1
|
Malatesta T, Scaggion A, Giglioli FR, Belmonte G, Casale M, Colleoni P, Falco MD, Giuliano A, Linsalata S, Marino C, Moretti E, Richetto V, Sardo A, Russo S, Mancosu P. Patient specific quality assurance in SBRT: a systematic review of measurement-based methods. Phys Med Biol 2023; 68:21TR01. [PMID: 37625437 DOI: 10.1088/1361-6560/acf43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
This topical review focuses on Patient-Specific Quality Assurance (PSQA) approaches to stereotactic body radiation therapy (SBRT). SBRT requires stricter accuracy than standard radiation therapy due to the high dose per fraction and the limited number of fractions. The review considered various PSQA methods reported in 36 articles between 01/2010 and 07/2022 for SBRT treatment. In particular comparison among devices and devices designed for SBRT, sensitivity and resolution, verification methodology, gamma analysis were specifically considered. The review identified a list of essential data needed to reproduce the results in other clinics, highlighted the partial miss of data reported in scientific papers, and formulated recommendations for successful implementation of a PSQA protocol.
Collapse
Affiliation(s)
- Tiziana Malatesta
- Medical Physics Unit, Department of Radiotherapy and Medical Oncology and Radiology, Fatebenefratelli Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Gina Belmonte
- Medical Physics Department, San Luca Hospital, Lucca, Italy
| | - Michelina Casale
- Medical Physics Unit, Azienda Ospedaliera 'Santa Maria', Terni, Italy
| | - Paolo Colleoni
- UOC Medical Physics Unit-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, 'SS. Annunziata' Hospital, 'G. D'Annunzio' University, Chieti, Italy
| | - Alessia Giuliano
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Carmelo Marino
- Medical Physics and Radioprotection Unit, Humanitas Istituto Clinico Catanese, Misterbianco (CT), Italy
| | - Eugenia Moretti
- Division of Medical Physics, Department of Oncology, ASUFC Udine, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sardo
- UOSD Medical Physics, ASLCN2, Verduno, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano - Milano, Italy
| |
Collapse
|
2
|
Hadj Henni A, Gensanne D, Bulot G, Roge M, Mallet R, Colard E, Daras M, Hanzen C, Thureau S. ExacTrac X-Ray 6D Imaging During Stereotactic Body Radiation Therapy of Spinal and Nonspinal Metastases. Technol Cancer Res Treat 2023; 22:15330338231210786. [PMID: 37904530 PMCID: PMC10619343 DOI: 10.1177/15330338231210786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023] Open
Abstract
The objective was to investigate the possibility of using ExacTrac X-ray (ETX) for 6D image guidance in stereotactic body radiation therapy (SBRT) of bone metastasis and to propose a patient management protocol. The analyses were first obtained from measurements on a pelvic phantom and on 19 patients treated for bone metastasis. The phantom study consisted of applying known offsets and evaluating the ETX level of accuracy, where results were compared with kV-cone beam computed tomography (kV-CBCT). Two groups of patients, 10 spinal and 9 nonspinal SBRT cases, were analyzed to evaluate ETX imaging for different bone localisations. A comparison was made between kV-CBCT and ETX prior to the treatment fractions. During treatments, two other kV-CBCT/ETX image pairs were also acquired and a total of 224 shifts were compared. A second study, using the ETX monitoring module, analyzed the intrafraction motion of 8 other patients. In the phantom study, the root mean square (RMS) of the translational and rotational discrepancies between ETX and kV-CBCT were < 0.6 mm and < 0.4°, respectively. For both groups of patients, the RMS of the discrepancies observed between the two imaging systems were greater than the phantom experiment while still remaining < 1 mm and < 0.7°. In the nonspinal group, three patients (2 scapulas and 1 humerus) did not have consistent shift values with ETX due to a lack of anatomical information. When ETX monitoring was used during irradiation, the setup errors measured were on average less than 1 mm/1°. The results obtained validated the use of ETX for 6D image guidance during bone SBRT. Real-time tracking of the target position improves the accuracy of the irradiation. This strategy allowed for faster correction of out-of-tolerance positioning errors. The registration of bone lesions with poor anatomical information is a limitation of this 2D-kV imaging system.
Collapse
|
3
|
Paoletti L, Ceccarelli C, Menichelli C, Aristei C, Borghesi S, Tucci E, Bastiani P, Cozzi S. Special stereotactic radiotherapy techniques: procedures and equipment for treatment simulation and dose delivery. Rep Pract Oncol Radiother 2022; 27:1-9. [PMID: 35402024 PMCID: PMC8989452 DOI: 10.5603/rpor.a2021.0129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/25/2022] Open
Abstract
Stereotactic radiotherapy (SRT ) is a multi-step procedure with each step requiring extreme accuracy. Physician-dependent accuracy includes appropriate disease staging, multi-disciplinary discussion with shared decision-making, choice of morphological and functional imaging methods to identify and delineate the tumor target and organs at risk, an image-guided patient set-up, active or passive management of intra-fraction movement, clinical and instrumental follow-up. Medical physicist-dependent accuracy includes use of advanced software for treatment planning and more advanced Quality Assurance procedures than required for conventional radiotherapy. Consequently, all the professionals require appropriate training in skills for high-quality SRT. Thanks to the technological advances, SRT has moved from a “frame-based” technique, i.e. the use of stereotactic coordinates which are identified by means of rigid localization frames, to the modern “frame-less” SRT which localizes the target volume directly, or by means of anatomical surrogates or fiducial markers that have previously been placed within or near the target. This review describes all the SRT steps in depth, from target simulation and delineation procedures to treatment delivery and image-guided radiation therapy. Target movement assessment and management are also described.
Collapse
Affiliation(s)
- Lisa Paoletti
- Radiotherapy Unit, AUSL Toscana Centro, Florence, Italy
| | | | | | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Enrico Tucci
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | | | - Salvatore Cozzi
- Radiation Oncology Unit, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Italy
| |
Collapse
|
4
|
Tino RB, Yeo AU, Brandt M, Leary M, Kron T. A customizable anthropomorphic phantom for dosimetric verification of 3D-printed lung, tissue, and bone density materials. Med Phys 2021; 49:52-69. [PMID: 34796527 DOI: 10.1002/mp.15364] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/26/2021] [Accepted: 10/30/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To design and manufacture a customized thoracic phantom slab utilizing the 3D printing process, also known as additive manufacturing, consisting of different tissue density materials. Here, we demonstrate the 3D-printed phantom's clinical feasibility for imaging and dosimetric verification of volumetric modulated arc radiotherapy (VMAT) plans for lung and spine stereotactic ablative body radiotherapy (SABR) through end-to-end dosimetric verification. METHODS A customizable anthropomorphic phantom slab was designed using the CT dataset of a commercial phantom (adult female ATOM dosimetry phantom, CIRS Inc.). Material extrusion 3D printing was utilized to manufacture the phantom slab consisting of acrylonitrile butadiene styrene material for the lung and the associated lesion, polylactic acid (PLA) material for soft tissue and spinal cord, and both PLA and iron-reinforced PLA materials for bone. CT images were acquired for both the commercial phantom and 3D-printed phantom for HU comparison. VMAT plans were generated for spine and lung SABR scenarios and were delivered as per departmental SABR protocols using a Varian TrueBeam STx linear accelerator. End-to-end dosimetry was implemented with radiochromic films, analyzed with gamma criteria of 5% dose difference, and a distance-to-agreement of 1 mm, at a 10% low-dose threshold by comparing with calculated dose using the Acuros algorithm of the Eclipse treatment planning system (v15.6). RESULTS 3D-printed phantom inserts were observed to produce HU ranging from -750 to 2100. The 3D-printed phantom slab was observed to achieve a similar range of HU from the commercial phantom including a mean HU of -760 for lung tissue, a mean HU of 50 for soft tissue, and a mean HU of 220 and 630 for low- and high-density bone, respectively. Film dosimetry results show 2D-gamma passing rates for lung SABR (internal and superior) and spine SABR (inferior and superior) over 98% and 90%, respectively. CONCLUSIONS The end-to-end testing of VMAT plans for spine and lung SABR suggests the clinical feasibility of the 3D-printed phantom, consisting of different tissue density materials that emulate lung, soft tissue, and bone in kV imaging and megavoltage photon dosimetry. Further investigation of the proposed 3D printing techniques for manufacturability and reproducibility will enable the development of clinical 3D-printed phantoms in radiotherapy.
Collapse
Affiliation(s)
- Rance Bolislis Tino
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Adam Unjin Yeo
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Milan Brandt
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Martin Leary
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology, Queensland, Brisbane, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Pokhrel D, Stephen J, Webster A, Bernard ME. Double-vertebral segment SBRT via novel ring-mounted Halcyon Linac: Plan quality, delivery efficiency and accuracy. Med Dosim 2021; 47:20-25. [PMID: 34412963 DOI: 10.1016/j.meddos.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
To evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter/multi-target (SIMT) volumetric modulated arc therapy (VMAT) of double-vertebral segments stereotactic body radiation therapy (SBRT) on Halcyon ring delivery system (RDS). In-house multi-target end-to-end phantom testing and independent dose verification using the MD Anderson's single-isocenter/multi-target (lung/spine targets) thorax phantom were completed. Six previously treated patients with 2-vertebral segments on thoracic and/or lumber spine were replanned on Halcyon RDS with 6MV-FFF beam using a single-isocenter placed between the vertebral segments. Three full VMAT arcs with 0° and ±10° collimator angles and advanced Acuros-based dose engine for heterogeneity corrections were used. Prescription was 35 Gy in 5 fractions to each vertebral-segment, simultaneously. For comparison, Halcyon VMAT-SBRT plans were retrospectively created on SBRT-dedicated Truebeam with a 6MV-FFF beam using identical planning geometry and optimization objectives. Target coverage, conformity index (CI), heterogeneity index (HI), gradient index (GI), dose to 2-cm away from each target (D2-cm), and dose to adjacent organs-at-risk (OAR) were evaluated per NRG-BR002 protocol. Treatment delivery parameters were evaluated for both plans. In-house phantom measurements showed acceptable spatial accuracy (< 1mm within 5-cm from the isocenter) of conebeam CT-guided Halcyon SBRT treatments. The MD Anderson phantom irradiation credentialing results met IROC requirements for protocol patients. Mean isocenter-to-tumor center distance was 3.3 ± 0.6-cm (range 2.4 to 4.3-cm). Mean combined PTV was 57.3 ± 31.3 cc (range 20.1 to 99.9 cc). Both Halcyon and Truebeam SIMT-VMAT plans met NRG-BR002 compliance criteria and show similar CI, HI, GI, D2-cm. Maximal and volumetric doses to adjacent OAR including dose to partial spinal cord were lower with Halcyon RDS. Average total monitor units, modulation, and overall treatment time were lower with Halcyon plans by 130 MU, 0.2, 3.8 min, respectively, with similar beam-on time. Average pre-treatment patient-specific portal-dosimetry QA results on Halcyon showed a high pass rate of 99.6%, compared to SBRT-dedicated Truebeam pass rate of 96.8%, for 2%/2 mm clinical gamma passing criteria, suggesting more accurate treatment delivery on Halcyon RDS. SBRT treatment of double-vertebral segments via SIMT-VMAT plans on Halcyon for selected patients is feasible and dosimetrically superior to Truebeam Linac. Faster treatment delivery (<10 min) of double-vertebral segment SBRT on Halcyon could reduce patient intolerance due to severe back pain, potentially reduce intra-fraction motion errors, and improve patient throughput, and clinic workflow.
Collapse
Affiliation(s)
- Damodar Pokhrel
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA.
| | - Joseph Stephen
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| | - Aaron Webster
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| | - Mark E Bernard
- University of Kentucky, Department of Radiation Medicine, Lexington, KY, USA
| |
Collapse
|
6
|
Holla R, Khanna D, Narayanan VKS. Dose delivery accuracy on helical tomotherapy for 4-dimensional tumor motion - a phantom study. Rep Pract Oncol Radiother 2021; 26:380-388. [PMID: 34277091 PMCID: PMC8281919 DOI: 10.5603/rpor.a2021.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
Background The advances in image guidance and capability of highly conformal dose deliveries made possible the use of helical tomotherapy (HT) for lung cancer treatment. To determine the effect of respiratory motion on the delivered dose in HT, film dosimetry using a dynamic phantom was performed. This was a phantom study to determine the effect of motion on the delivered dose in HT. Materials and methods 4D computed tomography (4DCT) was acquired for various target motions of CIRS dynamic phantom (CIRS Inc., Norfolk, USA) with 2.5cm diameter spherical target of volume 8.2 cc moving in the COS4 motion pattern. AveIP images and treatment plans were generated in the HT planning system. Target excursions during treatment delivery were changed in the superior-inferior, anteroposterior and lateral directions. The breathing cycle time was varied from 4 to 5 sec. and also the delivery interruptions were introduced. A film was exposed for each delivery and gamma analysis was performed. Results The gamma pass rate (GPR) with 3%, 2 mm criteria for the target motion in the S-I direction showed a significant reduction from 97.5% to 54.4% as the motion increased from 3 mm to 8 mm (p = 0.03). For the target motion in S-I = 8 mm, L-R = A-P = 3 mm, the percentage decrease in the GPR was 74% (p = 0.001) for three interruptions. Conclusion The ITV based approach in HT is ideal for a shallow breathing situation when the tumor excursions were confined to 5 mm in the S-I and 3 mm in L-R and A-P directions.
Collapse
Affiliation(s)
| | - David Khanna
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | | |
Collapse
|
7
|
Hirai R, Ohkubo YU, Igari M, Kumazaki YU, Aoshika T, Ryuno Y, Saito S, Abe T, Noda SE, Kato S. Time Dependence of Intra-fractional Motion in Spinal Stereotactic Body Radiotherapy. In Vivo 2021; 35:2433-2437. [PMID: 34182527 DOI: 10.21873/invivo.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM Positional uncertainty in spinal stereotactic body radiotherapy (SBRT) may cause fatal error, therefore, we investigated the intra-fractional spinal motion during SBRT and its time dependency. PATIENTS AND METHODS Thirty-one patients who received SBRT using CyberKnife were enrolled in the study. 2D kV X-ray spine images in two directions were taken before and during treatment. Image acquisition intervals during treatment were set at 35-60 sec. Automatic image matchings were performed between the reference digital reconstructed radiography (DRR) and live images, and the spinal position displacements were logged in six translational and rotational directions. If the displacements exceeded 2 mm or 1 degree, the treatment beam delivery was interrupted and the patient position was corrected by moving couch, and the couch adjustments were also logged. Based on the information, the time-dependent accumulated translational and rotational displacements without any couch adjustments were calculated. RESULTS Spinal position displacements in all translational and rotational directions were correlated with elapsed treatment time. Especially, Right-Left displacements of >1 mm and >2 mm were observed at 4-6 and 8-10 min after treatment initiation, respectively. Rotational displacements in the Yaw direction >1° were observed at 10-15 min after treatment initiation. CONCLUSION The translational and rotational displacements systematically increased with elapsed treatment time. It is suggested that the spine position should be checked at least every 4-6 min or the treatment time should be limited within 4-6 minutes to ensure the irradiation accuracy within the millimeter or submillimeter range.
Collapse
Affiliation(s)
- Ryuta Hirai
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan;
| | - Y U Ohkubo
- Department of Radiation Oncology, Saku Central Hospital Advanced Care Center, Nagano, Japan
| | - Mitsunobu Igari
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Y U Kumazaki
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tomomi Aoshika
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasuhiro Ryuno
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Satoshi Saito
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takanori Abe
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shingo Kato
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
8
|
Chen J, Dai J, Nobah A, Bai S, Bi N, Lai Y, Li M, Tian Y, Wang X, Fu Q, Liang B, Zhang T, Xia W, Xu Y, Ren W, Yan X, Zhu J, Chen D, Yang J. A Special Report on 2019 International Planning Competition and a Comprehensive Analysis of Its Results. Front Oncol 2020; 10:571644. [PMID: 33344231 PMCID: PMC7746833 DOI: 10.3389/fonc.2020.571644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/30/2020] [Indexed: 02/05/2023] Open
Abstract
Purpose The aim of this work is to introduce the 2019 International Planning Competition and to analyze its results. Methods and materials A locally advanced non-small cell lung cancer (LA-NSCLC) case using the simultaneous integrated boost approach was selected. The plan quality was evaluated by using a ranking system in accordance with practice guidelines. Planners used their clinical Treatment Planning System (TPS) to generate the best possible plan along with a survey, designed to obtain medical physics aspects information. We investigated the quality of the large population of plans designed by worldwide planners using different planning and delivery systems. The correlations of plan quality with relevant planner characteristics (work experience, department scale, and competition experience) and with technological parameters (TPS and modality) were examined. Results The number of the qualified plans was 287 with a wide range of scores (38.61–97.99). The scores showed statistically significant differences by the following factors: 1) department scale: the mean score (89.76 ± 8.36) for planners from the departments treating >2,000 patients annually was the highest of all; 2) competition experience: the mean score for the 107 planners with previous competition experience was 88.92 ± 9.59, statistically significantly from first-time participants (p = .001); 3) techniques: the mean scores for planners using VMAT (89.18 ± 6.43) and TOMO (90.62 ± 7.60) were higher than those using IMRT (82.28 ± 12.47), with statistical differences (p <.001). The plan scores were negligibly correlated with the planner’s years of work experience or the type of TPS used. Regression analysis demonstrated that plan score was associated with dosimetric objectives that were difficult to achieve, which is generally consistent with a clinical practice evaluation. However, 51.2% of the planners abandoned the difficult component of total lung receiving a dose of 5 Gy in their plan design to achieve the optimal plan. Conclusion The 2019 international planning competition was carried out successfully, and its results were analyzed. Plan quality was not correlated with work experiences or the TPS used, but it was correlated with department scale, modality, and competition experience. These findings differed from those reported in previous studies.
Collapse
Affiliation(s)
- Jiayun Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ahmad Nobah
- Radiation Physics Section, Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sen Bai
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Nan Bi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youqun Lai
- Department of Radiation Oncology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Minghui Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tian
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuetao Wang
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Fu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlong Xia
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuena Yan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Zhu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deqi Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiming Yang
- Department of Radiotherapy and Chemotherapy, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
9
|
Niroomand‐Rad A, Chiu‐Tsao S, Grams MP, Lewis DF, Soares CG, Van Battum LJ, Das IJ, Trichter S, Kissick MW, Massillon‐JL G, Alvarez PE, Chan MF. Report of AAPM Task Group 235 Radiochromic Film Dosimetry: An Update to TG‐55. Med Phys 2020; 47:5986-6025. [DOI: 10.1002/mp.14497] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Indra J. Das
- Radiation Oncology Northwestern University Memorial Hospital Chicago IL USA
| | - Samuel Trichter
- New York‐Presbyterian HospitalWeill Cornell Medical Center New York NY USA
| | | | - Guerda Massillon‐JL
- Instituto de Fisica Universidad Nacional Autonoma de Mexico Mexico City Mexico
| | - Paola E. Alvarez
- Imaging and Radiation Oncology Core MD Anderson Cancer Center Houston TX USA
| | - Maria F. Chan
- Memorial Sloan Kettering Cancer Center Basking Ridge NJ USA
| |
Collapse
|
10
|
Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J, Loutfi-Krauss B, Manser P, Werner R, Wilhelm ML, Baus WW, Moustakis C. Technological quality requirements for stereotactic radiotherapy : Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. Strahlenther Onkol 2020; 196:421-443. [PMID: 32211939 PMCID: PMC7182540 DOI: 10.1007/s00066-020-01583-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.
Collapse
Affiliation(s)
- Daniela Schmitt
- Klinik für Radioonkologie und Strahlentherapie, National Center for Radiation Research in Oncology (NCRO), Heidelberger Institut für Radioonkologie (HIRO), Universitätsklinikum Heidelberg, Heidelberg, Germany.
| | - Oliver Blanck
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Tobias Gauer
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K Fix
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Thomas B Brunner
- Universitätsklinik für Strahlentherapie, Universitätsklinikum Magdeburg, Magdeburg, Germany
| | - Jens Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Britta Loutfi-Krauss
- Klinik für Strahlentherapie und Onkologie, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Peter Manser
- Abteilung für Medizinische Strahlenphysik und Universitätsklinik für Radio-Onkologie, Inselspital-Universitätsspital Bern, Universität Bern, Bern, Switzerland
| | - Rene Werner
- Institut für Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Lisa Wilhelm
- Klinik für Strahlentherapie, Universitätsmedizin Rostock, Rostock, Germany
| | - Wolfgang W Baus
- Klinik für Radioonkologie, CyberKnife- und Strahlentherapie, Universitätsklinikum Köln, Cologne, Germany
| | - Christos Moustakis
- Klinik für Strahlentherapie-Radioonkologie, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
11
|
Ahmad MS, Suardi N, Shukri A, Mohammad H, Oglat AA, Alarab A, Makhamrah O. Chemical Characteristics, Motivation and Strategies in choice of Materials used as Liver Phantom: A Literature Review. J Med Ultrasound 2020; 28:7-16. [PMID: 32368444 PMCID: PMC7194418 DOI: 10.4103/jmu.jmu_4_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 05/24/2019] [Indexed: 12/27/2022] Open
Abstract
Liver phantoms have been developed as an alternative to human tissue and have been used for different purposes. In this article, the items used for liver phantoms fabrication are mentioned same as in the previous literature reviews. Summary and characteristics of these materials are presented. The main factors that need to be available in the materials used for fabrication in computed tomography, ultrasound, magnetic resonance imaging, and nuclear medicine were analyzed. Finally, the discussion focuses on some purposes and aims of the liver phantom fabrication for use in several areas such as training, diagnoses of different diseases, and treatment planning for therapeutic strategies – for example, in selective internal radiation therapy, stereotactic body radiation therapy, laser-induced thermotherapy, radiofrequency ablation, and microwave coagulation therapy. It was found that different liver substitutes can be developed to fulfill the different requirements.
Collapse
Affiliation(s)
- Muntaser S Ahmad
- Department of Medical Physics and Radiation Science, School of Physics, Universiti Sains Malaysia, Malaysia
| | - Nursakinah Suardi
- Department of Medical Physics and Radiation Science, School of Physics, Universiti Sains Malaysia, Malaysia
| | - Ahmad Shukri
- Department of Medical Physics and Radiation Science, School of Physics, Universiti Sains Malaysia, Malaysia
| | - Hjouj Mohammad
- Department of Medical Imaging, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| | - Ammar A Oglat
- Department of Medical Imaging, Faculty of Allied Health Sciences, The Hashemite University, Zarqa, Jordan, Palestine
| | - Azzam Alarab
- Department of Medical Imaging, Faculty of Allied Medical Health, Palestine Ahlyia University, Bethlehem, Palestine
| | - Osama Makhamrah
- Department of Medical Imaging, Faculty of Health Professions, Al-Quds University, Abu Deis - Main Campus, Jerusalem, Palestine
| |
Collapse
|
12
|
Ouyang Z, LaHurd DV, Balagamwala EH, Chao ST, Suh JH, Xia P. Treatment planning of VMAT and step-and-shoot IMRT delivery techniques for single fraction spine SBRT: An intercomparative dosimetric analysis and phantom-based quality assurance measurements. J Appl Clin Med Phys 2019; 21:62-68. [PMID: 31821729 PMCID: PMC6964769 DOI: 10.1002/acm2.12788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To retrospectively compare clinically treated step-and-shoot intensity modulated radiotherapy (ssIMRT) and volumetric modulated arc therapy (VMAT) spine stereotactic body radiotherapy (SBRT) plans in dosimetric endpoints and pretreatment quality assurance (QA) measurements. METHODS Five single fraction spine SBRT (18 Gy) cases - including one cervical, two thoracic, and two lumbar spines - clinically treated with ssIMRT were replanned with VMAT, and all plans were delivered to a phantom for comparing plan quality and delivery accuracy. Furthermore, we analyzed 98 clinically treated plans (18 Gy single fraction), including 34 ssIMRT and 29 VMAT for cervical/thoracic spine, and 19 ssIMRT and 16 VMAT for lumbar spine. The conformality index (CI) and homogeneity index (HI) were calculated, and QA measurement records were compared. For the spinal cord/cauda equina, the maximum dose to 0.03 cc (D0.03cc ) and volume receiving 10 or 12 Gy (V10Gy /V12Gy ) were recorded. Statistical significance was tested with the Mann-Whitney U test. RESULTS Compared to ssIMRT, replanned VMAT plans had lower V10Gy /V12Gy and D0.03cc to the spinal cord/cauda equina in all five cases, and better CI in three out of five cases. The VMAT replans were slightly less homogeneous than those of ssIMRT plans. Both modalities passed IMRT QA with >95% passing rate with (3%, 3 mm) gamma criteria. With the 98 clinical cases, for cervical/thoracic ssIMRT and VMAT plans, the median V10Gy of spinal cord was 4.15% and 1.85% (P = 0.004); the median D0.03cc of spinal cord was 10.85 Gy and 10.10 Gy (P = 0.032); the median CI was 1.28 and 1.08 (P = 0.009); the median HI were 1.34 and 1.33 (P = 0.697), respectively. For lumbar spine, no significant dosimetric endpoint differences were observed. The two modalities were comparable in delivery accuracy. CONCLUSION From our clinically treated plans, we found that VMAT plans provided better dosimetric quality and comparable delivery accuracy when compared to ssIMRT for single fraction spine SBRT.
Collapse
Affiliation(s)
- Zi Ouyang
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Danielle V LaHurd
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ehsan H Balagamwala
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
13
|
Choi CH, Kim JH, Kim JI, Park JM. Comparison of treatment plan quality among MRI-based IMRT with a linac, MRI-based IMRT with tri-Co-60 sources, and VMAT for spine SABR. PLoS One 2019; 14:e0220039. [PMID: 31329641 PMCID: PMC6645671 DOI: 10.1371/journal.pone.0220039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE This study compares the plan quality of magnetic-resonance image (MRI)-based intensity modulated radiation therapy (IMRT) using a linac (MR-linac-IMRT), MRI-based IMRT using tri-Co-60 sources (MR-Co-60-IMRT), and volumetric modulated arc therapy (VMAT) for spine stereotactic ablative radiotherapy (SABR). METHODS Twenty patients with thoracic spine metastasis were retrospectively selected for this study. For each patient, the MR-linac-IMRT, MR-Co-60-IMRT, and VMAT plans were generated using an identical CT image set and structures, except for the spinal cord and spinal cord planning organ-at-risk volume (PRV). Those two structures were contoured based on CT image sets for VMAT planning while those were contoured based on MR image sets for MR-linac-IMRT and MR-Co-60-IMRT planning. The initial prescription doses were 18 Gy in a single fraction for every plan in this study. If the tolerance level of the spinal cord was not met, the prescription doses were reduced to meet the tolerance level of the spinal cord. Dose-volumetric parameters of each plan were analyzed. RESULTS The average spinal cord volumes contoured based on the CT and MR images were 3.8±1.6 cm3 and 1.1±1.0 cm3, respectively (p<0.001). For four patients, the prescription doses of VMAT plans were reduced to 16 Gy to satisfy the spinal cord tolerance level. For thirteen patients, the prescription doses of MR-Co-60-IMRT plans were reduced to be less than 16 Gy to meet the spinal cord tolerance level. However, for every MR-linac-IMRT plan, the initial prescription doses of 18 Gy could be delivered to the target volume while satisfying the spinal cord tolerance. The average values of D10%, V10Gy, and V14Gy of the spinal cord PRV consistently indicated that the doses to the spinal cord PRV in the MR-linac-IMRT plans were the lowest among three types of plans in this study (all with p≤0.003). CONCLUSION MR-linac-IMRT appears promising for spine SABR.
Collapse
Affiliation(s)
- Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Department of Radiation Oncology, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jung-in Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- * E-mail: (JMP); (JK)
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Robotics Research Laboratory for Extreme Environments, Advanced Institute of Convergence Technology, Suwon, Korea
- * E-mail: (JMP); (JK)
| |
Collapse
|
14
|
Investigating the impact of tumour motion on TomoTherapy stereotactic ablative body radiotherapy (SABR) deliveries on 3-dimensional and 4-dimensional computed tomography. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:169-179. [PMID: 30790140 DOI: 10.1007/s13246-019-00727-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/18/2019] [Indexed: 12/25/2022]
Abstract
TomoTherapy can provide highly accurate SABR deliveries, but currently it does not have any effective motion management techniques. Shallow breathing has been identified as one possible motion management solution on TomoTherapy, which has been made possible with the BreatheWell audiovisual biofeedback (AVB) device. Since both the shallow breathing technique and the clinical use of the BreatheWell device are novel, their implementation requires comprehensive verification and validation work. As the first stage of the validation, this paper investigates the impact of target motion on a TomoTherapy SABR delivery is assessed on both 3D CT and 4D CT using a 4D respiratory phantom. A dosimetric study on a 4D respiratory phantom was conducted, with the phantom's insert designed to move at four different amplitudes in the superior-inferior direction. SABR plans on 3D and 4D CT scans were created and measured. Critical plan statistics and measurement results were compared. It is found that for TomoTherapy SABR deliveries, by reducing the targets respiratory motion, target coverage, organ-at-risk (OAR) sparing, and delivery accuracy were improved.
Collapse
|
15
|
Loughery B, Knill C, Silverstein E, Zakjevskii V, Masi K, Covington E, Snyder K, Song K, Snyder M. Multi-institutional evaluation of end-to-end protocol for IMRT/VMAT treatment chains utilizing conventional linacs. Med Dosim 2019; 44:61-66. [DOI: 10.1016/j.meddos.2018.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
|
16
|
Moustakis C, Chan MKH, Kim J, Nilsson J, Bergman A, Bichay TJ, Palazon Cano I, Cilla S, Deodato F, Doro R, Dunst J, Eich HT, Fau P, Fong M, Haverkamp U, Heinze S, Hildebrandt G, Imhoff D, de Klerck E, Köhn J, Lambrecht U, Loutfi-Krauss B, Ebrahimi F, Masi L, Mayville AH, Mestrovic A, Milder M, Morganti AG, Rades D, Ramm U, Rödel C, Siebert FA, den Toom W, Wang L, Wurster S, Schweikard A, Soltys SG, Ryu S, Blanck O. Treatment planning for spinal radiosurgery : A competitive multiplatform benchmark challenge. Strahlenther Onkol 2018; 194:843-854. [PMID: 29802435 DOI: 10.1007/s00066-018-1314-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual's planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches. METHODS Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system. RESULTS All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002). CONCLUSIONS High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.
Collapse
Affiliation(s)
- Christos Moustakis
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany.
| | - Mark K H Chan
- Department of Radiation Oncology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Jinkoo Kim
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Joakim Nilsson
- Department of Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Alanah Bergman
- Vancouver Cancer Centre, Department of Medical Physics, BC Cancer Agency, Vancouver, BC, Canada
| | - Tewfik J Bichay
- Lacks Cancer Center, Department of Radiation Oncology, Mercy Health Saint Mary's, Grand Rapids, MI, USA.,Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Savino Cilla
- Fondazione di Ricerca e Cura "Giovanni Paolo II", Medical Physics Unit, Catholic University of Sacred Heart, Campobasso, Italy
| | - Francesco Deodato
- Fondazione di Ricerca e Cura "Giovanni Paolo II", Radiation Oncology Unit, Catholic University of Sacred Heart, Campobasso, Italy
| | - Raffaela Doro
- Department of Medical Physics and Radiation Oncology, IFCA, Firenze, Italy
| | - Jürgen Dunst
- Department of Radiation Oncology, University Clinic Schleswig-Holstein, Kiel, Germany.,Department of Radiation Oncology, University Clinic Copenhagen, Copenhagen, Denmark
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Pierre Fau
- University of Aix Marseille, Marseille, France.,Physics Department, Institut Paoli Calmettes, Marseille, France
| | - Ming Fong
- Vancouver Cancer Centre, Department of Radiation Therapy, BC Cancer Agency, Vancouver, BC, Canada
| | - Uwe Haverkamp
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Simon Heinze
- Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Guido Hildebrandt
- Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Detlef Imhoff
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Erik de Klerck
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Janett Köhn
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ulrike Lambrecht
- Department of Radiation Oncology, University Clinic Erlangen, Erlangen, Germany
| | - Britta Loutfi-Krauss
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fatemeh Ebrahimi
- Department of Radiation Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Germany
| | - Laura Masi
- Department of Medical Physics and Radiation Oncology, IFCA, Firenze, Italy
| | - Alan H Mayville
- Lacks Cancer Center, Department of Radiation Oncology, Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Ante Mestrovic
- Vancouver Cancer Centre, Department of Medical Physics, BC Cancer Agency, Vancouver, BC, Canada
| | - Maaike Milder
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Alessio G Morganti
- Radiation Oncology Department, DIMES University of Bologna-S. Orsola Malpighi Hospital, Bologna, Italy
| | - Dirk Rades
- Department of Radiation Oncology, University Clinic Schleswig-Holstein, Lübeck, Germany
| | - Ulla Ramm
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claus Rödel
- Department of Radiation Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Wilhelm den Toom
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lei Wang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Stefan Wurster
- Saphir Radiosurgery Center, Northern Germany and Frankfurt, Güstrow, Germany.,Department of Radiation Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Achim Schweikard
- Institute for Robotic and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Oliver Blanck
- Department of Radiation Oncology, University Clinic Schleswig-Holstein, Kiel, Germany.,Saphir Radiosurgery Center, Northern Germany and Frankfurt, Güstrow, Germany
| |
Collapse
|
17
|
Treatment plan quality and delivery accuracy assessments on 3 IMRT delivery methods of stereotactic body radiotherapy for spine tumors. Med Dosim 2018; 44:11-14. [PMID: 29429794 DOI: 10.1016/j.meddos.2017.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Stereotactic body radiotherapy (SBRT) for spine tumors has demonstrated clinical effectiveness. The treatment planning and delivery techniques have evolved from dynamic conformal arc therapy, to fixed gantry angle intensity modulated radiotherapy (IMRT), and most recently to volumetric modulated arc therapy (VMAT). A hybrid-arc (HARC) planning and delivery method combining dynamic conformal arc therapy delivery with a number of equally spaced IMRT beams is proposed. In this study we investigated plan quality, delivery accuracy, and efficiency of 3 delivery techniques: IMRT, HARC, and VMAT. Patients who underwent spine SBRT treatments were randomly selected from an Institutional Review Board-approved registry. For each patient, the prescription dose was 14 to 16 Gy in a single fraction to cover >90% of the tumor (without planning margin) while constraining V10Gy ≤ 10% of the spinal cord and the maximum point dose (MPD) of the spinal cord ≤ 14 Gy. All cases were clinically treated with fixed gantry step-shoot IMRT plans and then re-planned with VMAT using Pinnacle 9.0 and with HARC using Brainlab iPlan 4.5. Student t-test was used to compare the dosimetric end points, including V16Gy to the planning target volume, homogeneity index, MPDPTV, the conformity index, V10Gy of the spinal cord, and MPDcord. To compare the accuracy of delivery, we delivered all plans on a phantom and conducted gamma index (GI) comparisons with 3 mm/3% and 2 mm/2% criteria. All plans met our clinical requirements. Among 3 techniques, there were no differences on dose coverage to the tumor volume, maximum dose to the spinal cord, and plan homogeneity index (p > 0.05). The average V10Gy of the spinal cord was 6.66 ± 0.03%, 5.49 ± 0.03%, and 4.76 ± 0.02% for IMRT, HARC, and VMAT plans, respectively. Accordingly, the conformity indices were 1.30 ± 0.11 and 1.29 ± 0.20, 1.53 ± 0.29, respectively. VMAT plans were significantly (p < 0.05) less conformal but significantly (p < 0.05) lower V10Gy of the spinal cord than those from HARC and IMRT plans. With delivery accuracy measured by GIs, the average GIs of 3%/3 mm were 92.6 ± 1.1%, 96.5 ± 2.7%, 99.0 ± 1.1% for IMRT, HARC, and VMAT plans, respectively. The differences were significant (p < 0.05). Accordingly, the average monitor units were 9238 ± 2242, 9853 ± 2548 and 5091 ± 910. The plan quality created from the 3 planning techniques can meet the clinical requirement. Adding arc beams in delivery such as in HARC and VMAT plans improves the delivery accuracy. VMAT is the most efficient delivery method.
Collapse
|
18
|
Mallory M, Pokhrel D, Badkul R, Jiang H, Lominska C, Wang F. Volumetric modulated arc therapy treatment planning of thoracic vertebral metastases using stereotactic body radiotherapy. J Appl Clin Med Phys 2018; 19:54-61. [PMID: 29349867 PMCID: PMC5849835 DOI: 10.1002/acm2.12252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose/Objectives To retrospectively evaluate the plan quality, treatment efficiency, and accuracy of volumetric modulated arc therapy (VMAT) plans for thoracic spine metastases using stereotactic body radiotherapy (SBRT). Materials/Methods Seven patients with thoracic vertebral metastases treated with noncoplanar hybrid arcs (NCHA) (1 to 2 3D‐conformal partial arcs +7 to 9 IMRT beams) were re‐optimized with VMAT plans using three coplanar arcs. Tumors were located between T2 and T7 and PTVs ranged between 24.3 and 240.1 cc (median 48.1 cc). All prescriptions were 30 Gy in 5 fractions with 6 MV beams treated using the Novalis Tx linac equipped with high definition multileaf collimators (HDMLC). MR images were fused with planning CTs for target and OAR contouring. Plans were compared for target coverage using conformality index (CI), homogeneity index (HI), D90, D98, D2, and Dmedian. Normal tissue sparing was evaluated by comparing doses to the spinal cord (Dmax, D0.35, and D1.2 cc), esophagus (Dmax and D5 cc), heart (Dmax, D15 cc), and lung (V5 and V10). Data analysis was performed with a two‐sided t‐test for each set of parameters. Dose delivery efficiency and accuracy of each VMAT plan was assessed via quality assurance (QA) using a MapCHECK device. The Beam‐on time (BOT) was recorded, and a gamma index was used to compare dose agreement between the planned and measured doses. Results VMAT plans resulted in improved CI (1.02 vs. 1.36, P = 0.05), HI (0.14 vs. 0.27, P = 0.01), D98 (28.4 vs. 26.8 Gy, P = 0.03), D2 (32.9 vs. 36.0 Gy, P = 0.02), and Dmedian (31.4 vs. 33.7 Gy, P = 0.01). D90 was improved but not statistically significant (30.4 vs. 31.0 Gy, P = 0.38). VMAT plans showed statistically significant improvements in normal tissue sparing: Esophagus Dmax (22.5 vs. 27.0 Gy, P = 0.03), Esophagus 5 cc (17.6 vs. 21.5 Gy, P = 0.02), and Heart Dmax (13.1 vs. 15.8 Gy, P = 0.03). Improvements were also observed in spinal cord and lung sparing as well but were not statistically significant. The BOT showed significant reduction for VMAT, 4.7 ± 0.6 min vs. 7.1 ± 1 min for NCHA (not accounting for couch kicks). VMAT plans demonstrated an accurate dose delivery of 95.5 ± 1.0% for clinical gamma passing rate of 3%/3 mm criteria, which was similar to NCHA plans. Conclusions VMAT plans have shown improved dose distributions and normal tissue sparing compared to NCHA plans. Significant reductions in treatment time could potentially minimize patient discomfort and intrafraction movement errors. VMAT planning for SBRT is an attractive option for the treatment of metastases to thoracic vertebrae, and further investigation using alternative fractionation schedules is warranted.
Collapse
Affiliation(s)
- Matthew Mallory
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky Chandler Hospital, Lexington, KY, USA
| | - Rajeev Badkul
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Hongyu Jiang
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Christopher Lominska
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Fen Wang
- Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
19
|
Kim MJ, Lee SR, Lee MY, Sohn JW, Yun HG, Choi JY, Jeon SW, Suh TS. Characterization of 3D printing techniques: Toward patient specific quality assurance spine-shaped phantom for stereotactic body radiation therapy. PLoS One 2017; 12:e0176227. [PMID: 28472175 PMCID: PMC5417437 DOI: 10.1371/journal.pone.0176227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/08/2017] [Indexed: 12/31/2022] Open
Abstract
Development and comparison of spine-shaped phantoms generated by two different 3D-printing technologies, digital light processing (DLP) and Polyjet has been purposed to utilize in patient-specific quality assurance (QA) of stereotactic body radiation treatment. The developed 3D-printed spine QA phantom consisted of an acrylic body phantom and a 3D-printed spine shaped object. DLP and Polyjet 3D printers using a high-density acrylic polymer were employed to produce spine-shaped phantoms based on CT images. Image fusion was performed to evaluate the reproducibility of our phantom, and the Hounsfield units (HUs) were measured based on each CT image. Two different intensity-modulated radiotherapy plans based on both CT phantom image sets from the two printed spine-shaped phantoms with acrylic body phantoms were designed to deliver 16 Gy dose to the planning target volume (PTV) and were compared for target coverage and normal organ-sparing. Image fusion demonstrated good reproducibility of the developed phantom. The HU values of the DLP- and Polyjet-printed spine vertebrae differed by 54.3 on average. The PTV Dmax dose for the DLP-generated phantom was about 1.488 Gy higher than that for the Polyjet-generated phantom. The organs at risk received a lower dose for the 3D printed spine-shaped phantom image using the DLP technique than for the phantom image using the Polyjet technique. Despite using the same material for printing the spine-shaped phantom, these phantoms generated by different 3D printing techniques, DLP and Polyjet, showed different HU values and these differently appearing HU values according to the printing technique could be an extra consideration for developing the 3D printed spine-shaped phantom depending on the patient’s age and the density of the spinal bone. Therefore, the 3D printing technique and materials should be carefully chosen by taking into account the condition of the patient in order to accurately produce 3D printed patient-specific QA phantom.
Collapse
Affiliation(s)
- Min-Joo Kim
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seu-Ran Lee
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Young Lee
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jason W. Sohn
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hyong Geon Yun
- Department of Radiation Oncology, College of Medicine, DongGuk University Hospital, Goyang, Korea
| | - Joon Yong Choi
- Department of Radiation Oncology, College of Medicine, DongGuk University Hospital, Goyang, Korea
| | - Sang Won Jeon
- Department of Radiation Oncology, College of Medicine, DongGuk University Hospital, Goyang, Korea
| | - Tae Suk Suh
- Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
20
|
Single fraction spine stereotactic ablative body radiotherapy with volumetric modulated arc therapy. J Neurooncol 2017; 133:165-172. [DOI: 10.1007/s11060-017-2428-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
|
21
|
Fürweger C, Prins P, Coskan H, Heijmen BJM. Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys 2017; 43:2063. [PMID: 27147318 DOI: 10.1118/1.4944740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The "InCise™ multileaf-collimator (MLC)" is the first commercial MLC to be mounted on a robotic SRS/SBRT platform (CyberKnife). The authors assessed characteristics and performance of this novel device in a preclinical five months test period. METHODS Commissioning beam data were acquired with unshielded diodes. EBT3 radiochromic films were employed for measurement of transmission, leaf/bank position accuracy (garden fence) before and after exercising the MLC, for end-to-end testing and further characterization of the beam. The robot workspace with MLC was assessed analytically by transformation to an Euler geometry ("plane," "gantry," and "collimator" angles) and by measuring pointing accuracy at each node. Stability over time was evaluated in picket fence and adapted Winston-Lutz tests (AQA). RESULTS Beam penumbrae (80%-20%, with 100% = 2 × dose at inflection point for field sizes ≥ 50 × 50 mm(2)) were 2.2-3.7 mm for square fields in reference condition (source-axis-distance 800 mm, depth 15 mm) and depended on field size and off-axis position. Transmission and leakage did not exceed 0.5%. Accessible clinical workspace with MLC covered non-coplanar gantry angles of [-113°; +112°] and collimator angles of [-100°; +107°], with an average robot pointing accuracy of 0.12 ± 0.09 mm. For vertical beams, garden fence tests exhibited an average leaf positioning error of ≤0.2 mm, which increased by 0.25 and 0.30 mm (banks X1 and X2) with leaves traveling parallel to gravity. After execution of a leaf motion stress routine, garden fence tests showed slightly increased jaggedness and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.38 ± 0.05 mm in nine end-to-end tests. Picket fence and AQA tests displayed stable results over the test period. CONCLUSIONS The InCise™ MLC for CyberKnife showed high accuracy and adequate characteristics for SRS/SBRT applications. MLC performance after exercise demands specific quality assurance measures.
Collapse
Affiliation(s)
- Christoph Fürweger
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam 3075 EA, The Netherlands and European CyberKnife Center Munich, Munich 81377, Germany
| | - Paulette Prins
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam 3075 EA, The Netherlands
| | - Harun Coskan
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam 3075 EA, The Netherlands
| | - Ben J M Heijmen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam 3075 EA, The Netherlands
| |
Collapse
|
22
|
Dechambre D, Baart V, Cucchiaro S, Ernst C, Jansen N, Berkovic P, Mievis C, Coucke P, Gulyban A. Commissioning Monte Carlo algorithm for robotic radiosurgery using cylindrical 3D-array with variable density inserts. Phys Med 2017; 33:152-158. [DOI: 10.1016/j.ejmp.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/18/2016] [Accepted: 01/07/2017] [Indexed: 10/20/2022] Open
|
23
|
Pokhrel D, Sood S, McClinton C, Shen X, Badkul R, Jiang H, Mallory M, Mitchell M, Wang F, Lominska C. On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery. Med Dosim 2017; 42:69-75. [DOI: 10.1016/j.meddos.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
|
24
|
Nalichowski A, Kaufman I, Gallo J, Bossenberger T, Solberg T, Ramirez E, Yan Y, Fredrick J, Bichay T, Mayville A, Burmeister J. Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: A dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 2016; 18:164-169. [PMID: 28291927 PMCID: PMC5689889 DOI: 10.1002/acm2.12022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 11/13/2022] Open
Abstract
There are numerous commercial radiotherapy systems capable of delivering single fraction spine radiosurgery/SBRT. We aim to compare the capabilities of several of these systems to deliver this treatment when following standardized criteria from a national protocol. Four distinct target lesions representing various case presentations of spine metastases were contoured in both the thoracic and lumbar spine of an anthropomorphic SBRT phantom. Single fraction radiosurgery/SBRT plans were designed for each target with each of our treatment platforms. Plans were prescribed to 16 Gy in one fraction to cover 90% of the target volume using normal tissue and target constraints from RTOG 0631. We analyzed these plans with priority on the dose to 10% of the partial spinal cord and dose to 0.03 cc of the spinal cord. Each system was able to maintain 90% target coverage while meeting all the constraints of RTOG 0631. On average, CyberKnife was able to achieve the lowest spinal cord doses overall and also generated the sharpest dose falloff as indicated by the Paddick gradient index. Treatment times varied widely depending on the modality utilized. On average, treatment can be delivered faster with Flattening Filter Free RapidArc and Tomotherapy, compared to Vero and Cyberknife. While all systems analyzed were able to meet the dose constraints of RTOG 0631, unique characteristics of individual treatment modalities may guide modality selection. Specifically, certain modalities performed better than the others for specific target shapes and locations, and delivery time varied significantly among the different modalities. These findings could provide guidance in determining which of the available modalities would be preferable for the treatment of spine metastases based on individualized treatment goals.
Collapse
Affiliation(s)
- Adrian Nalichowski
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Isaac Kaufman
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - John Gallo
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Tim Solberg
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ezequiel Ramirez
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yulong Yan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julie Fredrick
- Department of Radiation Oncology, Huron Valley Sinai Hospital, Commerce, MI, USA
| | - Tewfik Bichay
- Lacks Cancer Center, Radiation Oncology, Saint Mary's Health Care, Grand Rapids, MI, USA
| | - Alan Mayville
- Lacks Cancer Center, Radiation Oncology, Saint Mary's Health Care, Grand Rapids, MI, USA
| | - Jay Burmeister
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
25
|
Al-Hallaq HA, Chmura SJ, Salama JK, Lowenstein JR, McNulty S, Galvin JM, Followill DS, Robinson CG, Pisansky TM, Winter KA, White JR, Xiao Y, Matuszak MM. Benchmark Credentialing Results for NRG-BR001: The First National Cancer Institute-Sponsored Trial of Stereotactic Body Radiation Therapy for Multiple Metastases. Int J Radiat Oncol Biol Phys 2016; 97:155-163. [PMID: 27843033 DOI: 10.1016/j.ijrobp.2016.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE The NRG-BR001 trial is the first National Cancer Institute-sponsored trial to treat multiple (range 2-4) extracranial metastases with stereotactic body radiation therapy. Benchmark credentialing is required to ensure adherence to this complex protocol, in particular, for metastases in close proximity. The present report summarizes the dosimetric results and approval rates. METHODS AND MATERIALS The benchmark used anonymized data from a patient with bilateral adrenal metastases, separated by <5 cm of normal tissue. Because the planning target volume (PTV) overlaps with organs at risk (OARs), institutions must use the planning priority guidelines to balance PTV coverage (45 Gy in 3 fractions) against OAR sparing. Submitted plans were processed by the Imaging and Radiation Oncology Core and assessed by the protocol co-chairs by comparing the doses to targets, OARs, and conformity metrics using nonparametric tests. RESULTS Of 63 benchmarks submitted through October 2015, 94% were approved, with 51% approved at the first attempt. Most used volumetric arc therapy (VMAT) (78%), a single plan for both PTVs (90%), and prioritized the PTV over the stomach (75%). The median dose to 95% of the volume was 44.8 ± 1.0 Gy and 44.9 ± 1.0 Gy for the right and left PTV, respectively. The median dose to 0.03 cm3 was 14.2 ± 2.2 Gy to the spinal cord and 46.5 ± 3.1 Gy to the stomach. Plans that spared the stomach significantly reduced the dose to the left PTV and stomach. Conformity metrics were significantly better for single plans that simultaneously treated both PTVs with VMAT, intensity modulated radiation therapy, or 3-dimensional conformal radiation therapy compared with separate plans. No significant differences existed in the dose at 2 cm from the PTVs. CONCLUSIONS Although most plans used VMAT, the range of conformity and dose falloff was large. The decision to prioritize either OARs or PTV coverage varied considerably, suggesting that the toxicity outcomes in the trial could be affected. Several benchmarks met the dose-volume histogram metrics but produced unacceptable plans owing to low conformity. Dissemination of a frequently-asked-questions document improved the approval rate at the first attempt. Benchmark credentialing was found to be a valuable tool for educating institutions about the protocol requirements.
Collapse
Affiliation(s)
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, Chicago, Illinois
| | | | - Jessica R Lowenstein
- Imaging and Radiation Oncology Core Group (IROC) Houston, MD Anderson Cancer Center, Houston, Texas
| | - Susan McNulty
- Imaging and Radiation Oncology Core Group (IROC) PHILADELPHIA RT, Philadelphia, Pennsylvania
| | - James M Galvin
- Imaging and Radiation Oncology Core Group (IROC) PHILADELPHIA RT, Philadelphia, Pennsylvania
| | - David S Followill
- Imaging and Radiation Oncology Core Group (IROC) Houston, MD Anderson Cancer Center, Houston, Texas
| | | | | | - Kathryn A Winter
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | | | - Ying Xiao
- Imaging and Radiation Oncology Core Group (IROC) PHILADELPHIA RT, Philadelphia, Pennsylvania; Department of Radiation Oncology, Philadelphia, Pennsylvania
| | | |
Collapse
|
26
|
Alongi F, Fiorentino A, Mancosu P, Navarria P, Giaj Levra N, Mazzola R, Scorsetti M. Stereotactic radiosurgery for intracranial metastases: linac-based and gamma-dedicated unit approach. Expert Rev Anticancer Ther 2016; 16:731-40. [DOI: 10.1080/14737140.2016.1190648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filippo Alongi
- Radiation Oncology Department, Sacro Cuore Hospital, Negrar, Italy
| | - Alba Fiorentino
- Radiation Oncology Department, Sacro Cuore Hospital, Negrar, Italy
| | - Pietro Mancosu
- Radiation Oncology Department, Istituto Clinico Humanitas, Milan, Italy
| | - Pierina Navarria
- Radiation Oncology Department, Istituto Clinico Humanitas, Milan, Italy
| | | | - Rosario Mazzola
- Radiation Oncology Department, Sacro Cuore Hospital, Negrar, Italy
| | - Marta Scorsetti
- Radiation Oncology Department, Istituto Clinico Humanitas, Milan, Italy
| |
Collapse
|
27
|
Blanck O, Wang L, Baus W, Grimm J, Lacornerie T, Nilsson J, Luchkovskyi S, Cano IP, Shou Z, Ayadi M, Treuer H, Viard R, Siebert FA, Chan MKH, Hildebrandt G, Dunst J, Imhoff D, Wurster S, Wolff R, Romanelli P, Lartigau E, Semrau R, Soltys SG, Schweikard A. Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 2016; 17:313-330. [PMID: 27167291 PMCID: PMC5690905 DOI: 10.1120/jacmp.v17i3.6151] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/19/2016] [Accepted: 01/18/2016] [Indexed: 11/23/2022] Open
Abstract
Stereotactic radiosurgery (SRS) is the accurate, conformal delivery of high‐dose radiation to well‐defined targets while minimizing normal structure doses via steep dose gradients. While inverse treatment planning (ITP) with computerized optimization algorithms are routine, many aspects of the planning process remain user‐dependent. We performed an international, multi‐institutional benchmark trial to study planning variability and to analyze preferable ITP practice for spinal robotic radiosurgery. 10 SRS treatment plans were generated for a complex‐shaped spinal metastasis with 21 Gy in 3 fractions and tight constraints for spinal cord (V14Gy<2 cc, V18Gy<0.1 cc) and target (coverage >95%). The resulting plans were rated on a scale from 1 to 4 (excellent‐poor) in five categories (constraint compliance, optimization goals, low‐dose regions, ITP complexity, and clinical acceptability) by a blinded review panel. Additionally, the plans were mathematically rated based on plan indices (critical structure and target doses, conformity, monitor units, normal tissue complication probability, and treatment time) and compared to the human rankings. The treatment plans and the reviewers' rankings varied substantially among the participating centers. The average mean overall rank was 2.4 (1.2‐4.0) and 8/10 plans were rated excellent in at least one category by at least one reviewer. The mathematical rankings agreed with the mean overall human rankings in 9/10 cases pointing toward the possibility for sole mathematical plan quality comparison. The final rankings revealed that a plan with a well‐balanced trade‐off among all planning objectives was preferred for treatment by most participants, reviewers, and the mathematical ranking system. Furthermore, this plan was generated with simple planning techniques. Our multi‐institutional planning study found wide variability in ITP approaches for spinal robotic radiosurgery. The participants', reviewers', and mathematical match on preferable treatment plans and ITP techniques indicate that agreement on treatment planning and plan quality can be reached for spinal robotic radiosurgery. PACS number(s): 87.55.de
Collapse
Affiliation(s)
- Oliver Blanck
- University Medical Center Schleswig-Holstein; Saphir Radiosurgery Cente.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lin MH, Veltchev I, Koren S, Ma C, Li J. Robotic radiosurgery system patient-specific QA for extracranial treatments using the planar ion chamber array and the cylindrical diode array. J Appl Clin Med Phys 2015. [PMID: 26219013 PMCID: PMC5690014 DOI: 10.1120/jacmp.v16i4.5486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient‐specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image‐based setup. An in‐house program was developed to postprocess the movie file of the measurements and apply the beam‐by‐beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross‐comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1–3 mm) and the rotational (1°–3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7–137 cm3) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray‐tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm2 diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray‐tracing algorithm fails to handle the high‐Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100%/>;92%(3%/3 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient‐specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system. PACS number: 29.40.‐n
Collapse
Affiliation(s)
- Mu-Han Lin
- University of Maryland School of Medicine.
| | | | | | | | | |
Collapse
|