1
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
2
|
Wilson US, Browning-Kamins J, Durante AS, Boothalingam S, Moleti A, Sisto R, Dhar S. Cochlear tuning estimates from level ratio functions of distortion product otoacoustic emissions. Int J Audiol 2021; 60:890-899. [PMID: 33612052 DOI: 10.1080/14992027.2021.1886352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Distortion product otoacoustic emission (DPOAE) levels plotted as a function of stimulus frequency ratio demonstrate a bandpass shape. This bandpass shape is narrower at higher frequencies compared to lower frequencies and thus has been thought to be related to cochlear mechanical tuning.Design: However, the frequency- and level-dependence of these functions above 8 kHz is largely unknown. Furthermore, how tuning estimates from these functions are related to behavioural tuning is not fully understood.Study Sample: From experiment 1, we report DPOAE level ratio functions (LRF) from seven normal-hearing, young-adults for f2 = 0.75-16 kHz and two stimulus levels of 62/52 and 52/37 dB FPL. We found that LRFs became narrower as a function of increasing frequency and decreasing level.Results: Tuning estimates from these functions increased as expected from 1-8 kHz. In experiment 2, we compared tuning estimates from DPOAE LRF to behavioural tuning in 24 normal-hearing, young adults for 1 and 4 kHz and found that behavioural tuning generally predicted DPOAE LRF estimated tuning.Conclusions: Our findings suggest that DPOAE LRFs generally reflect the tuning profile consistent with basilar membrane, neural, and behavioural tuning. However, further investigations are warranted to fully determine the use of DPOAE LRF as a clinical measure of cochlear tuning.
Collapse
Affiliation(s)
- Uzma Shaheen Wilson
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA
| | - Jenna Browning-Kamins
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA
| | | | | | - Arturo Moleti
- Physics Department, University of Roma Tor Vergata, Rome, Italy
| | | | - Sumitrajit Dhar
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Xu H, Ohgami N, He T, Hashimoto K, Tazaki A, Ohgami K, Takeda K, Kato M. Improvement of balance in young adults by a sound component at 100 Hz in music. Sci Rep 2018; 8:16894. [PMID: 30442994 PMCID: PMC6237978 DOI: 10.1038/s41598-018-35244-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
About 80% of young people use personal listening devices (PLDs) including MP3 players to listen to music, which consists of sound components with various frequencies. Previous studies showed that exposure to noise of high intensities affected balance in humans. However, there is no information about a frequency-dependent effect of sound components in music from a PLD on balance in young people. In this study, we determined the associations between sound component levels (dB) at 100, 1000 and 4000 Hz in music from a portable listening device (PLD) and balance objectively determined by posturography in young adults (n = 110). We divided the subjects into two groups (low and high exposure groups) based on cut-off values of sound component levels at each frequency using receiver operating characteristic (ROC) curves. Balance in the high exposure group (≥46.6 dB) at 100 Hz was significantly better than that in low exposure group in logistic regression models adjusted for sex, BMI, smoking status and alcohol intake, while there were no significant associations at 1000 and 4000 Hz. Thus, this study demonstrated for the first time that the sound component at 100 Hz with more than 46.6 dB in music improved balance in young adults.
Collapse
Affiliation(s)
- Huadong Xu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan.,Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Tingchao He
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Kyoko Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozue Takeda
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan.,Voluntary Body for International Health Care in Universities, Nagoya, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan. .,Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan. .,Voluntary Body for International Health Care in Universities, Nagoya, Japan.
| |
Collapse
|
4
|
Effect of sound level on virtual and free-field localization of brief sounds in the anterior median plane. Hear Res 2018; 365:28-35. [DOI: 10.1016/j.heares.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/31/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022]
|
5
|
Carlile S, Davy JL, Hillman D, Burgemeister K. A Review of the Possible Perceptual and Physiological Effects of Wind Turbine Noise. Trends Hear 2018; 22:2331216518789551. [PMID: 30084316 PMCID: PMC6081752 DOI: 10.1177/2331216518789551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/24/2022] Open
Abstract
This review considers the nature of the sound generated by wind turbines focusing on the low-frequency sound (LF) and infrasound (IS) to understand the usefulness of the sound measures where people work and sleep. A second focus concerns the evidence for mechanisms of physiological transduction of LF/IS or the evidence for somatic effects of LF/IS. While the current evidence does not conclusively demonstrate transduction, it does present a strong prima facia case. There are substantial outstanding questions relating to the measurement and propagation of LF and IS and its encoding by the central nervous system relevant to possible perceptual and physiological effects. A range of possible research areas are identified.
Collapse
Affiliation(s)
- Simon Carlile
- Faculty of Medicine, University of Sydney, Australia
- Starkey Hearing Research Centre, Berkeley, CA, USA
| | - John L. Davy
- Royal Melbourne Institute of Technology University, Australia
- CSIRO Infrastructure Technologies, Clayton South, Australia
| | | | | |
Collapse
|
6
|
Jurado C, Gallegos P, Gordillo D, Moore BCJ. The detailed shapes of equal-loudness-level contours at low frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3821. [PMID: 29289096 DOI: 10.1121/1.5018428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-resolution equal-loudness-level contours (ELCs) were measured over the frequency range 10-250 Hz using 19 normal-hearing subjects. Three levels of the 50-Hz reference sound were used, corresponding to the levels at 50 Hz of the 30-, 50-, and 70-phon standardized ELCs given in ISO-226:2003. The dynamic range of the contours generally decreased with increasing reference level, and the slope was shallow between 10 and 20 Hz, consistent with previous studies. For the lowest level, the ELCs were sometimes but not always smooth and on average followed the standardized 30-phon contour for frequencies above 40 Hz. For the two higher levels, the individual ELCs showed a distinct non-monotonic feature in a "transition region" between about 40 and 100 Hz, where the slope could reach near-zero or even positive values. The pattern of the non-monotonic feature was similar across levels for the subjects for whom it was observed, but the pattern varied across subjects. Below 40 Hz, the slopes of the ELCs increased markedly for all loudness levels, and the levels exceeded those of the standardized ELCs. Systematic deviations from the standardized ELCs were largest for frequencies below 40 Hz for all levels and within the transition region for the two higher levels.
Collapse
Affiliation(s)
- Carlos Jurado
- Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Avenue Granados and Colimes, Quito EC170125, Ecuador
| | - Pablo Gallegos
- Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Avenue Granados and Colimes, Quito EC170125, Ecuador
| | - Darío Gordillo
- Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Avenue Granados and Colimes, Quito EC170125, Ecuador
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
7
|
Weichenberger M, Bauer M, Kühler R, Hensel J, Forlim CG, Ihlenfeld A, Ittermann B, Gallinat J, Koch C, Kühn S. Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold - Evidence from fMRI. PLoS One 2017; 12:e0174420. [PMID: 28403175 PMCID: PMC5389622 DOI: 10.1371/journal.pone.0174420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.
Collapse
Affiliation(s)
- Markus Weichenberger
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| | - Martin Bauer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Robert Kühler
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Hensel
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Caroline Garcia Forlim
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Albrecht Ihlenfeld
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jürgen Gallinat
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| | - Christian Koch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Simone Kühn
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| |
Collapse
|
8
|
Jurado C, Marquardt T. The effect of the helicotrema on low-frequency loudness perception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3799. [PMID: 27908034 DOI: 10.1121/1.4967295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Below approximately 40 Hz, the cochlear travelling wave reaches the apex, and differential pressure is shunted through the helicotrema, reducing hearing sensitivity. Just above this corner frequency, a resonance feature is often observed in objectively measured middle-ear-transfer functions (METFs). This study inquires whether overall and fine structure characteristics of the METF are also perceptually evident. Equal-loudness-level contours (ELCs) were measured between 20 and 160 Hz for 14 subjects in a purpose-built test chamber. In addition, the inverse shapes of their METFs were obtained by adjusting the intensity of a low-frequency suppressor tone to maintain an equal suppression depth of otoacoustic emissions for various suppressor tone frequencies (20-250 Hz). For 11 subjects, the METFs showed a resonance. Six of them had coinciding features in both ears, and also in their ELC. For two subjects only the right-ear METF was obtainable, and in one case it was consistent with the ELC. One other subject showed a consistent lack of the feature in their ELC and in both METFs. Although three subjects displayed clear inconsistencies between both measures, the similarity between inverse METF and ELC for most subjects shows that the helicotrema has a marked impact on low-frequency sound perception.
Collapse
Affiliation(s)
- Carlos Jurado
- Section of Acoustics, Department of Electronic Systems, Aalborg University, Fredrik Bajersvej 7-A, Denmark
| | - Torsten Marquardt
- UCL Ear Institute, University College London, 332 Grays Inn Road, London, WC1X 8EE, United Kingdom
| |
Collapse
|
9
|
Power dissipation in the subtectorial space of the mammalian cochlea is modulated by inner hair cell stereocilia. Biophys J 2015; 108:479-88. [PMID: 25650916 DOI: 10.1016/j.bpj.2014.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022] Open
Abstract
The stereocilia bundle is the mechano-transduction apparatus of the inner ear. In the mammalian cochlea, the stereocilia bundles are situated in the subtectorial space (STS)--a micrometer-thick space between two flat surfaces vibrating relative to each other. Because microstructures vibrating in fluid are subject to high-viscous friction, previous studies considered the STS as the primary place of energy dissipation in the cochlea. Although there have been extensive studies on how metabolic energy is used to compensate the dissipation, much less attention has been paid to the mechanism of energy dissipation. Using a computational model, we investigated the power dissipation in the STS. The model simulates fluid flow around the inner hair cell (IHC) stereocilia bundle. The power dissipation in the STS because of the presence IHC stereocilia increased as the stimulating frequency decreased. Along the axis of the stimulating frequency, there were two asymptotic values of power dissipation. At high frequencies, the power dissipation was determined by the shear friction between the two flat surfaces of the STS. At low frequencies, the power dissipation was dominated by the viscous friction around the IHC stereocilia bundle--the IHC stereocilia increased the STS power dissipation by 50- to 100-fold. There exists a characteristic frequency for STS power dissipation, CFSTS, defined as the frequency where power dissipation drops to one-half of the low frequency value. The IHC stereocilia stiffness and the gap size between the IHC stereocilia and the tectorial membrane determine the characteristic frequency. In addition to the generally assumed shear flow, nonshear STS flow patterns were simulated. Different flow patterns have little effect on the CFSTS. When the mechano-transduction of the IHC was tuned near the vibrating frequency, the active motility of the IHC stereocilia bundle reduced the power dissipation in the STS.
Collapse
|
10
|
Kugler K, Wiegrebe L, Gürkov R, Krause E, Drexl M. Concurrent Acoustic Activation of the Medial Olivocochlear System Modifies the After-Effects of Intense Low-Frequency Sound on the Human Inner Ear. J Assoc Res Otolaryngol 2015; 16:713-25. [PMID: 26264256 DOI: 10.1007/s10162-015-0538-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
>Human hearing is rather insensitive for very low frequencies (i.e. below 100 Hz). Despite this insensitivity, low-frequency sound can cause oscillating changes of cochlear gain in inner ear regions processing even much higher frequencies. These alterations outlast the duration of the low-frequency stimulation by several minutes, for which the term 'bounce phenomenon' has been coined. Previously, we have shown that the bounce can be traced by monitoring frequency and level changes of spontaneous otoacoustic emissions (SOAEs) over time. It has been suggested elsewhere that large receptor potentials elicited by low-frequency stimulation produce a net Ca(2+) influx and associated gain decrease in outer hair cells. The bounce presumably reflects an underdamped, homeostatic readjustment of increased Ca(2+) concentrations and related gain changes after low-frequency sound offset. Here, we test this hypothesis by activating the medial olivocochlear efferent system during presentation of the bounce-evoking low-frequency (LF) sound. The efferent system is known to modulate outer hair cell Ca(2+) concentrations and receptor potentials, and therefore, it should modulate the characteristics of the bounce phenomenon. We show that simultaneous presentation of contralateral broadband noise (100 Hz-8 kHz, 65 and 70 dB SPL, 90 s, activating the efferent system) and ipsilateral low-frequency sound (30 Hz, 120 dB SPL, 90 s, inducing the bounce) affects the characteristics of bouncing SOAEs recorded after low-frequency sound offset. Specifically, the decay time constant of the SOAE level changes is shorter, and the transient SOAE suppression is less pronounced. Moreover, the number of new, transient SOAEs as they are seen during the bounce, are reduced. Taken together, activation of the medial olivocochlear system during induction of the bounce phenomenon with low-frequency sound results in changed characteristics of the bounce phenomenon. Thus, our data provide experimental support for the hypothesis that outer hair cell calcium homeostasis is the source of the bounce phenomenon.
Collapse
Affiliation(s)
- Kathrin Kugler
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Lutz Wiegrebe
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany
| | - Robert Gürkov
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Eike Krause
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders (IFB), Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377, Munich, Germany. .,Division of Neurobiology, Department Biology II, University of Munich, 82152, Martinsried, Germany.
| |
Collapse
|
11
|
Wojtczak M, Beim JA, Oxenham AJ. Exploring the role of feedback-based auditory reflexes in forward masking by schroeder-phase complexes. J Assoc Res Otolaryngol 2014; 16:81-99. [PMID: 25338224 DOI: 10.1007/s10162-014-0495-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022] Open
Abstract
Several studies have postulated that psychoacoustic measures of auditory perception are influenced by efferent-induced changes in cochlear responses, but these postulations have generally remained untested. This study measured the effect of stimulus phase curvature and temporal envelope modulation on the medial olivocochlear reflex (MOCR) and on the middle-ear muscle reflex (MEMR). The role of the MOCR was tested by measuring changes in the ear-canal pressure at 6 kHz in the presence and absence of a band-limited harmonic complex tone with various phase curvatures, centered either at (on-frequency) or well below (off-frequency) the 6-kHz probe frequency. The influence of possible MEMR effects was examined by measuring phase-gradient functions for the elicitor effects and by measuring changes in the ear-canal pressure with a continuous suppressor of the 6-kHz probe. Both on- and off-frequency complex tone elicitors produced significant changes in ear canal sound pressure. However, the pattern of results was not consistent with the earlier hypotheses postulating that efferent effects produce the psychoacoustic dependence of forward-masked thresholds on masker phase curvature. The results also reveal unexpectedly long time constants associated with some efferent effects, the source of which remains unknown.
Collapse
Affiliation(s)
- Magdalena Wojtczak
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Rd., Minneapolis, MN, 55455, USA,
| | | | | |
Collapse
|
12
|
Kugler K, Wiegrebe L, Grothe B, Kössl M, Gürkov R, Krause E, Drexl M. Low-frequency sound affects active micromechanics in the human inner ear. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140166. [PMID: 26064536 PMCID: PMC4448896 DOI: 10.1098/rsos.140166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/18/2014] [Indexed: 05/17/2023]
Abstract
Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing.
Collapse
Affiliation(s)
- Kathrin Kugler
- German Center for Vertigo and Balance Disorders (IFB), University of Munich, 81377 Munich, Germany
- Department Biology II, University of Munich, 82152 Martinsried, Germany
| | - Lutz Wiegrebe
- Department Biology II, University of Munich, 82152 Martinsried, Germany
| | - Benedikt Grothe
- Department Biology II, University of Munich, 82152 Martinsried, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, Johann Wolfgang Goethe University, 60438 Frankfurt/Main, Germany
| | - Robert Gürkov
- German Center for Vertigo and Balance Disorders (IFB), University of Munich, 81377 Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377 Munich, Germany
| | - Eike Krause
- German Center for Vertigo and Balance Disorders (IFB), University of Munich, 81377 Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377 Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders (IFB), University of Munich, 81377 Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Centre, University of Munich, 81377 Munich, Germany
- Author for correspondence: Markus Drexl e-mail:
| |
Collapse
|
13
|
Alves-Pinto A, Palmer AR, Lopez-Poveda EA. Perception and coding of high-frequency spectral notches: potential implications for sound localization. Front Neurosci 2014; 8:112. [PMID: 24904258 PMCID: PMC4034511 DOI: 10.3389/fnins.2014.00112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/29/2014] [Indexed: 11/13/2022] Open
Abstract
The interaction of sound waves with the human pinna introduces high-frequency notches (5-10 kHz) in the stimulus spectrum that are thought to be useful for vertical sound localization. A common view is that these notches are encoded as rate profiles in the auditory nerve (AN). Here, we review previously published psychoacoustical evidence in humans and computer-model simulations of inner hair cell responses to noises with and without high-frequency spectral notches that dispute this view. We also present new recordings from guinea pig AN and "ideal observer" analyses of these recordings that suggest that discrimination between noises with and without high-frequency spectral notches is probably based on the information carried in the temporal pattern of AN discharges. The exact nature of the neural code involved remains nevertheless uncertain: computer model simulations suggest that high-frequency spectral notches are encoded in spike timing patterns that may be operant in the 4-7 kHz frequency regime, while "ideal observer" analysis of experimental neural responses suggest that an effective cue for high-frequency spectral discrimination may be based on sampling rates of spike arrivals of AN fibers using non-overlapping time binwidths of between 4 and 9 ms. Neural responses show that sensitivity to high-frequency notches is greatest for fibers with low and medium spontaneous rates than for fibers with high spontaneous rates. Based on this evidence, we conjecture that inter-subject variability at high-frequency spectral notch detection and, consequently, at vertical sound localization may partly reflect individual differences in the available number of functional medium- and low-spontaneous-rate fibers.
Collapse
Affiliation(s)
- Ana Alves-Pinto
- Klinikum rechts der Isar, Technische Universität MünchenMunich, Germany
| | - Alan R. Palmer
- Medical Research Council Institute of Hearing Research, University ParkNottingham, UK
| | - Enrique A. Lopez-Poveda
- Departamento de Cirugía, Facultad de Medicina, Instituto de Neurociencias de Castilla y León, Instituto de Investigación Biomédica de Salamanca, Universidad de SalamancaSalamanca, Spain
| |
Collapse
|
14
|
Laback B, Necciari T, Balazs P, Savel S, Ystad S. Simultaneous masking additivity for short Gaussian-shaped tones: spectral effects. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1160-1171. [PMID: 23927115 DOI: 10.1121/1.4812773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Laback et al. [(2011). J. Acoust. Soc. Am. 129, 888-897] investigated the additivity of nonsimultaneous masking using short Gaussian-shaped tones as maskers and target. The present study involved Gaussian stimuli to measure the additivity of simultaneous masking for combinations of up to four spectrally separated maskers. According to most basilar membrane measurements, the maskers should be processed linearly at the characteristic frequency (CF) of the target. Assuming also compression of the target, all masker combinations should produce excess masking (exceeding linear additivity). The results for a pair of maskers flanking the target indeed showed excess masking. The amount of excess masking could be predicted by a model assuming summation of masker-evoked excitations in intensity units at the target CF and compression of the target, using compressive input/output functions derived from the nonsimultaneous masking study. However, the combinations of lower-frequency maskers showed much less excess masking than predicted by the model. This cannot easily be attributed to factors like off-frequency listening, combination tone perception, or between-masker suppression. It was better predicted, however, by assuming weighted intensity summation of masker excitations. The optimum weights for the lower-frequency maskers were smaller than one, consistent with partial masker compression as indicated by recent psychoacoustic data.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria.
| | | | | | | | | |
Collapse
|
15
|
Salt AN, Lichtenhan JT, Gill RM, Hartsock JJ. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1561-71. [PMID: 23464026 DOI: 10.1121/1.4789005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
16
|
Cochlear compression: recent insights from behavioural experiments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 787:31-8. [PMID: 23716206 DOI: 10.1007/978-1-4614-1590-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Although physiological measures have provided a great deal of -information about the basilar membrane (BM) response of non-human mammals, it is only relatively recently that behavioural techniques have allowed researchers to measure accurately the non-linear characteristics of the human BM. These techniques are based on forward masking, in which the threshold for detecting a signal is measured in the presence of a prior masking sound. Two popular techniques, the growth of forward masking technique and the temporal masking curve technique, rely on the fact that compression in the base of the cochlea is largely restricted to frequencies close to the characteristic frequency (CF) of each place. By comparing the response to a masker with a frequency equal to that of the signal with the response to a lower-frequency masker, it is possible to infer the CF response. These measures have shown that BM compression in humans matches that of other mammals and that compression is absent in listeners with moderate-to-severe cochlear hearing loss, probably reflecting outer hair cell dysfunction. Another technique, the additivity of forward masking (AFM) technique, does not rely on a comparison between on- and off-frequency maskers, but instead measures the effect on threshold of combining two nonoverlapping maskers, an effect which is magnified by compression. The difference between thresholds in the single- and combined-masker conditions can be used to estimate compression. The AFM technique has provided evidence that strong compression extends down to low CFs in humans, a finding inconsistent with direct measures of the BM response in other mammals. Furthermore, recent AFM results suggest that there may be an additional source of compression central to the BM. This more central compression also appears to be affected by hearing loss and may reflect non-linear processes in the transduction mechanism of the inner hair cells.
Collapse
|
17
|
Abstract
Wind turbines generate low-frequency sounds that affect the ear. The ear is superficially similar to a microphone, converting mechanical sound waves into electrical signals, but does this by complex physiologic processes. Serious misconceptions about low-frequency sound and the ear have resulted from a failure to consider in detail how the ear works. Although the cells that provide hearing are insensitive to infrasound, other sensory cells in the ear are much more sensitive, which can be demonstrated by electrical recordings. Responses to infrasound reach the brain through pathways that do not involve conscious hearing but instead may produce sensations of fullness, pressure or tinnitus, or have no sensation. Activation of subconscious pathways by infrasound could disturb sleep. Based on our current knowledge of how the ear works, it is quite possible that low-frequency sounds at the levels generated by wind turbines could affect those living nearby.
Collapse
|
18
|
Jurado C, Pedersen CS, Moore BCJ. Psychophysical tuning curves for frequencies below 100 Hz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 129:3166-80. [PMID: 21568419 DOI: 10.1121/1.3560535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Psychophysical tuning curves (PTCs) were measured for sinusoidal signals with frequency f(s) = 31.5, 40, 50, 63, and 80 Hz, using sinusoidal and narrowband-noise maskers. For the former, conditions were included where a pair of beating tones was added to reduce the use of cues related to beats. Estimates of each subject's middle-ear transfer function (METF) were obtained from equal-loudness contours measured from 20 to 160 Hz. With decreasing f(s), the PTCs became progressively broadened and markedly asymmetrical, with shallow upper skirts and steep lower skirts. For the sinusoidal maskers, the tips were more irregular than for narrowband-noise maskers or when beating tones were added. For f(s) = 31.5 and 40 Hz, the tips of the PTCs always fell above f(s). Allowing for the METF so as to infer underlying filter shapes resulted in flatter lower skirts, especially below 40 Hz, and reduced the frequency at the tips for f(s) between 31.5 and 50 Hz; however, the tips did not fall below 40 to 50 Hz. The bandwidths of the PTCs increased with decreasing f(s) below 80 Hz. However, bandwidths remained roughly constant if the METF was included as part of auditory filtering for frequencies below 40 Hz.
Collapse
Affiliation(s)
- Carlos Jurado
- Section of Acoustics, Department of Electronic Systems, Aalborg University, Fredrik Bajers Vej 7-B5, Aalborg Ø 9220, Denmark.
| | | | | |
Collapse
|
19
|
Jurado C, Moore BCJ. Frequency selectivity for frequencies below 100 Hz: comparisons with mid-frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:3585-96. [PMID: 21218891 DOI: 10.1121/1.3504657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Auditory filter shapes were derived for signal frequencies (f(s)) between 50 and 1000 Hz, using the notched-noise method. The masker spectrum level (N(0)) was 50 dB (re 20 μPa). For f(s) = 63 and 50 Hz, measurements were also made with N(0) = 62 dB for the lower band. The data were fitted using a rounded-exponential filter model, with special consideration of the filtering effects of the middle-ear transfer function (METF) at low frequencies. The results showed: (1) For very low values of f(s), the lower skirts of the filters were only well defined when N(0) = 62 dB for the lower band; (2) the sharpness of both sides of the filters decreased with decreasing f(s); (3) the dynamic range of the filters decreased with decreasing f(s); (4) the equivalent rectangular bandwidth of the filters decreased with decreasing f(s) down to f(s) = 80 Hz, but increased for f(s) below that; (5) the assumed METF, which includes the shunt effect of the helicotrema for frequencies below 50 Hz, increasingly influenced the low-frequency skirt of the filters as f(s) decreased; and (6) detection efficiency worsened with decreasing f(s) for f(s) between 100 and 500 Hz, but improved slightly below that.
Collapse
Affiliation(s)
- Carlos Jurado
- Section of Acoustics, Department of Electronic Systems, Aalborg University, Fredrik Bajersvej 7-A, Denmark.
| | | |
Collapse
|
20
|
Salt AN, Hullar TE. Responses of the ear to low frequency sounds, infrasound and wind turbines. Hear Res 2010; 268:12-21. [PMID: 20561575 PMCID: PMC2923251 DOI: 10.1016/j.heares.2010.06.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 01/12/2023]
Abstract
Infrasonic sounds are generated internally in the body (by respiration, heartbeat, coughing, etc) and by external sources, such as air conditioning systems, inside vehicles, some industrial processes and, now becoming increasingly prevalent, wind turbines. It is widely assumed that infrasound presented at an amplitude below what is audible has no influence on the ear. In this review, we consider possible ways that low frequency sounds, at levels that may or may not be heard, could influence the function of the ear. The inner ear has elaborate mechanisms to attenuate low frequency sound components before they are transmitted to the brain. The auditory portion of the ear, the cochlea, has two types of sensory cells, inner hair cells (IHC) and outer hair cells (OHC), of which the IHC are coupled to the afferent fibers that transmit "hearing" to the brain. The sensory stereocilia ("hairs") on the IHC are "fluid coupled" to mechanical stimuli, so their responses depend on stimulus velocity and their sensitivity decreases as sound frequency is lowered. In contrast, the OHC are directly coupled to mechanical stimuli, so their input remains greater than for IHC at low frequencies. At very low frequencies the OHC are stimulated by sounds at levels below those that are heard. Although the hair cells in other sensory structures such as the saccule may be tuned to infrasonic frequencies, auditory stimulus coupling to these structures is inefficient so that they are unlikely to be influenced by airborne infrasound. Structures that are involved in endolymph volume regulation are also known to be influenced by infrasound, but their sensitivity is also thought to be low. There are, however, abnormal states in which the ear becomes hypersensitive to infrasound. In most cases, the inner ear's responses to infrasound can be considered normal, but they could be associated with unfamiliar sensations or subtle changes in physiology. This raises the possibility that exposure to the infrasound component of wind turbine noise could influence the physiology of the ear.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, Box 8115, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
21
|
Plack CJ, Arifianto D. On- and off-frequency compression estimated using a new version of the additivity of forward masking technique. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:771-786. [PMID: 20707447 DOI: 10.1121/1.3455844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
On- and off-frequency compression at the 4000- and 8000-Hz cochlear places were estimated using a new version of the additivity of forward masking (AFM) technique, that measures the effects of combining two non-overlapping forward maskers. Instead of measuring signal thresholds to estimate compression of the signal as in the original AFM technique, the decrease in masker threshold in the combined-masker condition compared to the individual-masker conditions is used to estimate compression of the masker at the signal place. By varying masker frequency it is possible to estimate off-frequency compression. The maskers were 500-Hz-wide bands of noise, and the signal was a brief pure tone. Compression at different levels was estimated using different overall signal levels, or different masker-signal intervals. It was shown that the new AFM technique and the original AFM technique produce consistent results. Considerable compression was observed for maskers well below the signal frequency, suggesting that the assumption of off-frequency linearity used in other techniques may not be valid. Reducing the duration of the first masker from 200 to 20 ms reduced the compression exponent in some cases, suggesting a possible influence of olivocochlear efferent activity.
Collapse
Affiliation(s)
- Christopher J Plack
- Human Communication and Deafness Division, University of Manchester, Manchester M13 9PL, United Kingdom.
| | | |
Collapse
|
22
|
Temchin AN, Ruggero MA. Phase-locked responses to tones of chinchilla auditory nerve fibers: implications for apical cochlear mechanics. J Assoc Res Otolaryngol 2009; 11:297-318. [PMID: 19921334 DOI: 10.1007/s10162-009-0197-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/25/2009] [Indexed: 10/20/2022] Open
Abstract
Responses to tones with frequency < or = 5 kHz were recorded from auditory nerve fibers (ANFs) of anesthetized chinchillas. With increasing stimulus level, discharge rate-frequency functions shift toward higher and lower frequencies, respectively, for ANFs with characteristic frequencies (CFs) lower and higher than approximately 0.9 kHz. With increasing frequency separation from CF, rate-level functions are less steep and/or saturate at lower rates than at CF, indicating a CF-specific nonlinearity. The strength of phase locking has lower high-frequency cutoffs for CFs >4 kHz than for CFs < 3 kHz. Phase-frequency functions of ANFs with CFs lower and higher than approximately 0.9 kHz have inflections, respectively, at frequencies higher and lower than CF. For CFs >2 kHz, the inflections coincide with the tip-tail transitions of threshold tuning curves. ANF responses to CF tones exhibit cumulative phase lags of 1.5 periods for CFs 0.7-3 kHz and lesser amounts for lower CFs. With increases of stimulus level, responses increasingly lag (lead) lower-level responses at frequencies lower (higher) than CF, so that group delays are maximal at, or slightly above, CF. The CF-specific magnitude and phase nonlinearities of ANFs with CFs < 2.5 kHz span their entire response bandwidths. Several properties of ANFs undergo sharp transitions in the cochlear region with CFs 2-5 kHz. Overall, the responses of chinchilla ANFs resemble those in other mammalian species but contrast with available measurements of apical cochlear vibrations in chinchilla, implying that either the latter are flawed or that a nonlinear "second filter" is interposed between vibrations and ANF excitation.
Collapse
Affiliation(s)
- Andrei N Temchin
- Hugh Knowles Center (Department of Communication Sciences and Disorders), Northwestern University, 2240 Campus Drive, Evanston, IL 60208-3550, USA
| | | |
Collapse
|
23
|
Multiple roles for the tectorial membrane in the active cochlea. Hear Res 2009; 266:26-35. [PMID: 19853029 DOI: 10.1016/j.heares.2009.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/28/2022]
Abstract
This review is concerned with experimental results that reveal multiple roles for the tectorial membrane in active signal processing in the mammalian cochlea. We discuss the dynamic mechanical properties of the tectorial membrane as a mechanical system with several degrees of freedom and how its different modes of movement can lead to hair-cell excitation. The role of the tectorial membrane in distributing energy along the cochlear partition and how it channels this energy to the inner hair cells is described.
Collapse
|
24
|
Palmer AR, Shackleton TM. Variation in the phase of response to low-frequency pure tones in the guinea pig auditory nerve as functions of stimulus level and frequency. J Assoc Res Otolaryngol 2009; 10:233-50. [PMID: 19093151 PMCID: PMC2674197 DOI: 10.1007/s10162-008-0151-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 11/14/2008] [Indexed: 11/02/2022] Open
Abstract
The directionality of hair cell stimulation combined with the vibration of the basilar membrane causes the auditory nerve fiber action potentials, in response to low-frequency stimuli, to occur at a particular phase of the stimulus waveform. Because direct mechanical measurements at the cochlear apex are difficult, such phase locking has often been used to indirectly infer the basilar membrane motion. Here, we confirm and extend earlier data from mammals using sine wave stimulation over a wide range of sound levels (up to 90 dB sound pressure level). We recorded phase-locked responses to pure tones over a wide range of frequencies and sound levels of a large population of auditory nerve fibers in the anesthetized guinea pig. The results indicate that, for a constant frequency of stimulation, the phase lag decreases with increases in the characteristic frequency (CF) of the nerve fiber. The phase lag decreases up to a CF above the stimulation frequency, beyond which it decreases at a much slower rate. Such phase changes are consistent with known basal cochlear mechanics. Measurements from individual fibers showed smaller but systematic variations in phase with sound level, confirming previous reports. We found a "null" stimulation frequency at which little variation in phase occurred with sound level. This null frequency was often not at the CF. At stimulation frequencies below the null, there was a progressive lag with sound level and a progressive lead for stimulation frequencies above the null. This was maximally 0.2 cycles.
Collapse
Affiliation(s)
- Alan R Palmer
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
25
|
Plack CJ, Oxenham AJ, Simonson AM, O'Hanlon CG, Drga V, Arifianto D. Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:4321-30. [PMID: 18537383 PMCID: PMC2680663 DOI: 10.1121/1.2908297] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 05/26/2023]
Abstract
Auditory compression was estimated at 250 and 4000 Hz by using the additivity of forward masking technique, which measures the effects on signal threshold of combining two temporally nonoverlapping forward maskers. The increase in threshold in the combined-masker condition compared to the individual-masker conditions can be used to estimate compression. The signal was a 250 or 4000 Hz tone burst and the maskers (M1 and M2) were bands of noise. Signal thresholds were measured in the presence of M1 and M2 alone and combined for a range of masker levels. The results were used to derive response functions at each frequency. The procedure was conducted with normal-hearing and hearing-impaired listeners. The results suggest that the response function in normal ears is similar at 250 and 4000 Hz with a mid level compression exponent of about 0.2. However, compression extends over a smaller range of levels at 250 Hz. The results confirm previous estimates of compression using temporal masking curves (TMCs) without assuming a linear off-frequency reference as in the TMC procedure. The impaired ears generally showed less compression. Importantly, some impaired ears showed a linear response at 250 Hz, providing a further indication that low-frequency compression originates in the cochlea.
Collapse
Affiliation(s)
- Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster LA1 4YF, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Lopez-Poveda EA, Alves-Pinto A, Palmer AR, Eustaquio-Martín A. Rate versus time representation of high-frequency spectral notches in the peripheral auditory system: A computational modeling study. Neurocomputing 2008. [DOI: 10.1016/j.neucom.2007.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Plack CJ, Skeels V. Temporal integration and compression near absolute threshold in normal and impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2236-44. [PMID: 17902859 DOI: 10.1121/1.2769829] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The decrease in absolute threshold with increasing stimulus duration (often referred to as "temporal integration") is greater for listeners with normal hearing than for listeners with sensorineural hearing loss. It has been suggested that the difference is related to reduced basilar-membrane (BM) compression in the impaired group. The present experiment tested this hypothesis by comparing temporal integration and BM compression in normal and impaired ears at low levels. Absolute thresholds were measured for 4, 24, and 44 ms pure-tone signals, with frequencies (f(s)) of 2 and 4 kHz. The difference between the absolute thresholds for the 4 and 24 ms signals was used as a measure of temporal integration. Compression near threshold was estimated by measuring the level of a 100 ms off-frequency (0.45f(s)) pure-tone forward masker required to mask a 44 ms pure-tone signal presented at sensation levels of 5 and 10 dB. There was a significant negative correlation between amount of temporal integration and absolute threshold. However, there was no correlation between absolute threshold and compression at low levels; both normal and impaired ears showed a nearly linear response. The results suggest that the differences in integration between normal and impaired ears cannot be explained by differences in BM compression.
Collapse
Affiliation(s)
- Christopher J Plack
- Department of Psychology, Lancaster University, Lancaster, LA1 4YF, United Kingdom.
| | | |
Collapse
|
28
|
Lopez-Najera A, Lopez-Poveda EA, Meddis R. Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: responses to tones. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:2124-34. [PMID: 17902850 DOI: 10.1121/1.2769627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A number of phenomenological models that simulate the response of the basilar membrane motion can reproduce a range of complex features observed in animal measurements over different sites along its cochlea. The present report shows a detailed analysis of the responses to tones of an improved model based on a dual-resonance nonlinear filter. The improvement consists in adding a third path formed by a linear gain and an all-pass filter. This improvement allows the model to reproduce the gain and phase plateaus observed empirically at frequencies above the best frequency. The middle ear was simulated by using a digital filter based on the empirical impulse response of the chinchilla stapes. The improved algorithm is evaluated against observations of basilar membrane responses to tones at seven different sites along the chinchilla cochlear partition. This is the first time that a whole set of animal observations using the same technique has been available in one species for modeling. The resulting model was able to simulate amplitude and phase responses to tones from basal to apical sites. Linear regression across the optimized parameters for seven different sites was used to generate a complete filterbank.
Collapse
Affiliation(s)
- Alberto Lopez-Najera
- Facultad de Medicina, Universidad de Castilla-La Mancha, C/ Almansa, No. 14, 02006 Albacete, Spain.
| | | | | |
Collapse
|
29
|
Bian L, Scherrer NM. Low-frequency modulation of distortion product otoacoustic emissions in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:1681. [PMID: 17927428 PMCID: PMC2612004 DOI: 10.1121/1.2764467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Low-frequency modulation of distortion product otoacoustic emissions (DPOAEs) was measured from the human ears. In the frequency domain, increasing the bias tone level resulted in a suppression of the cubic difference tone (CDT) and an increase in the magnitudes of the modulation sidebands. Higher-frequency bias tones were more efficient in producing the suppression and modulation. Quasi-static modulation patterns were derived from measuring the CDT amplitude at the peaks and troughs of bias tones with various amplitudes. The asymmetric bell-shaped pattern resembled the absolute value of the third derivative of a nonlinear cochlear transducer function. Temporal modulation patterns were obtained from inverse FFT of the spectral contents around the DPOAE. The period modulation pattern, averaged over multiple bias tone cycles, showed two CDT peaks each correlated with the zero-crossings of the bias tone. The typical period modulation pattern varied and the two CDT peaks emerged with the reduction in bias tone level. The present study replicated the previous experimental results in gerbils. This noninvasive technique is capable of revealing the static position and dynamic motion of the cochlear partition. Moreover, the results of the present study suggest that this technique could potentially be applied in the differential diagnosis of cochlear pathologies.
Collapse
Affiliation(s)
- Lin Bian
- Auditory Physiology Laboratory, 3430 Coor Hall, Department of Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287-0102, USA.
| | | |
Collapse
|
30
|
Summers V, Cord MT. Intelligibility of speech in noise at high presentation levels: effects of hearing loss and frequency region. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 122:1130-7. [PMID: 17672659 DOI: 10.1121/1.2751251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
These experiments examined how high presentation levels influence speech recognition for high- and low-frequency stimuli in noise. Normally hearing (NH) and hearing-impaired (HI) listeners were tested. In Experiment 1, high- and low-frequency bandwidths yielding 70%-correct word recognition in quiet were determined at levels associated with broadband speech at 75 dB SPL. In Experiment 2, broadband and band-limited sentences (based on passbands measured in Experiment 1) were presented at this level in speech-shaped noise filtered to the same frequency bandwidths as targets. Noise levels were adjusted to produce approximately 30%-correct word recognition. Frequency bandwidths and signal-to-noise ratios supporting criterion performance in Experiment 2 were tested at 75, 87.5, and 100 dB SPL in Experiment 3. Performance tended to decrease as levels increased. For NH listeners, this "rollover" effect was greater for high-frequency and broadband materials than for low-frequency stimuli. For HI listeners, the 75- to 87.5-dB increase improved signal audibility for high-frequency stimuli and rollover was not observed. However, the 87.5- to 100-dB increase produced qualitatively similar results for both groups: scores decreased most for high-frequency stimuli and least for low-frequency materials. Predictions of speech intelligibility by quantitative methods such as the Speech Intelligibility Index may be improved if rollover effects are modeled as frequency dependent.
Collapse
Affiliation(s)
- Van Summers
- Army Audiology and Speech Center, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA.
| | | |
Collapse
|
31
|
Lopez-Poveda EA, Barrios LF, Alves-Pinto A. Psychophysical estimates of level-dependent best-frequency shifts in the apical region of the human basilar membrane. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:3646-54. [PMID: 17552716 DOI: 10.1121/1.2722046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
It is now undisputed that the best frequency (BF) of basal basilar-membrane (BM) sites shifts downwards as the stimulus level increases. The direction of the shift for apical sites is, by contrast, less well established. Auditory nerve studies suggest that the BF shifts in opposite directions for apical and basal BM sites with increasing stimulus level. This study attempts to determine if this is the case in humans. Psychophysical tuning curves (PTCs) were measured using forward masking for probe frequencies of 125, 250, 500, and 6000 Hz. The level of a masker tone required to just mask a fixed low-level probe tone was measured for different masker-probe time intervals. The duration of the intervals was adjusted as necessary to obtain PTCs for the widest possible range of masker levels. The BF was identified from function fits to the measured PTCs and it almost always decreased with increasing level. This result is inconsistent with most auditory-nerve observations obtained from other mammals. Several explanations are discussed, including that it may be erroneous to assume that low-frequency PTCs reflect the tuning of apical BM sites exclusively and that the inherent frequency response of the inner hair cell may account for the discrepancy.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Av. Alfonso X El Sabio s/n, 37007 Salamanca, Spain.
| | | | | |
Collapse
|
32
|
Marquardt T, Hensel J, Mrowinski D, Scholz G. Low-frequency characteristics of human and guinea pig cochleae. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:3628-38. [PMID: 17552714 DOI: 10.1121/1.2722506] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previous physiological studies investigating the transfer of low-frequency sound into the cochlea have been invasive. Predictions about the human cochlea are based on anatomical similarities with animal cochleae but no direct comparison has been possible. This paper presents a noninvasive method of observing low frequency cochlear vibration using distortion product otoacoustic emissions (DPOAE) modulated by low-frequency tones. For various frequencies (15-480 Hz), the level was adjusted to maintain an equal DPOAE-modulation depth, interpreted as a constant basilar membrane displacement amplitude. The resulting modulator level curves from four human ears match equal-loudness contours (ISO226:2003) except for an irregularity consisting of a notch and a peak at 45 Hz and 60 Hz, respectively, suggesting a cochlear resonance. This resonator interacts with the middle ear stiffness. The irregularity separates two regions of the middle ear transfer function in humans: A slope of 12 dB/octave below the irregularity suggests mass-controlled impedance resulting from perilymph movement through the helicotrema; a 6-dB/octave slope above the irregularity suggests resistive cochlear impedance and the existence of a traveling wave. The results from four guinea pig ears showed a 6-dB/octave slope on either side of an irregularity around 120 Hz, and agree with published data.
Collapse
Affiliation(s)
- Torsten Marquardt
- UCL Ear Institute, University College London, London WC1X8EE, United Kingdom.
| | | | | | | |
Collapse
|
33
|
Glasberg BR, Moore BCJ. Prediction of absolute thresholds and equal-loudness contours using a modified loudness model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 120:585-8. [PMID: 16938942 DOI: 10.1121/1.2214151] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The loudness model described by Moore et al. [J. Audio Eng. Soc. 45, 224-240 (1997)] forms the basis for a recent ANSI standard for the calculation of the loudness of steady sounds. However, the model does not give accurate predictions of the absolute thresholds published in a recent ISO standard. Here it is described how the assumed middle-ear transfer function in the model can be modified to give more accurate absolute threshold predictions. The modified model also gives reasonably accurate predictions of the equal-loudness contours published in a recent ISO standard.
Collapse
Affiliation(s)
- Brian R Glasberg
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, England.
| | | |
Collapse
|
34
|
Lopez-Poveda EA, Eustaquio-Martín A. A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression. J Assoc Res Otolaryngol 2006; 7:218-35. [PMID: 16718614 PMCID: PMC2504609 DOI: 10.1007/s10162-006-0037-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 04/02/2006] [Indexed: 11/30/2022] Open
Abstract
The term peripheral auditory compression refers to the fact that the whole range of audible sound pressure levels is mapped into a narrower range of auditory nerve responses. Peripheral compression is the by-product of independent compressive processes occurring at the level of the basilar membrane, the inner hair cell (IHC), and the auditory nerve synapse. Here, an electrical-circuit equivalent of an IHC is used to look into the compression contributed by the IHC. The model includes a mechanically driven transducer potassium (K(+)) conductance and two time- and voltage-dependent basolateral K(+) conductances: one with fast and one with slow kinetics. Special attention is paid to faithfully implement the activation kinetics of these basolateral conductances. Optimum model parameters are provided to account for previously reported in vitro observations that demonstrate the compression associated with the gating of the transducer and of the basolateral channels. Without having to readjust its parameters, the model also accounts for the in vivo nonlinear IHC transfer characteristics. Model simulations are then used to investigate the relative contribution of the transducer and basolateral K(+) currents to the nonlinear IHC input/output functions in vivo. The simulations suggest that the voltage-dependent activation of the basolateral currents compresses the DC potential for stereocilia displacements above approximately 5 nm. The degree of compression exceeds 2-to-1 and is similar for all stimulation frequencies. The AC potential is compressed in a similar way, but only for frequencies below 800 Hz. The simulations further suggest that the nonlinear gating of the transducer current is responsible for the expansive growth of the DC potential with increasing sound level (slope of 2 dB/dB) at low sound pressure levels.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Avenida Alfonso X "El Sabio" s/n, 37007 Salamanca, Spain.
| | | |
Collapse
|
35
|
Lopez-Poveda EA, Plack CJ, Meddis R, Blanco JL. Cochlear compression in listeners with moderate sensorineural hearing loss. Hear Res 2006; 205:172-83. [PMID: 15953526 DOI: 10.1016/j.heares.2005.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Psychophysical estimates of basilar membrane (BM) responses suggest that normal-hearing (NH) listeners exhibit constant compression for tones at the characteristic frequency (CF) across the CF range from 250 to 8000 Hz. The frequency region over which compression occurs is broadest for low CFs. This study investigates the extent that these results differ for three hearing-impaired (HI) listeners with sensorineural hearing loss. Temporal masking curves (TMCs) were measured over a wide range of probe (500-8000 Hz) and masker frequencies (0.5-1.2 times the probe frequency). From these, estimated BM response functions were derived and compared with corresponding functions for NH listeners. Compressive responses for tones both at and below CF occur for the three HI ears across the CF range tested. The maximum amount of compression was uncorrelated with absolute threshold. It was close to normal for two of the three HI ears, but was either slightly (at CFs < or =1000 Hz) or considerably (at CFs > or =4000 Hz) reduced for the third ear. Results are interpreted in terms of the relative damage to inner and outer hair cells affecting each of the HI ears. Alternative interpretations for the results are also discussed, some of which cast doubts on the assumptions of the TMC-based method and other behavioral methods for estimating human BM compression.
Collapse
MESH Headings
- Acoustic Stimulation
- Adult
- Aged
- Auditory Threshold/physiology
- Basilar Membrane/physiopathology
- Female
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/physiopathology
- Hair Cells, Auditory, Outer/pathology
- Hair Cells, Auditory, Outer/physiopathology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Humans
- Loudness Perception/physiology
- Male
- Middle Aged
- Perceptual Masking
- Psychometrics
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain.
| | | | | | | |
Collapse
|
36
|
Kluk K, Moore BCJ. Factors affecting psychophysical tuning curves for hearing-impaired subjects with high-frequency dead regions. Hear Res 2005; 200:115-31. [PMID: 15668043 DOI: 10.1016/j.heares.2004.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 09/08/2004] [Indexed: 11/19/2022]
Abstract
A dead region (DR) is a region of the cochlea where there are no functioning inner hair cells and/or neurons. DRs can be detected using the threshold-equalizing-noise (TEN) test, but psychophysical tuning curves (PTCs) are sometimes used to give a more precise estimate of the edge frequency of a DR; a shifted tip of the PTC indicates a DR. We show here that the shapes of PTCs for hearing-impaired subjects can be influenced by the detection of beats and simple difference tones (SDTs). As a result, PTCs can have tips at f(s), even when f(s) falls in a DR. PTCs were measured for subjects with mild to moderate low-frequency and severe high-frequency hearing loss using sinusoidal and narrowband noise maskers (80-, 160-, 320-Hz wide): (1) in quiet; (2) in the presence of additional lowpass filtered noise (LF noise) designed to mask SDTs; (3) in the presence of a pair of low-frequency tones designed to interfere with the detection of beats (MDI tones). In condition (1), the PTCs were often W-shaped, with a sharp tip at f(s). This occurred less for the wider noise bandwidths. For subjects with good low-frequency hearing, the LF noise often reduced or eliminated the tip at f(s), suggesting that this tip was partly caused by detection of SDTs. For the sinusoidal and 80-Hz wide noise maskers, the addition of the MDI tones reduced the masker level required for threshold for masker frequencies adjacent to f(s), for nearly all subjects, suggesting a strong influence of beat detection. To minimize the influence of beats, we recommend using noise maskers with a bandwidth of 160 or (preferably) 320 Hz. In cases of near-normal hearing at low frequencies, we recommend using an additional LF noise to mask SDTs.
Collapse
Affiliation(s)
- Karolina Kluk
- Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | | |
Collapse
|
37
|
Abstract
Regions in the cochlea with no (or very few) functioning inner hair cells and/or neurons are called "dead regions". This paper reviews the anatomical, physiological, and psychophysical foundations for the concept of dead regions. It then considers methods that have been used to diagnose dead regions, focusing particularly on psychophysical tuning curves and the test using threshold-equalizing noise. Problems and limitations of each approach are discussed. Applications of tests for diagnosing dead regions are described. These include: giving the client realistic expectation about the likely benefit of a hearing aid; guidance in the fitting of hearing aids; assessment of candidacy for cochlear implants; assessment of hearing loss for medico-legal applications. Finally, guidelines for implementation of the threshold-equalizing noise test in clinical practice are given.
Collapse
Affiliation(s)
- Brian C J Moore
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| |
Collapse
|
38
|
Moore BCJ, Glasberg BR. A revised model of loudness perception applied to cochlear hearing loss. Hear Res 2004; 188:70-88. [PMID: 14759572 DOI: 10.1016/s0378-5955(03)00347-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 10/17/2003] [Indexed: 10/26/2022]
Abstract
We previously described a model for loudness perception for people with cochlear hearing loss. However, that model is incompatible with our most recent and most satisfactory model of loudness for normal hearing. Here, we describe a loudness model that is applicable to both normal and impaired hearing. In contrast to our earlier model for impaired hearing, the new model correctly predicts: (1) that a sound at absolute threshold has a small but finite loudness; (2) that, for levels very close to the absolute threshold, the rate of growth of loudness is similar for normal ears and ears with cochlear hearing loss; (3) the relation between monaural and binaural threshold and loudness; (4) recent measures of equal-loudness contours. Like the earlier model, the new model can account for the loudness recruitment and reduced loudness summation that are typically associated with cochlear hearing loss.
Collapse
Affiliation(s)
- Brian C J Moore
- Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
| | | |
Collapse
|
39
|
Tan Q, Carney LH. A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2003; 114:2007-2020. [PMID: 14587601 DOI: 10.1121/1.1608963] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A computational model was developed to simulate the responses of auditory-nerve (AN) fibers in cat. The model's signal path consisted of a time-varying bandpass filter; the bandwidth and gain of the signal path were controlled by a nonlinear feed-forward control path. This model produced realistic response features to several stimuli, including pure tones, two-tone combinations, wideband noise, and clicks. Instantaneous frequency glides in the reverse-correlation (revcor) function of the model's response to broadband noise were achieved by carefully restricting the locations of the poles and zeros of the bandpass filter. The pole locations were continuously varied as a function of time by the control signal to change the gain and bandwidth of the signal path, but the instantaneous frequency profile in the revcor function was independent of sound pressure level, consistent with physiological data. In addition, this model has other important properties, such as nonlinear compression, two-tone suppression, and reasonable Q10 values for tuning curves. The incorporation of both the level-independent frequency glide and the level-dependent compressive nonlinearity into a phenomenological model for the AN was the primary focus of this work. The ability of this model to process arbitrary sound inputs makes it a useful tool for studying peripheral auditory processing.
Collapse
Affiliation(s)
- Qing Tan
- Boston University Hearing Research Center, Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA
| | | |
Collapse
|