as per ISO/TS 10974:2018 standard, additional research and development is being conducted and will be reported at a later date.
Collapse
|
12
|
Yaras YS, Yildirim DK, Herzka DA, Rogers T, Campbell-Washburn AE, Lederman RJ, Degertekin FL, Kocaturk O. Real-time device tracking under MRI using an acousto-optic active marker. Magn Reson Med 2020; 85:2904-2914. [PMID: 33347642 DOI: 10.1002/mrm.28625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE This work aims to demonstrate the use of an "active" acousto-optic marker with enhanced visibility and reduced radiofrequency (RF) -induced heating for interventional MRI. METHODS The acousto-optic marker was fabricated using bulk piezoelectric crystal and π-phase shifted fiber Bragg grating (FBGs) and coupled to a distal receiver coil on an 8F catheter. The received MR signal is transmitted over an optical fiber to mitigate RF-induced heating. A photodetector converts the optical signal into electrical signal, which is used as the input signal to the MRI receiver plug. Acousto-optic markers were characterized in phantom studies. RF-induced heating risk was evaluated according to ASTM 2182 standard. In vivo real-time tracking capability was tested in an animal model under a 0.55T scanner. RESULTS Signal-to-noise ratio (SNR) levels suitable for real-time tracking were obtained by using high sensitivity FBG and piezoelectric transducer with resonance matched to Larmor frequency. Single and multiple marker coils integrated to 8F catheters were readout for position and orientation tracking by a single acousto-optic sensor. RF-induced heating was significantly reduced compared to a coax cable connected reference marker. Real-time distal tip tracking of an active device was demonstrated in an animal model with a standard real-time cardiac MR sequence. CONCLUSION Acousto-optic markers provide sufficient SNR with a simple structure for real-time device tracking. RF-induced heating is significantly reduced compared to conventional active markers. Also, multiple RF receiver coils connected on an acousto-optic modulator can be used on a single catheter for determining catheter orientation and shape.
Collapse
Affiliation(s)
- Yusuf S Yaras
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Micromachined Sensors and Transducers Group, Atlanta, Georgia, USA
| | - Dursun Korel Yildirim
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Daniel A Herzka
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - Toby Rogers
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | | | - Robert J Lederman
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
| | - F Levent Degertekin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Micromachined Sensors and Transducers Group, Atlanta, Georgia, USA
| | - Ozgur Kocaturk
- Institute of Biomedical Engineering, Bogazici University, Kandilli Kampus, Istanbul, Turkey
| |
Collapse
|
13
|
Nguyen BT, Pilitsis J, Golestanirad L. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging. ACTA ACUST UNITED AC 2020; 65:185007. [DOI: 10.1088/1361-6560/abac9f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Zheng J, Yang R, Wang Q, Guo R, Xu J, Shou X, Kainz W, Chen J. Reducing MRI RF-induced heating for the external fixation using capacitive structures. Phys Med Biol 2020; 65:155017. [PMID: 32460252 DOI: 10.1088/1361-6560/ab9706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper presents a generic method to reduce the radiofrequency (RF) induced heating of external fixation devices during the magnetic resonance imaging (MRI) procedure. A simplified equivalent circuit model was developed to illustrate the interaction between the external fixation device and the MRI RF field. Carefully designed mechanical structures, which utilize capacitive reactance from the circuit model, were applied to the external fixation device to mitigate the coupling between the external fixation device and the MRI RF field for RF-induced heating reduction. Both numerical and experimental studies were performed to demonstrate the validity of the circuit model and the effectiveness of the proposed method. By adding capacitive structures in both the clamp-pin and rod-clamp joints, the peak specific absorption rate averaged in 1 gram (SAR1g) near the pin tips were reduced from 760.4 W kg-1 to 12.0 W kg-1 at 1.5 T and 391.5 W kg-1 to 25.2 W kg-1 at 3 T from numerical simulations. Experimental results showed that RF-induced heating was reduced from 7.85 °C to 1.01 °C at 1.5 T and from 16.70 °C to 0.32 °C at 3 T for the external fixation device studied here. The carefully designed capacitive structures can be used to detune the coupling between the external fixation device and the MRI fields to reduce the RF-induced heating in the human body for both 1.5 T and 3 T MRI systems. However, as RF-induced heating is very device and design specific all devices must be thoroughly tested based on its final design.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Dept. of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204-4005, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Winter L, Seifert F, Zilberti L, Murbach M, Ittermann B. MRI‐Related Heating of Implants and Devices: A Review. J Magn Reson Imaging 2020; 53:1646-1665. [DOI: 10.1002/jmri.27194] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Lukas Winter
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Frank Seifert
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| | - Luca Zilberti
- Istituto Nazionale di Ricerca Metrologica Torino Italy
| | - Manuel Murbach
- ZMT Zurich MedTech AG Zurich Switzerland
- Institute for Molecular Instrumentation and Imaging (i3M) Universidad Politécnica de Valencia (UPV) Valencia Spain
| | - Bernd Ittermann
- Physikalisch‐Technische Bundesanstalt (PTB) Braunschweig and Berlin Germany
| |
Collapse
|
16
|
Bonmassar G, Serano P. MRI-Induced Heating of Coils for Microscopic Magnetic Stimulation at 1.5 Tesla: An Initial Study. Front Hum Neurosci 2020; 14:53. [PMID: 32231526 PMCID: PMC7082860 DOI: 10.3389/fnhum.2020.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose Deep brain stimulation (DBS) has proved to be effective in the treatment of movement disorders. However, the direct contact between the metal contacts of the DBS electrode and the brain can cause RF heating in magnetic resonance imaging (MRI) scanning, due to an increase of local specific absorption rate (SAR). Recently, micro coils (μMS) have demonstrated excitation of neuronal tissue through the electromagnetic induction both in vitro and in vivo experiments. In contrast to electrical stimulation, in μMS, there is no direct contact between the metal and the biological tissue. Methods We compared the heating of a μMS coil with a control case of a metal wire. The heating was induced by RF fields in a 1.5 T MRI head birdcage coil (often used for imaging patients with implants) at 64 MHz, and normalized results to 3.2 W/kg whole head average SAR. Results The μMS coil or wire implants were placed inside an anatomically accurate head saline-gel filled phantom inserted in the RF coil, and we observed approximately 1°C initial temperature rise at the μMS coil, while the wire exhibited a 10°C temperature rise in the proximity of the exposed end. The numerical simulations showed a 32-times increase of local SAR induced at the tips of the metal wire compared to the μMS. Conclusion In this work, we show with measurements and electromagnetic numerical simulations that the RF-induced increase in local SAR and induced heating during MRI scanning can be greatly reduced by using magnetic stimulation with the proposed μMS technology.
Collapse
Affiliation(s)
- Giorgio Bonmassar
- Athinoula A. Martinos Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Peter Serano
- Athinoula A. Martinos Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,ANSYS Inc., Canonsburg, PA, United States
| |
Collapse
|
17
|
Özen AC, Silemek B, Lottner T, Atalar E, Bock M. MR safety watchdog for active catheters: Wireless impedance control with real-time feedback. Magn Reson Med 2020; 84:1048-1060. [PMID: 31961965 DOI: 10.1002/mrm.28153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.
Collapse
Affiliation(s)
- Ali Caglar Özen
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consortium for Translational Cancer Research Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Berk Silemek
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Thomas Lottner
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ergin Atalar
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Guerin B, Angelone LM, Dougherty D, Wald LL. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels. Magn Reson Med 2020; 83:299-311. [PMID: 31389069 PMCID: PMC6778698 DOI: 10.1002/mrm.27905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the mean and variance performance of parallel transmission (pTx) coils for reduction of the absorbed power around electrodes (APAE) in patients implanted with deep brain stimulation (DBS) devices. METHODS We simulated 4 pTx coils (8 and 16 channels, head and body coils) and a birdcage body coil. We characterized the RF safety risk using the APAE, which is the integral of the deposited power (in Watts) in a small cylindrical volume of brain tissue surrounding the electrode tips. We assessed the APAE mean and variance by simulation of 5 realistic DBS patient models that include the full DBS implant length, extracranial loops, and implanted pulse generator. RESULTS PTx coils with 8 (16) channels were able to reduce the APAE by >18× (>169×) compared to the birdcage coil in average for all patient models, at no cost in term of flip angle uniformity or global specific absorption rate (SAR). Moreover, local pTx coils performed significantly better than body arrays. CONCLUSION PTx is a possible solution to the problem of RF heating of DBS patients when performing MRI, but the large interpatient variability of the APAE indicates that patient-specific safety monitoring may be needed.
Collapse
Affiliation(s)
- Bastien Guerin
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Leonardo M. Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States
| | - Darin Dougherty
- Harvard Medical School, Boston, MA, United States
- Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lawrence L. Wald
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Yang R, Zheng J, Wang Y, Guo R, Kainz W, Chen J. Impact of Electrode Structure on RF-Induced Heating for an AIMD Implanted Lead in a 1.5-Tesla MRI System. ACTA ACUST UNITED AC 2019. [DOI: 10.1109/jerm.2019.2913111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Acikel V, Silemek B, Atalar E. Wireless control of induced radiofrequency currents in active implantable medical devices during MRI. Magn Reson Med 2019; 83:2370-2381. [DOI: 10.1002/mrm.28089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Berk Silemek
- National Magnetic Resonance Research Center (UMRAM) Bilkent University Ankara Turkey
| | - Ergin Atalar
- National Magnetic Resonance Research Center (UMRAM) Bilkent University Ankara Turkey
- Department of Electrical and Electronics Engineering Bilkent University Ankara Turkey
| |
Collapse
|
21
|
Stijnman PRS, Tokaya JP, van Gemert J, Luijten PR, Pluim JPW, Brink WM, Remis RF, van den Berg CAT, Raaijmakers AJE. Accelerating implant RF safety assessment using a low-rank inverse update method. Magn Reson Med 2019; 83:1796-1809. [PMID: 31566265 PMCID: PMC7003873 DOI: 10.1002/mrm.28023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 11/17/2022]
Abstract
Purpose Patients who have medical metallic implants, e.g. orthopaedic implants and pacemakers, often cannot undergo an MRI exam. One of the largest risks is tissue heating due to the radio frequency (RF) fields. The RF safety assessment of implants is computationally demanding. This is due to the large dimensions of the transmit coil compared to the very detailed geometry of an implant. Methods In this work, we explore a faster computational method for the RF safety assessment of implants that exploits the small geometry. The method requires the RF field without an implant as a basis and calculates the perturbation that the implant induces. The inputs for this method are the incident fields and a library matrix that contains the RF field response of every edge an implant can occupy. Through a low‐rank inverse update, using the Sherman–Woodbury–Morrison matrix identity, the EM response of arbitrary implants can be computed within seconds. We compare the solution from full‐wave simulations with the results from the presented method, for two implant geometries. Results From the comparison, we found that the resulting electric and magnetic fields are numerically equivalent (maximum error of 1.35%). However, the computation was between 171 to 2478 times faster than the corresponding GPU accelerated full‐wave simulation. Conclusions The presented method enables for rapid and efficient evaluation of the RF fields near implants and might enable situation‐specific scanning conditions.
Collapse
Affiliation(s)
- Peter R S Stijnman
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Janot P Tokaya
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands
| | - Jeroen van Gemert
- Circuit & Systems Group of the Electrical Engineering, Delft University of Technology, Delft, The Netherlands.,C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter R Luijten
- Department of Radiology, UMC Utrecht, Utrecht, The Netherlands
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Wyger M Brink
- C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F Remis
- Circuit & Systems Group of the Electrical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Cornelis A T van den Berg
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Computational Imaging Group for MRI diagnostics and therapy, Centre for Image Sciences UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Missoffe A, Barbier T, Felblinger J. Finite difference transmission line model for the design of safe multi-section cables in MRI. MAGMA (NEW YORK, N.Y.) 2019; 32:449-459. [PMID: 30783887 DOI: 10.1007/s10334-019-00744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To show the relevance of a simple finite difference transmission line model to help design safe implanted cables in 1.5T MRI's using the multi-section cable approach. MATERIALS AND METHODS The transfer function and heating under a given incident field predicted by the finite difference model for two-section cables are compared to full-wave and experimental results. The finite difference model was then used to design a three-section cable considering the phase effects. RESULTS The differences between the predicted transfer function given by the transmission line model with the full-wave results and the experimental results are, respectively, less than 10% and less than 5%. The predicted heating differed by less than 7% with the full-wave results and less than 25% with the experimental results. The optimum lengths of the three-section cable reduces by 51% the worst case heating at the electrodes compared to the best case unique section wire. DISCUSSION The multi-section cable design can reduce the heating of cables in MRI taking into account phase effects. The finite difference transmission line model presented is a simple valuable tool to estimate the worst case heating of simple multi-section cables.
Collapse
Affiliation(s)
- Alexia Missoffe
- IADI (Université de Lorraine-INSERM), Bâtiment Recherche, CHRU de Nancy Brabois, Rue du Morvan, 54511, Vandoeuvre Cedex, France.
| | - Thérèse Barbier
- IADI (Université de Lorraine-INSERM), Bâtiment Recherche, CHRU de Nancy Brabois, Rue du Morvan, 54511, Vandoeuvre Cedex, France
- Axon Cable R&D, Montmirail, France
| | - Jacques Felblinger
- IADI (Université de Lorraine-INSERM), Bâtiment Recherche, CHRU de Nancy Brabois, Rue du Morvan, 54511, Vandoeuvre Cedex, France
- CIC 1433 INSERM, CHRU, Nancy, France
| |
Collapse
|
23
|
Erhardt JB, Lottner T, Martinez J, Özen AC, Schuettler M, Stieglitz T, Ennis DB, Bock M. It's the little things: On the complexity of planar electrode heating in MRI. Neuroimage 2019; 195:272-284. [PMID: 30935911 DOI: 10.1016/j.neuroimage.2019.03.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022] Open
Abstract
Neurological disorders are increasingly analysed and treated with implantable electrodes, and patients with such electrodes are studied with MRI despite the risk of radio-frequency (RF) induced heating during the MRI exam. Recent clinical research suggests that electrodes with smaller diameters of the electrical interface between implant and tissue are beneficial; however, the influence of this electrode contact diameter on RF-induced heating has not been investigated. In this work, electrode contact diameters between 0.3 and 4 mm of implantable electrodes appropriate for stimulation and electrocorticography were evaluated in a 1.5 T MRI system. In situ temperature measurements adapted from the ASTM standard test method were performed and complemented by simulations of the specific absorption rate (SAR) to assess local SAR values, temperature increase and the distribution of dissipated power. Measurements showed temperature changes between 0.8 K and 53 K for different electrode contact diameters, which is well above the legal limit of 1 K. Systematic errors in the temperature measurements are to be expected, as the temperature sensors may disturb the heating pattern near small electrodes. Compared to large electrodes, simulations suggest that small electrodes are subject to less dissipated power, but more localized power density. Thus, smaller electrodes might be classified as safe in current certification procedures but may be more likely to burn adjacent tissue. To assess these local heating phenomena, smaller temperature sensors or new non-invasive temperature sensing methods are needed.
Collapse
Affiliation(s)
- Johannes B Erhardt
- Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany; Department of Radiology, University of California, Los Angeles, CA, USA; BrainLinks-BrainTools, Freiburg, Germany
| | - Thomas Lottner
- Department of Radiology - Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Martinez
- Department of Radiology, University of California, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Ali C Özen
- Department of Radiology - Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Thomas Stieglitz
- Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg, Germany; Bernstein Center Freiburg, Freiburg, Germany; BrainLinks-BrainTools, Freiburg, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Michael Bock
- Department of Radiology - Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
24
|
Golestanirad L, Angelone LM, Kirsch J, Downs S, Keil B, Bonmassar G, Wald LL. Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC). IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1265-1273. [PMID: 31607756 PMCID: PMC6788634 DOI: 10.1109/tmtt.2018.2885517] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.
Collapse
Affiliation(s)
- Laleh Golestanirad
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Charlestown, MA 02129 USA, and the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Device and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| |
Collapse
|
25
|
Erhardt JB, Fuhrer E, Gruschke OG, Leupold J, Wapler MC, Hennig J, Stieglitz T, Korvink JG. Should patients with brain implants undergo MRI? J Neural Eng 2018. [DOI: 10.1088/1741-2552/aab4e4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Guerin B, Serano P, Iacono MI, Herrington TM, Widge AS, Dougherty DD, Bonmassar G, Angelone LM, Wald LL. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies. Phys Med Biol 2018; 63:095015. [PMID: 29637905 PMCID: PMC5935557 DOI: 10.1088/1361-6560/aabd50] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg-1 (full model, helicoidal conductors) to 43.6 kW kg-1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg-1 (full model, straight conductors) to 73.8 kW kg-1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.
Collapse
Affiliation(s)
- Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
| | - Peter Serano
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Todd M. Herrington
- Harvard Medical School, Boston MA
- Department of Neurology, Massachusetts General Hospital, Boston MA
| | - Alik S. Widge
- Harvard Medical School, Boston MA
- Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Darin D. Dougherty
- Harvard Medical School, Boston MA
- Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
| | - Leonardo M. Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
- Harvard-MIT Health Science and Technology, Cambridge MA
| |
Collapse
|
27
|
Wu KJ, Gregory TS, Boland BL, Zhao W, Cheng R, Mao L, Tse ZTH. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging. Proc Inst Mech Eng H 2018; 232:597-604. [PMID: 29687748 DOI: 10.1177/0954411918771098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.
Collapse
Affiliation(s)
- Kevin J Wu
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - T Stan Gregory
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Brian L Boland
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Wujun Zhao
- 2 Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Rui Cheng
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Leidong Mao
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- 1 School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Tokaya JP, Raaijmakers AJE, Luijten PR, van den Berg CAT. MRI-based, wireless determination of the transfer function of a linear implant: Introduction of the transfer matrix. Magn Reson Med 2018; 80:2771-2784. [PMID: 29687916 PMCID: PMC6220769 DOI: 10.1002/mrm.27218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE We introduce the transfer matrix (TM) that makes MR-based wireless determination of transfer functions (TFs) possible. TFs are implant specific measures for RF-safety assessment of linear implants. The TF relates an incident tangential electric field on an implant to a scattered electric field at its tip that generally governs local heating. The TM extends this concept and relates an incident tangential electric field to a current distribution in the implant therewith characterizing the RF response along the entire implant. The TM is exploited to measure TFs with MRI without hardware alterations. THEORY AND METHODS A model of rightward and leftward propagating attenuated waves undergoing multiple reflections is used to derive an analytical expression for the TM. This allows parameterization of the TM of generic implants, e.g., (partially) insulated single wires, in a homogeneous medium in a few unknowns that simultaneously describe the TF. These unknowns can be determined with MRI making it possible to measure the TM and, therefore, also the TF. RESULTS The TM is able to predict an induced current due to an incident electric field and can be accurately parameterized with a limited number of unknowns. Using this description the TF is determined accurately (with a Pearson correlation coefficient R ≥ 0.9 between measurements and simulations) from MRI acquisitions. CONCLUSION The TM enables measuring of TFs with MRI of the tested generic implant models. The MR-based method does not need hardware alterations and is wireless hence making TF determination in more realistic scenarios conceivable.
Collapse
Affiliation(s)
- Janot P Tokaya
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Nielsen JC, Giudici M, Tolasana Viu JM, Chew E, Sommerijns E, Wold N, Evert L, Love CJ, Stein K, Olaf H. Safety and effectiveness of a 6-French MRI conditional pacemaker lead: The INGEVITYTM
clinical investigation study results. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 40:1121-1128. [DOI: 10.1111/pace.13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Charles J. Love
- Cardiac Rhythm Device Services; Johns Hopkins Hospital; Baltimore MD USA
| | | | | |
Collapse
|
30
|
Poh PG, Liew C, Yeo C, Chong LR, Tan A, Poh A. Cardiovascular implantable electronic devices: a review of the dangers and difficulties in MR scanning and attempts to improve safety. Insights Imaging 2017. [PMID: 28624970 PMCID: PMC5519496 DOI: 10.1007/s13244-017-0556-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Abstract An increasing number of patients are being treated with cardiovascular implantable electronic devices (CIEDs), many of which are MR conditional. There is a lack of literature on the safe scanning of MR conditional CIEDs. This review article discusses MR imaging safety in patients with implanted CIEDs. Guidelines on safe use and indications of imaging patients with MR conditional CIEDs are described, followed by a pictorial essay of the radiographic features of these devices. We also discuss the challenges of monitoring the patient in the MR environment, advances in MRI conditional imaging of devices, availability, limitations and workflow including vendor-specific and other collaborative efforts to simplify the scanning process. Radiologists must be able to facilitate the safe utilization of MR imaging in patients who have CIEDs. A thorough knowledge of the hazards of imaging non-MR compatible devices is required as well as knowing how to correctly identify and manage the imaging of patients with MR conditional CIEDs. Finally, we propose steps required to facilitate the safe scanning of patients with MR conditional CIEDs adopted in our institution and a contingency plan in the event that an inadvertent MR scan of a patient with a MRI unsafe CIED should occur. Main Messages • Risks of MR imaging in patients who have CIEDs have been worked around. • There are many technical limitations in enabling safe MR scanning of CIEDs. • Radiological identification of MRI-conditional status of CIEDs is useful. • Standardizing conditions for safe MRI scanning is important. • We offer example algorithms for facilitating safe MRI scanning of CIEDs.
Collapse
Affiliation(s)
- Pei Ghim Poh
- Department of Radiology, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore. .,Singhealth Radiology Residency, 167 Jalan Bukit Merah #17-10 Tower 5, Singapore, 150167, Singapore.
| | - Charlene Liew
- Department of Radiology, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
| | - Colin Yeo
- Department of Cardiology, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
| | - Le Roy Chong
- Department of Radiology, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
| | - Andrew Tan
- Department of Radiology, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
| | - Angeline Poh
- Department of Radiology, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
| |
Collapse
|
31
|
Missoffe A, Aissani S. Experimental setup for transfer function measurement to assess RF heating of medical leads in MRI: Validation in the case of a single wire. Magn Reson Med 2017; 79:1766-1772. [DOI: 10.1002/mrm.26773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sarra Aissani
- IADI, U947, INSERM, Université de Lorraine; Nancy France
| |
Collapse
|
32
|
Panych LP, Madore B. The physics of MRI safety. J Magn Reson Imaging 2017; 47:28-43. [DOI: 10.1002/jmri.25761] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/24/2017] [Indexed: 01/25/2023] Open
Affiliation(s)
- Lawrence P. Panych
- Department of Radiology; Brigham and Women's Hospital; Boston Massachusetts USA
- Harvard Medical School; Boston Massachusetts USA
| | - Bruno Madore
- Department of Radiology; Brigham and Women's Hospital; Boston Massachusetts USA
- Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
33
|
McElcheran CE, Yang B, Anderson KJ, Golestanirad L, Graham SJ. Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model. Magn Reson Med 2017; 78:2406-2415. [DOI: 10.1002/mrm.26622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Clare E. McElcheran
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
- Department of Medical Biophysics; University of Toronto; Toronto Canada
| | - Benson Yang
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
| | - Kevan J.T. Anderson
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
| | - Laleh Golestanirad
- Massachusetts General Hospital, Harvard Medical School; Charlestown Massachusetts USA
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Health Sciences Institute; Toronto Canada
- Department of Medical Biophysics; University of Toronto; Toronto Canada
| |
Collapse
|
34
|
Kabil J, Belguerras L, Trattnig S, Pasquier C, Felblinger J, Missoffe A. A Review of Numerical Simulation and Analytical Modeling for Medical Devices Safety in MRI. Yearb Med Inform 2016:152-158. [PMID: 27830244 DOI: 10.15265/iy-2016-016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To review past and present challenges and ongoing trends in numerical simulation for MRI (Magnetic Resonance Imaging) safety evaluation of medical devices. METHODS A wide literature review on numerical and analytical simulation on simple or complex medical devices in MRI electromagnetic fields shows the evolutions through time and a growing concern for MRI safety over the years. Major issues and achievements are described, as well as current trends and perspectives in this research field. RESULTS Numerical simulation of medical devices is constantly evolving, supported by calculation methods now well-established. Implants with simple geometry can often be simulated in a computational human model, but one issue remaining today is the experimental validation of these human models. A great concern is to assess RF heating on implants too complex to be traditionally simulated, like pacemaker leads. Thus, ongoing researches focus on alternative hybrids methods, both numerical and experimental, with for example a transfer function method. For the static field and gradient fields, analytical models can be used for dimensioning simple implants shapes, but limited for complex geometries that cannot be studied with simplifying assumptions. CONCLUSIONS Numerical simulation is an essential tool for MRI safety testing of medical devices. The main issues remain the accuracy of simulations compared to real life and the studies of complex devices; but as the research field is constantly evolving, some promising ideas are now under investigation to take up the challenges.
Collapse
Affiliation(s)
| | | | | | | | - J Felblinger
- Jacques Felblinger, Ph.D, Prof., Laboratoire IADI (UL-INSERM U947), CHRU Nancy Brabois, Rue du Morvan, 54511 Vandoeuvre Cedex, France, Tel: + 33 3 83 15 49 76, E-Mail:
| | | |
Collapse
|
35
|
Golestanirad L, Angelone LM, Iacono MI, Katnani H, Wald LL, Bonmassar G. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops. Magn Reson Med 2016; 78:1558-1565. [PMID: 27797157 DOI: 10.1002/mrm.26535] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE MRI may cause brain tissue around deep brain stimulation (DBS) electrodes to become excessively hot, causing lesions. The presence of extracranial loops in the DBS lead trajectory has been shown to affect the specific absorption rate (SAR) of the radiofrequency energy at the electrode tip, but experimental studies have reported controversial results. The goal of this study was to perform a systematic numerical study to provide a better understanding of the effects of extracranial loops in DBS leads on the local SAR during MRI at 64 and 127 MHz. METHODS A total of 160 numerical simulations were performed on patient-derived data, in which relevant factors including lead length and trajectory, loop location and topology, and frequency of MRI radiofrequency (RF) transmitter were assessed. RESULTS Overall, the presence of extracranial loops reduced the local SAR in the tissue around the DBS tip compared with straight trajectories with the same length. SAR reduction was significantly larger at 127 MHz compared with 64 MHz. SAR reduction was significantly more sensitive to variable loop parameters (eg, topology and location) at 127 MHz compared with 64 MHz. CONCLUSION Lead management strategies could exist that significantly reduce the risks of 3 Tesla (T) MRI for DBS patients. Magn Reson Med 78:1558-1565, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Husam Katnani
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI devices. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 30:93-101. [PMID: 27605033 DOI: 10.1007/s10334-016-0586-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES A new microfabrication method to produce low profile radio frequency (RF) resonant markers on catheter shafts was developed. A semi-active RF resonant marker incorporating a solenoid and a plate capacitor was constructed on the distal shaft of a 5 Fr guiding catheter. The resulting device can be used for interventional cardiovascular MRI procedures. MATERIALS AND METHODS Unlike current semi-active device visualization techniques that require rigid and bulky analog circuit components (capacitor and solenoid), we fabricated a low profile RF resonant marker directly on guiding the catheter surface by thin film metal deposition and electroplating processes using a modified physical vapor deposition system. RESULTS The increase of the overall device profile thickness caused by the semi-active RF resonant marker (130 µm thick) was lowered by a factor of 4.6 compared with using the thinnest commercial non-magnetic and rigid circuit components (600 µm thick). Moreover, adequate visibility performance of the RF resonant marker in different orientations and overall RF safety were confirmed through in vitro experiments under MRI successfully. CONCLUSION The developed RF resonant marker on a clinical grade 5 Fr guiding catheter will enable several interventional congenital heart disease treatment procedures under MRI.
Collapse
|
37
|
Evaluation of epidural and peripheral nerve catheter heating during magnetic resonance imaging. Reg Anesth Pain Med 2016; 39:534-9. [PMID: 25275576 DOI: 10.1097/aap.0000000000000151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Many epidural and peripheral nerve catheters contain conducting wire that could heat during magnetic resonance imaging (MRI), requiring removal for scanning. METHODS We tested 2 each of 6 brands of regional analgesia catheters (from Arrow International [Reading, Pennsylvania], B. Braun Medical Inc [Bethlehem, Pennsylvania], and Smiths Medical/Portex [Keene, New Hampshire]) for exposure to clinical 1.5- and 3-T MRI. Catheters testing as nonmagnetic were placed in an epidural configuration in a standard human torso-sized phantom, and an MRI pulse sequence applied at the maximum scanner-allowed radiofrequency specific absorption rate (SAR) for 15 minutes. Temperature and SAR exposure were sampled during MRI using multiple fiberoptic temperature sensors. RESULTS Two catheters (the Arrow StimuCath Peripheral Nerve and B. Braun Medical Perifix FX Epidural) were found to be magnetic and not tested further. At 3 T, exposure of the remaining 3 epidural and 1 peripheral nerve catheter to the scanner's maximum RF exposure elicited anomalous heating of 4°C to 7°C in 2 Arrow Epidural (MultiPort and Flex-Tip Plus) catheters at the entry points. Temperature increases for the other catheters at 3 T, and all catheters at 1.5 T were 1.4°C or less. When normalized to the body-average US Food and Drug Administration guideline SAR of 4 W/kg, maximum projected temperature increases were 0.1°C to 2.5°C at 1.5 T and 0.7°C to 2.7°C at 3 T, except for the Arrow MultiPort Flex-Tip Plus catheter at 3 T whose increase was 14°C. CONCLUSIONS Most but not all catheters can be left in place during 1.5-T MRI scans. Heating of less than 3°C during MRI for most catheters is not expected to be injurious. While heating was lower at 1.5 T versus 3 T, performance differences between products underscore the need for safety testing before performing MRI.
Collapse
|
38
|
Ertürk MA, El-Sharkawy AMM, Bottomley PA. Monitoring local heating around an interventional MRI antenna with RF radiometry. Med Phys 2016; 42:1411-23. [PMID: 25735295 DOI: 10.1118/1.4907960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. METHODS A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel's thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A "H-factor" relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna's sensitive region. RESULTS The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15-0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. CONCLUSIONS Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or the extra space needed to accommodate alternative thermal transducers. A RF radiometer could be integrated in a MRI scanner to permit "self-monitoring" for assuring device safety and/or monitoring delivery of thermal therapy.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287
| | - AbdEl-Monem M El-Sharkawy
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287
| | - Paul A Bottomley
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|
39
|
Etezadi-Amoli M, Stang P, Kerr A, Pauly J, Scott G. Controlling radiofrequency-induced currents in guidewires using parallel transmit. Magn Reson Med 2015; 74:1790-802. [PMID: 25521751 PMCID: PMC4470871 DOI: 10.1002/mrm.25543] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Elongated conductors, such as pacemaker leads, neurostimulator leads, and conductive guidewires used for interventional procedures can couple to the MRI radiofrequency (RF) transmit field, potentially causing dangerous tissue heating. The purpose of this study was to demonstrate the feasibility of using parallel transmit to control induced RF currents in elongated conductors, thereby reducing the RF heating hazard. METHODS Phantom experiments were performed on a four-channel parallel transmit system at 1.5T. Parallel transmit "null mode" excitations that induce minimal wire current were designed using coupling measurements derived from axial B1 (+) maps. The resulting current reduction performance was evaluated with B1 (+) maps, current sensor measurements, and fluoroptic temperature probe measurements. RESULTS Null mode excitations reduced the maximum coupling mode current by factors ranging from 2 to 80. For the straight wire experiment, a current null imposed at a single wire location was sufficient to reduce tip heating below detectable levels. For longer insertion lengths and a curved geometry, imposing current nulls at two wire locations resulted in more distributed current reduction along the wire length. CONCLUSION Parallel transmit can be used to create excitations that induce minimal RF current in elongated conductors, thereby decreasing the RF heating risk, while still allowing visualization of the surrounding volume.
Collapse
Affiliation(s)
- Maryam Etezadi-Amoli
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pascal Stang
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adam Kerr
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - John Pauly
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Greig Scott
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
40
|
|
41
|
Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging. PLoS One 2015; 10:e0134379. [PMID: 26237218 PMCID: PMC4523176 DOI: 10.1371/journal.pone.0134379] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022] Open
Abstract
Deep Brain Stimulation (DBS) is increasingly used to treat a variety of brain diseases by sending electrical impulses to deep brain nuclei through long, electrically conductive leads. Magnetic resonance imaging (MRI) of patients pre- and post-implantation is desirable to target and position the implant, to evaluate possible side-effects and to examine DBS patients who have other health conditions. Although MRI is the preferred modality for pre-operative planning, MRI post-implantation is limited due to the risk of high local power deposition, and therefore tissue heating, at the tip of the lead. The localized power deposition arises from currents induced in the leads caused by coupling with the radiofrequency (RF) transmission field during imaging. In the present work, parallel RF transmission (pTx) is used to tailor the RF electric field to suppress coupling effects. Electromagnetic simulations were performed for three pTx coil configurations with 2, 4, and 8-elements, respectively. Optimal input voltages to minimize coupling, while maintaining RF magnetic field homogeneity, were determined for all configurations using a Nelder-Mead optimization algorithm. Resulting electric and magnetic fields were compared to that of a 16-rung birdcage coil. Experimental validation was performed with a custom-built 4-element pTx coil. In simulation, 95-99% reduction of the electric field at the tip of the lead was observed between the various pTx coil configurations and the birdcage coil. Maximal reduction in E-field was obtained with the 8-element pTx coil. Magnetic field homogeneity was comparable to the birdcage coil for the 4- and 8-element pTx configurations. In experiment, a temperature increase of 2±0.15°C was observed at the tip of the wire using the birdcage coil, whereas negligible increase (0.2±0.15°C) was observed with the optimized pTx system. Although further research is required, these initial results suggest that the concept of optimizing pTx to reduce DBS heating effects holds considerable promise.
Collapse
|
42
|
Acikel V, Uslubas A, Atalar E. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging. Med Phys 2015; 42:3922-31. [PMID: 26133593 DOI: 10.1118/1.4921019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The authors' purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. METHODS In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. RESULTS The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and the proposed lumped circuit models. These results were compared with those from the MoM simulations. The mean square error was less than 9%. During the MRI experiments, when the IPG case was introduced, the resonance lengths were calculated to have an error less than 13%. Also the change in tip temperature rise at resonance lengths was predicted with less than 4% error. For the electrode experiments, the value of the matching impedance was predicted with an error less than 1%. CONCLUSIONS Electrical models for the IPG case and electrode are suggested, and the method is proposed to determine the parameter values. The concept of matching of the electrode to the lead is clarified using the defined electrode impedance and the lead Thevenin impedance. The effect of the IPG case and electrode on tip heating can be predicted using the proposed theory. With these models, understanding the tissue heating due to the implants becomes easier. Also, these models are beneficial for implant safety testers and designers. Using these models, worst case conditions can be determined and the corresponding implant test experiments can be planned.
Collapse
Affiliation(s)
- Volkan Acikel
- Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey and National Magnetic Resonance Research Center (UMRAM), Bilkent, Ankara 06800, Turkey
| | - Ali Uslubas
- MR:comp GmbH, MR Safety Testing Laboratory, Buschgrundstraße 33, 45984 Gelsenkirchen, Germany
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey and National Magnetic Resonance Research Center (UMRAM), Bilkent, Ankara 06800, Turkey
| |
Collapse
|
43
|
|
44
|
Eryaman Y, Guerin B, Akgun C, Herraiz JL, Martin A, Torrado-Carvajal A, Malpica N, Hernandez-Tamames JA, Schiavi E, Adalsteinsson E, Wald LL. Parallel transmit pulse design for patients with deep brain stimulation implants. Magn Reson Med 2015; 73:1896-903. [PMID: 24947104 PMCID: PMC4760103 DOI: 10.1002/mrm.25324] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/25/2014] [Accepted: 05/27/2014] [Indexed: 02/05/2023]
Abstract
PURPOSE Specific absorption rate (SAR) amplification around active implantable medical devices during diagnostic MRI procedures poses a potential risk for patient safety. In this study, we present a parallel transmit (pTx) strategy that can be used to safely scan patients with deep brain stimulation (DBS) implants. METHODS We performed electromagnetic simulations at 3T using a uniform phantom and a multitissue realistic head model with a generic DBS implant. Our strategy is based on using implant-friendly modes, which are defined as the modes of an array that reduce the local SAR around the DBS lead tip. These modes are used in a spokes pulse design algorithm in order to produce highly uniform magnitude least-squares flip angle excitations. RESULTS Local SAR (1 g) at the lead tip is reduced below 0.1 W/kg compared with 31.2 W/kg, which is obtained by a simple quadrature birdcage excitation without any sort of SAR mitigation. For the multitissue realistic head model, peak 10 g local SAR and global SAR are obtained as 4.52 W/kg and 0.48 W/kg, respectively. A uniform axial flip angle is also obtained (NRMSE <3%). CONCLUSION Parallel transmit arrays can be used to generate implant-friendly modes and to reduce SAR around DBS implants while constraining peak local SAR and global SAR and maximizing flip angle homogeneity.
Collapse
Affiliation(s)
- Yigitcan Eryaman
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
- A. A. Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States
- Madrid-MIT M+ Vision Consortium, Madrid Spain
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States
| | - Can Akgun
- Invenshure,Minneapolis,United States
| | - Joaquin L. Herraiz
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Madrid-MIT M+ Vision Consortium, Madrid Spain
| | - Adrian Martin
- Madrid-MIT M+ Vision Consortium, Madrid Spain
- Dept. of Applied Mathematics. Rey Juan Carlos University. Móstoles, Madrid, Spain
| | - Angel Torrado-Carvajal
- Madrid-MIT M+ Vision Consortium, Madrid Spain
- Dept. of Electronic Technology. Rey Juan Carlos University. Móstoles, Madrid, Spain
| | - Norberto Malpica
- Madrid-MIT M+ Vision Consortium, Madrid Spain
- Dept. of Electronic Technology. Rey Juan Carlos University. Móstoles, Madrid, Spain
| | - Juan A. Hernandez-Tamames
- Madrid-MIT M+ Vision Consortium, Madrid Spain
- Dept. of Electronic Technology. Rey Juan Carlos University. Móstoles, Madrid, Spain
| | - Emanuele Schiavi
- Madrid-MIT M+ Vision Consortium, Madrid Spain
- Dept. of Applied Mathematics. Rey Juan Carlos University. Móstoles, Madrid, Spain
| | - Elfar Adalsteinsson
- Madrid-MIT M+ Vision Consortium, Madrid Spain
- Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, United States
- Institute of Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, United States
| |
Collapse
|
45
|
Tümer M, Sarioglu B, Mutlu S, Ulgen Y, Yalcinkaya A, Ozturk C. Using a low-amplitude RF pulse at echo time (LARFET) for device localization in MRI. Med Biol Eng Comput 2014; 52:885-94. [PMID: 25173518 DOI: 10.1007/s11517-014-1184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 08/13/2014] [Indexed: 11/28/2022]
Abstract
We describe a new method for frequency down-conversion of MR signals acquired with the radio-frequency projections method for device localization. A low-amplitude, off-center RF pulse applied simultaneously with the echo signal is utilized as the reference for frequency down-conversion. Because of the low-amplitude and large offset from the Larmor frequency, the RF pulse minimally interfered with magnetic resonance of protons. We conducted an experiment with the coil placed at different positions to verify this concept. The down-converted signal was transformed into optical signal and transmitted via fiber-optic cable to a receiver unit placed outside the scanner room. The position of the coil could then be determined by the frequency analysis of this down-converted signal and superimposed on previously acquired MR images for comparison. Because of minimal positional errors (≤ 0.8 mm), this new device localization method may be adequate for most interventional MRI applications.
Collapse
Affiliation(s)
- Murat Tümer
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey,
| | | | | | | | | | | |
Collapse
|
46
|
Qian D, El-Sharkawy AMM, Bottomley PA, Edelstein WA. An RF dosimeter for independent SAR measurement in MRI scanners. Med Phys 2014; 40:122303. [PMID: 24320534 DOI: 10.1118/1.4829527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. METHODS An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. RESULTS A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole-body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. CONCLUSIONS Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.
Collapse
Affiliation(s)
- Di Qian
- Division of MR Research, Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287 and Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | | | |
Collapse
|
47
|
Eryaman Y, Guerin B, Akgun C, Herraiz JL, Martin A, Torrado-Carvajal A, Malpica N, Hernandez-Tamames JA, Schiavi E, Adalsteinsson E, Wald LL. Parallel transmit pulse design for patients with deep brain stimulation implants. Magn Reson Med 2014. [DOI: https://doi.org/10.1002/mrm.25324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yigitcan Eryaman
- Research Laboratory of Electronics; Massachusetts Institute of Technology; Cambridge Massachusetts USA
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology; Massachusetts General Hospital; Charlestown Massachusetts USA
- Madrid-MIT M+ Vision Consortium; Madrid Spain
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology; Massachusetts General Hospital; Charlestown Massachusetts USA
| | - Can Akgun
- Invenshure; Minneapolis Minnesota USA
| | - Joaquin L. Herraiz
- Research Laboratory of Electronics; Massachusetts Institute of Technology; Cambridge Massachusetts USA
- Madrid-MIT M+ Vision Consortium; Madrid Spain
| | - Adrian Martin
- Madrid-MIT M+ Vision Consortium; Madrid Spain
- Department of Applied Mathematics; Rey Juan Carlos University; Móstoles Madrid Spain
| | - Angel Torrado-Carvajal
- Madrid-MIT M+ Vision Consortium; Madrid Spain
- Department of Electronic Technology; Rey Juan Carlos University; Móstoles Madrid Spain
| | - Norberto Malpica
- Madrid-MIT M+ Vision Consortium; Madrid Spain
- Department of Electronic Technology; Rey Juan Carlos University; Móstoles Madrid Spain
| | - Juan A. Hernandez-Tamames
- Madrid-MIT M+ Vision Consortium; Madrid Spain
- Department of Electronic Technology; Rey Juan Carlos University; Móstoles Madrid Spain
| | - Emanuele Schiavi
- Madrid-MIT M+ Vision Consortium; Madrid Spain
- Department of Applied Mathematics; Rey Juan Carlos University; Móstoles Madrid Spain
| | - Elfar Adalsteinsson
- Madrid-MIT M+ Vision Consortium; Madrid Spain
- Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology; Cambridge Massachusetts USA
- Harvard-MIT Health Sciences and Technology; Massachusetts Institute of Technology; Cambridge Massachusetts USA
- Institute of Medical Engineering and Science; MIT Cambridge Massachusetts USA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology; Massachusetts General Hospital; Charlestown Massachusetts USA
- Harvard-MIT Health Sciences and Technology; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| |
Collapse
|
48
|
Ferreira AM, Costa F, Tralhão A, Marques H, Cardim N, Adragão P. MRI-conditional pacemakers: current perspectives. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2014; 7:115-24. [PMID: 24851058 PMCID: PMC4019608 DOI: 10.2147/mder.s44063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Use of both magnetic resonance imaging (MRI) and pacing devices has undergone remarkable growth in recent years, and it is estimated that the majority of patients with pacemakers will need an MRI during their lifetime. These investigations will generally be denied due to the potentially dangerous interactions between cardiac devices and the magnetic fields and radio frequency energy used in MRI. Despite the increasing reports of uneventful scanning in selected patients with conventional pacemakers under close surveillance, MRI is still contraindicated in those circumstances and cannot be considered a routine procedure. These limitations prompted a series of modifications in generator and lead engineering, designed to minimize interactions that could compromise device function and patient safety. The resulting MRI-conditional pacemakers were first introduced in 2008 and the clinical experience gathered so far supports their safety in the MRI environment if certain conditions are fulfilled. With this technology, new questions and controversies arise regarding patient selection, clinical impact, and cost-effectiveness. In this review, we discuss the potential risks of MRI in patients with electronic cardiac devices and present updated information regarding the features of MRI-conditional pacemakers and the clinical experience with currently available models. Finally, we provide some guidance on how to scan patients who have these devices and discuss future directions in the field.
Collapse
Affiliation(s)
- António M Ferreira
- Cardiology Department, Hospital da Luz, Lisbon, Portugal ; Cardiology Department, Hospital Santa Cruz-CHLO, Lisbon, Portugal
| | - Francisco Costa
- Cardiology Department, Hospital Santa Cruz-CHLO, Lisbon, Portugal
| | - António Tralhão
- Cardiology Department, Hospital Santa Cruz-CHLO, Lisbon, Portugal
| | - Hugo Marques
- Radiology Department, Hospital da Luz, Lisbon, Portugal
| | - Nuno Cardim
- Cardiology Department, Hospital da Luz, Lisbon, Portugal
| | - Pedro Adragão
- Cardiology Department, Hospital da Luz, Lisbon, Portugal ; Cardiology Department, Hospital Santa Cruz-CHLO, Lisbon, Portugal
| |
Collapse
|
49
|
Mattei E, Gentili G, Censi F, Triventi M, Calcagnini G. Impact of capped and uncapped abandoned leads on the heating of an MR-conditional pacemaker implant. Magn Reson Med 2014; 73:390-400. [DOI: 10.1002/mrm.25106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Eugenio Mattei
- Department of Technology and Health; Italian Institute of Health; Rome Italy
| | - Giulia Gentili
- Department of Electronic Engineering; University "Sapienza"; Rome Italy
| | - Federica Censi
- Department of Technology and Health; Italian Institute of Health; Rome Italy
| | - Michele Triventi
- Department of Technology and Health; Italian Institute of Health; Rome Italy
| | - Giovanni Calcagnini
- Department of Technology and Health; Italian Institute of Health; Rome Italy
| |
Collapse
|
50
|
Celik H, Mahcicek DI, Senel OK, Wright GA, Atalar E. Tracking the position and rotational orientation of a catheter using a transmit array system. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:809-817. [PMID: 23412592 DOI: 10.1109/tmi.2013.2247047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new method for detecting the rotational orientation and tracking the position of an inductively coupled radio frequency (ICRF) coil using a transmit array system is proposed. The method employs a conventional body birdcage coil, but the quadrature hybrid is eliminated so that the two excitation channels can be used separately. The transmit array system provides RF excitations such that the body birdcage coil creates linearly polarized and changing RF pulses instead of a conventional rotational forward-polarized excitation. The receive coils and their operations are not modified. Inductively coupled RF coils are constructed on catheters for detecting rotational orientation and for tracking purposes. Signals from the anatomy and from tissue close to the ICRF coil are different due to the new RF excitation scheme: the ICRF coil can be separated from the anatomy in real time, and after doing so, a color-coded image is reconstructed. More importantly, this novel method enables a real-time calculation of the absolute rotational orientation of an ICRF coil constructed on a catheter. Modified FLASH and TrueFISP sequences are used for the experiments. The acquired images from this technique show the feasibility of different applications, such as catheter tracking. Furthermore, applications where knowledge of the rotational orientation of the catheter is important, such as magnetic resonance-guided endoluminal-focused ultrasound, RF ablation, side-looking optical imaging, and catheters with side ports for needles, become feasible with this method.
Collapse
Affiliation(s)
- Haydar Celik
- Electrical and Electronics Engineering Department, Bilkent University, TR-06800 Ankara, Turkey.
| | | | | | | | | |
Collapse
|