1
|
DPOAEs and tympanal membrane vibrations reveal adaptations of the sexually dimorphic ear of the concave-eared torrent frog, Odorrana tormota. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:79-88. [PMID: 36104577 PMCID: PMC9898391 DOI: 10.1007/s00359-022-01569-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
While most anuran species are highly vocal, few of them seem to be endowed with a complex call repertoire. Odorrana tormota, combines a remarkable vocalization complexity with auditory sensitivity over an extended spectral range spanning from audible to ultrasonic frequencies. This species is also exceptional for its ability to modify its middle ear tuning by closing the Eustachian tubes (ET). Using scanning laser Doppler vibrometry, the tympanal vibrations were measured to investigate if the tuning shift caused by the ET closure contributes to intraspecific acoustic communication. To gain insight into the inner ear frequency selectivity and sensitivity of this species, distortion product otoacoustic emissions were recorded at multiple frequency-level combinations. Our measurements of inner ear responses indicated that in O. tormota each sex is more sensitive to the frequencies of the other sex's vocalizations, female ears are more sensitive to 2-7 kHz, while male ears are more sensitive to 3-15 kHz. We also found that in both sexes the ET closure impacts the sensitivity of the middle and inner ear at frequencies used for communication with conspecifics. This study broadens our understanding of peripheral auditory mechanisms contributing to intraspecific acoustic communication in anurans.
Collapse
|
2
|
Manley GA. Otoacoustic Emissions in Non-Mammals. Audiol Res 2022; 12:260-272. [PMID: 35645197 PMCID: PMC9149831 DOI: 10.3390/audiolres12030027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Otoacoustic emissions (OAE) that were sound-induced, current-induced, or spontaneous have been measured in non-mammalian land vertebrates, including in amphibians, reptiles, and birds. There are no forms of emissions known from mammals that have not also been observed in non-mammals. In each group and species, the emission frequencies clearly lie in the range known to be processed by the hair cells of the respective hearing organs. With some notable exceptions, the patterns underlying the measured spectra, input-output functions, suppression threshold curves, etc., show strong similarities to OAE measured in mammals. These profound similarities are presumably traceable to the fact that emissions are produced by active hair-cell mechanisms that are themselves dependent upon comparable nonlinear cellular processes. The differences observed—for example, in the width of spontaneous emission peaks and delay times in interactions between peaks—should provide insights into how hair-cell activity is coupled within the organ and thus partially routed out into the middle ear.
Collapse
Affiliation(s)
- Geoffrey A Manley
- Department of Neuroscience, Faculty of Medicine, University of Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
4
|
Thipmaungprom Y, Prawanta E, Leelasiriwong W, Thammachoti P, Roongthumskul Y. Intermodulation distortions from an array of active nonlinear oscillators. CHAOS (WOODBURY, N.Y.) 2021; 31:123106. [PMID: 34972317 DOI: 10.1063/5.0063678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Coupling is critical in nonlinear dynamical systems. It affects the stabilities of individual oscillators as well as the characteristics of their response to external forces. In the auditory system, the mechanical coupling between sensory hair cells has been proposed as a mechanism that enhances the inner ear's sensitivity and frequency discrimination. While extensive studies investigate the effects of coupling on the detection of a sinusoidal signal, the role of coupling underlying the response to a complex tone remains elusive. In this study, we measured the acoustic intermodulation distortions (IMDs) produced by the inner ears of two frog species stimulated simultaneously by two pure tones. The distortion intensity level displayed multiple peaks across stimulus frequencies, in contrast to the generic response from a single nonlinear oscillator. The multiple-peaked pattern was altered upon varying the stimulus intensity or an application of a perturbation tone near the distortion frequency. Numerical results of IMDs from a chain of coupled active nonlinear oscillators driven by two sinusoidal forces reveal the effects of coupling on the variation profile of the distortion amplitude. When the multiple-peaked pattern is observed, the chain's motion at the distortion frequency displays both a progressive wave and a standing wave. The latter arises due to coupling and is responsible for the multiple-peaked pattern. Our results illustrate the significance of mechanical coupling between active hair cells in the generation of auditory distortions, as a mechanism underlying the formation of in vivo standing waves of distortion signals.
Collapse
Affiliation(s)
- Yanathip Thipmaungprom
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekkanat Prawanta
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wisit Leelasiriwong
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Thammachoti
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yuttana Roongthumskul
- Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
6
|
Sex-based Differences in Hearing Loss: Perspectives From Non-clinical Research to Clinical Outcomess. Otol Neurotol 2021; 41:290-298. [PMID: 31789968 DOI: 10.1097/mao.0000000000002507] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION It is estimated over 466 million people worldwide have disabling hearing loss, and untreated hearing loss is associated with poorer health outcomes. The influence of sex as a biological variable on hearing loss is not well understood, especially for differences in underlying mechanisms which are typically elucidated through non-clinical research. Although the inclusion of sex as a biological variable in clinical studies has been required since 1993, sex reporting has only been recently mandated in National Institutes of Health funded non-clinical studies. OBJECTIVE This article reviews the literature on recent non-clinical and clinical research concerning sex-based differences in hearing loss primarily since 1993, and discusses implications for knowledge gaps in the translation from non-clinical to clinical realms. CONCLUSIONS The disparity between sex-based requirements for non-clinical versus clinical research may inhibit a comprehensive understanding of sex-based mechanistic differences. Such disparities may play a role in understanding and explaining clinically significant sex differences and are likely necessary for developing robust clinical treatment options.
Collapse
|
7
|
Cobo-Cuan A, Toledo LF, Narins PM. Call Production and Auditory Sensitivity are Uncompromised by Nontympanic Malformations in Cururu Toads. HERPETOLOGICA 2020. [DOI: 10.1655/herpetologica-d-19-00069.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ariadna Cobo-Cuan
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Peter M. Narins
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
8
|
Cobo-Cuan A, Grafe TU, Narins PM. Beyond the limits: identifying the high-frequency detectors in the anuran ear. Biol Lett 2020; 16:20200343. [PMID: 32603645 PMCID: PMC7423036 DOI: 10.1098/rsbl.2020.0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
Despite the predominance of low-frequency hearing in anuran amphibians, a few frog species have evolved high-frequency communication within certain environmental contexts. Huia cavitympanum is the most remarkable anuran with regard to upper frequency limits; it is the first frog species known to emit exclusively ultrasonic signals. Characteristics of the Distortion Product Otoacoustic Emissions from the amphibian papilla and the basilar papilla were analysed to gain insight into the structures responsible for high-frequency/ultrasound sensitivity. Our results confirm the matching of vocalization spectra and inner ear tuning in this species. Compared to most anurans, H. cavitympanum has a hyperextended hearing range spanning from audible to ultrasonic frequencies, far above the previously established 'spectral limits' for the amphibian ear. The exceptional high-frequency sensitivity in the inner ear of H. cavitympanum illustrates the remarkable plasticity of the auditory system and the extent to which evolution can modify a sensory system to adapt it to its environment.
Collapse
Affiliation(s)
- Ariadna Cobo-Cuan
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - T. Ulmar Grafe
- Faculty of Science, University Brunei Darussalam, Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Peter M. Narins
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
9
|
Reciprocal Matched Filtering in the Inner Ear of the African Clawed Frog (Xenopus laevis). J Assoc Res Otolaryngol 2020; 21:33-42. [PMID: 31907715 DOI: 10.1007/s10162-019-00740-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Anurans (frogs and toads) are the most vocal amphibians. In most species, only males produce advertisement calls for defending territories and attracting mates. Female vocalizations are the exceptions among frogs, however in the African clawed frog (Xenopus laevis) both males and females produce distinct vocalizations. The matched filter hypothesis predicts a correspondence between peripheral auditory tuning of receivers and properties of species-specific acoustic signals, but few studies have assessed this relationship between the sexes. Measuring hearing sensitivity with a binaural recording of distortion product otoacoustic emissions, we have found that the ears of the males of this species are tuned to the dominant frequency of the female's calls, whereas the ears of the females are tuned close to the dominant frequency of the male's calls. Our findings provide support for the matched filter hypothesis extended to include male-female calling. This unique example of reciprocal matched filtering ensures that males and females communicate effectively in high levels of background noise, each sex being most sensitive to the frequencies of the other sex's calls.
Collapse
|
10
|
Simmons DD, Lohr R, Wotring H, Burton MD, Hooper RA, Baird RA. Recovery of otoacoustic emissions after high-level noise exposure in the American bullfrog. ACTA ACUST UNITED AC 2014; 217:1626-36. [PMID: 24501139 DOI: 10.1242/jeb.090092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The American bullfrog (Rana catesbeiana) has an amphibian papilla (AP) that senses airborne, low-frequency sound and generates distortion product otoacoustic emissions (DPOAEs) similar to other vertebrate species. Although ranid frogs are typically found in noisy environments, the effects of noise on the AP have not been studied. First, we determined the noise levels that diminished DPOAE at 2f1-f2 using an f2 stimulus level at 80 dB SPL and that also produced morphological damage of the sensory epithelium. Second, we compared DPOAE (2f1-f2) responses with histopathologic changes occurring in bullfrogs after noise exposure. Consistent morphological damage, such as fragmented hair cells and missing bundles, as well as elimination of DPOAE responses were seen only after very high-level (>150 dB SPL) sound exposures. The morphological response of hair cells to noise differed along the mediolateral AP axis: medial hair cells were sensitive to noise and lateral hair cells were relatively insensitive to noise. Renewed or repaired hair cells were not observed until 9 days post-exposure. Following noise exposure, DPOAE responses disappeared within 24 h and then recovered to normal pre-exposure levels within 3-4 days. Our results suggest that DPOAEs in the bullfrog are sensitive to the initial period of hair cell damage. After noise-induced damage, the bullfrog AP has functional recovery mechanisms that do not depend on substantial hair cell regeneration or repair. Thus, the bullfrog auditory system might serve as an interesting model for investigation of ways to prevent noise damage.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
11
|
Moussavi-Najarkola SA, Khavanin A, Mirzaei R, Salehnia M, Akbari M. Effects of whole body vibration on outer hair cells' hearing response to distortion product otoacoustic emissions. In Vitro Cell Dev Biol Anim 2012; 48:276-83. [PMID: 22549335 DOI: 10.1007/s11626-012-9490-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 02/03/2012] [Indexed: 02/02/2023]
Abstract
Whole body vibration (WBV) is one of the most vexing problems in industries. There is a debate about the effect of WBV exposure on hearing system as vibration-induced hearing loss. The purpose of this study was to investigate outer hair cells' (OHCs') hearing response hearing response to distortion product otoacoustic emissions (DPOAEs) in rabbits exposed to WBV. It was hypothesized that the DPOAE response amplitudes (A(dp)) in rabbits exposed to WBV would be lower than those in control rabbits not exposed to WBV. New Zealand white (NZW) rabbits as vibration group (n = 6, exposed to WBV in the z-axis at 4-8 Hz and 1.0 ms(-2) root mean square for 8 h per day during five consecutive days) and NZW rabbits as control group (n = 6, not exposed to any WBV) were participated. A(dp) and noise floor levels (L(nf)) were examined on three occasions: day 0 (i.e., baseline), day 8 (i.e., immediately 1 h after exposure), and day 11 (i.e., 72 h following exposure) with f(2) frequencies ranging from 500 to 10,000 Hz and primaries L(1) and L(2) levels of 65 and 55 dB sound pressure level, respectively. Main effects were statistically found to be significant for group, time, and frequency (p < 0.05). DPOAE amplitudes were significantly larger for rabbits exposed to WBV, larger on day 8 and larger for mid to high f(2) frequencies (at and above 5,888.50 Hz). Main effects were not statistically found to be significant for ear (p > 0.05). Also, four statistically significant interactions including time by ear, time by frequency, group by frequency, and group by time were detected (p < 0.05). Contrary to the main hypothesis, DPOAE amplitudes were significantly larger for rabbits exposed to WBV. WBV exposure significantly led to enhanced mean A(dp) at mid to high frequencies rather than at low ones.
Collapse
|
12
|
Phantom tones and suppressive masking by active nonlinear oscillation of the hair-cell bundle. Proc Natl Acad Sci U S A 2012; 109:E1344-51. [PMID: 22556264 DOI: 10.1073/pnas.1202426109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Processing of two-tone stimuli by the auditory system introduces prominent masking of one frequency component by the other as well as additional "phantom" tones that are absent in the sound input. Mechanical correlates of these psychophysical phenomena have been observed in sound-evoked mechanical vibrations of the mammalian cochlea and are thought to originate in sensory hair cells from the intrinsic nonlinearity associated with mechano-electrical transduction by ion channels. However, nonlinearity of the transducer is not sufficient to explain the rich phenomenology of two-tone interferences in hearing. Here we show that active oscillatory movements of single hair-cell bundles elicit two-tone suppression and distortions that are shaped by nonlinear amplification of periodic stimuli near the characteristic frequency of spontaneous oscillations. When both stimulus frequencies enter the bandwidth of the hair-bundle amplifier, two-tone interferences display level functions that are characteristic both of human psychoacoustics and of in vivo mechanical measurements in auditory organs. Our work distinguishes the frequency-dependent nonlinearity that emerges from the active process that drives the hair bundle into spontaneous oscillations from the passive nonlinear compliance associated with the direct gating of transduction channels by mechanical force. Numerical simulations based on a generic description of an active dynamical system poised near an oscillatory instability--a Hopf bifurcation--account quantitatively for our experimental observations. In return, we conclude that the properties of two-tone interferences in hearing betray the workings of self-sustained "critical" oscillators, which function as nonlinear amplifying elements in the inner ear.
Collapse
|
13
|
Meenderink SWF, Kits M, Narins PM. Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog. Biol Lett 2009; 6:278-81. [PMID: 19939848 DOI: 10.1098/rsbl.2009.0763] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acoustic communication involves both the generation and the detection of a signal. In the coqui frog (Eleutherodactylus coqui), it is known that the spectral contents of its calls systematically change with altitude above sea level. Here, distortion product otoacoustic emissions are used to assess the frequency range over which the inner ear is sensitive. It is found that both the spectral contents of the calls and the inner-ear sensitivity change in a similar fashion along an altitudinal gradient. As a result, the call frequencies and the auditory tuning are closely matched at all altitudes. We suggest that the animal's body size determines the frequency particulars of the call apparatus and the inner ear.
Collapse
|
14
|
Miranda JA, Wilczynski W. Sex differences and androgen influences on midbrain auditory thresholds in the green treefrog, Hyla cinerea. Hear Res 2009; 252:79-88. [PMID: 19371774 PMCID: PMC2698038 DOI: 10.1016/j.heares.2009.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Reproductive hormones can modulate communication-evoked behavior by acting on neural systems associated with motivation; however, recent evidence suggests that modulation occurs at the sensory processing level as well. The anuran auditory midbrain processes communication stimuli, and is sensitive to steroid hormones. Using multiunit electrophysiology, we tested whether sex and circulating testosterone influence auditory sensitivity to pure tones and to the natural vocalization in the green treefrog, Hyla cinerea. Sex did not influence audiogram best frequencies although sexes did differ in the sensitivities at those frequencies with males more sensitive in the lower frequency range. Females were more sensitive than males in response to the natural vocalization, despite showing no difference in response to pure tones at frequencies found within the advertisement call. Thresholds to frequencies outside the range of the male advertisement call were higher in females. Additionally, circulating testosterone increased neural thresholds in females in a frequency-specific manner. These results demonstrate that sex differences are limited to frequency ranges that relate to the processing of natural vocalizations, and depend on the type of stimulus. The frequency-dependent and stimulus-dependent nature of sex and testosterone influences suggests that reproductive hormones influence the filtering properties of the auditory system.
Collapse
Affiliation(s)
- Jason A. Miranda
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station A8000, Austin, Texas 78712, USA,
| | - Walter Wilczynski
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station A8000, Austin, Texas 78712, USA,
| |
Collapse
|
15
|
McFadden D, Martin GK, Stagner BB, Maloney MM. Sex differences in distortion-product and transient-evoked otoacoustic emissions compared. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 125:239-46. [PMID: 19173411 PMCID: PMC2649658 DOI: 10.1121/1.3037231] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 10/29/2008] [Accepted: 11/06/2008] [Indexed: 05/05/2023]
Abstract
Although several studies have documented the existence of sex differences in spontaneous otoacoustic emissions (SOAEs) and transient-evoked OAEs (TEOAEs) in humans, less has been published about sex differences in distortion-product OAEs (DPOAEs). Estimates of sex and ear differences were extracted from a data set of OAE measurements previously collected for other purposes. In accord with past findings, the sex differences for TEOAEs were substantial for both narrowband and wideband measures. By contrast, the sex differences for DPOAEs were about half the size of those for TEOAEs. In this sample, the ear differences were small for TEOAEs in both sexes and absent for DPOAEs. One implication is that the cochlear mechanisms underlying DPOAEs appear to be less susceptible to whatever influences are responsible for producing sex differences in TEOAEs and SOAEs in humans. We discuss the possibility that differences in the effective level of the stimuli may contribute to these outcomes.
Collapse
Affiliation(s)
- Dennis McFadden
- Department of Psychology and Center for Perceptual Systems, University of Texas, 1 University Station A8000, Austin, Texas 78712-0187, USA.
| | | | | | | |
Collapse
|
16
|
Valero MD, Pasanen EG, McFadden D, Ratnam R. Distortion-product otoacoustic emissions in the common marmoset (Callithrix jacchus): parameter optimization. Hear Res 2008; 243:57-68. [PMID: 18586424 PMCID: PMC2567920 DOI: 10.1016/j.heares.2008.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/14/2008] [Accepted: 05/14/2008] [Indexed: 11/22/2022]
Abstract
Distortion-product otoacoustic emissions (DPOAEs) were measured in a New World primate, the common marmoset (Callithrix jacchus). We determined the optimal primary-tone frequency ratio (f(2)/f(1)) to generate DPOAEs of maximal amplitude between 3 and 24 kHz. The optimal f(2)/f(1), determined by varying f(2)/f(1) from 1.02 to 1.40 using equilevel primary tones, decreased with increasing f(2) frequency between 3 and 17 kHz, and increased at 24 kHz. The optimal f(2)/f(1) ratio increased with increasing primary-tone levels from 50 to 74 dB SPL. When all stimulus parameters were considered, the mean optimal f(2)/f(1) was 1.224-1.226. Additionally, we determined the effect of reducing L(2) below L(1). Decreasing L(2) below L(1) by 0, 5, and 10 dB (f(2)/f(1)=1.21) minimally affected DPOAE strength. DPOAE levels were stronger in females than males and stronger in the right ear than the left, just as in humans. This study is the first to measure OAEs in the marmoset, and the results indicate that the effect of varying the frequency ratio and primary-tone level difference on marmoset DPOAEs is similar to the reported effects in humans and Old World primates.
Collapse
Affiliation(s)
- M D Valero
- University of Texas at San Antonio, Department of Biology, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
17
|
Mechanics of the exceptional anuran ear. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:417-28. [PMID: 18386018 PMCID: PMC2323032 DOI: 10.1007/s00359-008-0327-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 11/24/2022]
Abstract
The anuran ear is frequently used for studying fundamental properties of vertebrate auditory systems. This is due to its unique anatomical features, most prominently the lack of a basilar membrane and the presence of two dedicated acoustic end organs, the basilar papilla and the amphibian papilla. Our current anatomical and functional knowledge implies that three distinct regions can be identified within these two organs. The basilar papilla functions as a single auditory filter. The low-frequency portion of the amphibian papilla is an electrically tuned, tonotopically organized auditory end organ. The high-frequency portion of the amphibian papilla is mechanically tuned and tonotopically organized, and it emits spontaneous otoacoustic emissions. This high-frequency portion of the amphibian papilla shows a remarkable, functional resemblance to the mammalian cochlea.
Collapse
|
18
|
Meenderink SWF, Narins PM. Suppression of distortion product otoacoustic emissions in the anuran ear. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2007; 121:344-51. [PMID: 17297789 DOI: 10.1121/1.2382458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
When a two-tone stimulus is presented to the ear, so-called distortion product otoacoustic emissions (DPOAEs) are evoked. Adding an interference tone (IT) to these two DPOAE-evoking primaries affects normal DPOAE generation. The "effectiveness" of interference depends on the frequency of the IT in relation to the primary frequencies and this provides clues about the locus of emission generation within the inner ear. Here results are presented on the effects of ITs on DPOAEs thought to originate from the basilar papilla (BP) of a frog species. It is found that the IT always resulted in a reduction of the recorded DPOAE amplitude: DPOAE enhancement was not observed. Furthermore, iso-suppression curves (ISCs) exhibited two relative minima suggesting that the DPOAEs arise at different loci in the inner ear. These minima occurred at fixed frequencies, which coincided with those primary frequencies that resulted in maxima in DPOAE audiograms. The occurrence of two minima suggests that DPOAEs, which are presumed to originate exclusively from the BP, partially arise from the amphibian papilla as well. Finally, the finding that the minima in the ISCs are independent of the primary or DPOAE frequencies provides support for the notion that the BP functions as a single auditory filter.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- Department of Physiological Science, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|
19
|
Meenderink SWF, Narins PM. Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics. Hear Res 2006; 220:67-75. [PMID: 16942850 DOI: 10.1016/j.heares.2006.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/03/2006] [Accepted: 07/09/2006] [Indexed: 11/29/2022]
Abstract
Otoacoustic emissions (OAEs) are weak sounds that originate from the inner ear which are traditionally classified/named based on their evoking stimulus. Recently, it has been argued that such a classification, at least for mammals, misrepresents the underlying mechanisms of emission-generation. As an alternative classification, it has been suggested to recognize that OAEs arise either via nonlinear distortion or linear coherent reflection. For non-mammalian vertebrates, data on evoked OAEs that arise via the latter mechanism are largely missing. Here, we present the first measurements of stimulus frequency OAEs (SFOAEs), which are emissions thought to arise via linear coherent reflection, from an amphibian (the Northern leopard frog, Rana pipiens pipiens). Their properties as a function of the evoking stimulus frequencies and levels are described and subsequently compared with the previously reported properties of distortion product OAEs (DPOAEs) from the same frog species.
Collapse
Affiliation(s)
- Sebastiaan W F Meenderink
- University of California, Department of Physiological Science, 621 Charles E. Youngdrive S., Los Angeles, CA 90095-1606, United States.
| | | |
Collapse
|
20
|
Katbamna B, Langerveld AJ, Ide CF. Aroclor 1254 impairs the hearing ability of Xenopus laevis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:971-83. [PMID: 16703389 DOI: 10.1007/s00359-006-0134-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 04/11/2006] [Accepted: 04/23/2006] [Indexed: 11/26/2022]
Abstract
In this study we assessed the effects of chronic, dietary exposure of Aroclor 1254 (A1254) on the hearing of Xenopus frogs. We used the auditory brainstem response (ABR) to assay changes in hearing physiology; ABR thresholds, as well as latency-intensity and amplitude-intensity profiles of the initial positive (P1) and negative (N1) peaks were measured. Two groups of animals that received 50 ppm and 100 ppm of A1254 in their diet from 5 days post-fertilization through metamorphosis were compared to a control group that received untreated chow. The results showed significant threshold elevations in the 3-4 kHz range and significantly delayed peak latencies and reduced amplitudes at these frequencies in A1254 treated animals as compared to control animals. These findings indicate that A1254 selectively damages the high-frequency sensorineural hearing system associated with the basilar papilla of frogs. This preferential damage may be related to inherent differences in the vulnerability of the basilar versus amphibian papilla in the frog. The overall results of this study are also consistent with the reported A1254-induced auditory deficits in mammals indicating that the basilar papilla of the Xenopus frog may serve as an effective model for studying the effects of A1254 on the auditory system.
Collapse
Affiliation(s)
- Bharti Katbamna
- Department of Speech Pathology and Audiology, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008-5355, USA.
| | | | | |
Collapse
|