1
|
Al-Mallah MH, Bateman TM, Branch KR, Crean A, Gingold EL, Thompson RC, McKenney SE, Miller EJ, Murthy VL, Nieman K, Villines TC, Yester MV, Einstein AJ, Mahmarian JJ. 2022 ASNC/AAPM/SCCT/SNMMI guideline for the use of CT in hybrid nuclear/CT cardiac imaging. J Nucl Cardiol 2022; 29:3491-3535. [PMID: 36056224 DOI: 10.1007/s12350-022-03089-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Affiliation(s)
- Mouaz H Al-Mallah
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA.
| | - Timothy M Bateman
- Department of Cardiology, Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Kelley R Branch
- Division of Cardiovascular, University of Washington, Seattle, WA, USA
| | - Andrew Crean
- Division of Cardiovascular Medicine, Ottawa Heart Institute, Ottawa, ON, Canada
| | - Eric L Gingold
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Randall C Thompson
- Department of Cardiology, Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sarah E McKenney
- Department of Radiology, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Koen Nieman
- Departments of Cardiovascular Medicine and Radiology, Stanford University Medical Center, Stanford, CA, USA
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Michael V Yester
- Department of Radiology, School of Medicine, University of Alabama Medical Center, Birmingham, AL, USA
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - John J Mahmarian
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| |
Collapse
|
2
|
Bouwens L, Van de Walle R, Nuyts J, Koole M, D'Asseler Y, Vandenberghe S, Lemahieu I, Dierckx RA. Image-correction techniques in SPECT. Comput Med Imaging Graph 2001; 25:117-126. [PMID: 11137788 DOI: 10.1016/s0895-6111(00)00062-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This overview takes a look at different correction techniques for Single Photon Emission Computed Tomography (SPECT). We discuss the influence of the detection system followed by the scatter and attenuation caused by the object of investigation. When possible we describe how the correction methods for the different physical effects can be incorporated in the reconstruction method, being either filtered backprojection or iterative reconstruction.
Collapse
Affiliation(s)
- L Bouwens
- Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Glatting G, Wuchenauer M, Reske SN. Simultaneous iterative reconstruction for emission and attenuation images in positron emission tomography. Med Phys 2000; 27:2065-71. [PMID: 11011734 DOI: 10.1118/1.1288394] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The quality of the attenuation correction strongly influences the outcome of the reconstructed emission scan in positron emission tomography. Usually the attenuation correction factors are calculated from the transmission and blank scan and thereafter applied during the reconstruction on the emission data. However, this is not an optimal treatment of the available data, because the emission data themselves contain additional information about attenuation: The optimal treatment must use this information for the determination of the attenuation correction factors. Therefore, our purpose is to investigate a simultaneous emission and attenuation image reconstruction using a maximum likelihood estimator, which takes the attenuation information in the emission data into account. The total maximum likelihood function for emission and transmission is used to derive a one-dimensional Newton-like algorithm for the calculation of the emission and attenuation image. Log-likelihood convergence, mean differences, and the mean of squared differences for the emission image and the attenuation correction factors of a mathematical thorax phantom were determined and compared. As a result we obtain images improved with respect to log likelihood in all cases and with respect to our figures of merit in most cases. We conclude that the simultaneous reconstruction can improve the performance of image reconstruction.
Collapse
Affiliation(s)
- G Glatting
- Abteilung Nuklearmedizin, Universität Ulm, Germany.
| | | | | |
Collapse
|