1
|
Wohlbauer DM, Hem CB, McCallick C, Arenberg JG. Speech performance in adults with cochlear implants using combined channel deactivation and dynamic current focusing. Hear Res 2025; 463:109285. [PMID: 40347546 PMCID: PMC12167761 DOI: 10.1016/j.heares.2025.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES AND METHODS Cochlear implant listeners show difficulties in understanding speech in noise. Channel interactions from activating overlapping neural populations reduce the signal accuracy necessary to interpret complex signals. Optimizing programming strategies based on focused detection thresholds to reduce channel interactions has led to improved performance. In the current study, two previously suggested methods, channel deactivation and focused dynamic tripolar stimulation, were combined. Utilizing an automatic channel selection algorithm from focused detection threshold profiles, three cochlear implant programs were created with the same deactivated channels but varying proportions of channels employing focused stimulation, monopolar, dynamic focused and a mixed program. Thirteen ears in eleven adult cochlear implant listeners with Advanced Bionics HiRes90k devices were tested. Vowel identification and sentence perception in quiet and noise served as outcome measures, and the influences of listening experience, age, clinical consonant-nucleus-consonant performance, and perceptual thresholds on speech performance were assessed. RESULTS Across subjects, different degrees of focusing showed individual performance improvements for vowels and sentences over the monopolar program. Focused listening benefits were shown for individuals with less cochlear implant experience, and clinically poor performers seem to benefit more from focusing than good performers. However, only slight trends and no significant group improvements were observed. CONCLUSION The current findings suggest that deactivating and focusing subsets of channels might improve speech performance for some individuals, especially poor performers, a possible effect of reduced channel interactions. The findings also show that performance is largely variable among individuals.
Collapse
Affiliation(s)
- Dietmar M Wohlbauer
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, 02114, MA, USA; Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA.
| | - Charles B Hem
- Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA; Harvard University, Cambridge, 02114, MA, USA
| | - Caylin McCallick
- Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA
| | - Julie G Arenberg
- Harvard Medical School, Department of Otolaryngology, Head and Neck Surgery, Boston, 02114, MA, USA; Massachusetts Eye and Ear, Department for Audiology, Boston, 02114, MA, USA
| |
Collapse
|
2
|
James CJ, Laborde ML, Algans C, Tartayre M, Marx M. Channel crosstalk detected using ECAP measurements is associated with poorer speech perception in cochlear implant users. Hear Res 2025; 458:109206. [PMID: 39933408 DOI: 10.1016/j.heares.2025.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
The number and independence of channels in cochlear implants (CI) has long been considered to influence speech recognition, particularly in competing background noise. Measures of channel independence have been obtained via psychophysical and objective means, relying on interactions between probe and masker signals delivered on different channels. In the current study, electrically evoked compound action potentials (ECAP) obtained from 32 Nucleus CI recipients tested at one basal and one apical position were performed using a standard spread-of-excitation procedure. An alternative analysis method, comparing masked responses only, revealed distant maskers as effective or more effective than same-electrode maskers in 13/32 cases. This appears to indicate substantial crosstalk between channels, covering up to nine intracochlear electrodes in one subject. Subjects with atypical responses and no other limiting factors had significantly poorer sentence recognition in noise compared with those with no detected peripheral or cognitive limiting factors. We propose that channel crosstalk detected via ECAPs may be a biomarker for poor or patchy neural survival that leads to poorer speech perception in CI recipients.
Collapse
Affiliation(s)
| | | | - Carole Algans
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| | | | - Mathieu Marx
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| |
Collapse
|
3
|
Aldag N, Nogueira W. Psychoacoustic and electroencephalographic responses to changes in amplitude modulation depth and frequency in relation to speech recognition in cochlear implantees. Sci Rep 2024; 14:8181. [PMID: 38589483 PMCID: PMC11002021 DOI: 10.1038/s41598-024-58225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Temporal envelope modulations (TEMs) are one of the most important features that cochlear implant (CI) users rely on to understand speech. Electroencephalographic assessment of TEM encoding could help clinicians to predict speech recognition more objectively, even in patients unable to provide active feedback. The acoustic change complex (ACC) and the auditory steady-state response (ASSR) evoked by low-frequency amplitude-modulated pulse trains can be used to assess TEM encoding with electrical stimulation of individual CI electrodes. In this study, we focused on amplitude modulation detection (AMD) and amplitude modulation frequency discrimination (AMFD) with stimulation of a basal versus an apical electrode. In twelve adult CI users, we (a) assessed behavioral AMFD thresholds and (b) recorded cortical auditory evoked potentials (CAEPs), AMD-ACC, AMFD-ACC, and ASSR in a combined 3-stimulus paradigm. We found that the electrophysiological responses were significantly higher for apical than for basal stimulation. Peak amplitudes of AMFD-ACC were small and (therefore) did not correlate with speech-in-noise recognition. We found significant correlations between speech-in-noise recognition and (a) behavioral AMFD thresholds and (b) AMD-ACC peak amplitudes. AMD and AMFD hold potential to develop a clinically applicable tool for assessing TEM encoding to predict speech recognition in CI users.
Collapse
Affiliation(s)
- Nina Aldag
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence 'Hearing4all', Hanover, Germany
| | - Waldo Nogueira
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence 'Hearing4all', Hanover, Germany.
| |
Collapse
|
4
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Dong Y, Briaire JJ, Stronks HC, Frijns JHM. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials. Ear Hear 2023; 44:276-286. [PMID: 36253905 DOI: 10.1097/aud.0000000000001279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVES Many studies have assessed the performance of individuals with cochlear implants (CIs) with electrically evoked compound action potentials (eCAPs). These eCAP-based studies have focused on the amplitude information of the response, without considering the temporal firing properties of the excited auditory nerve fibers (ANFs), such as neural latency and synchrony. These temporal features have been associated with neural health in animal studies and, consequently, could be of importance to clinical CI outcomes. With a deconvolution method, combined with a unitary response, the eCAP can be mathematically unraveled into the compound discharge latency distribution (CDLD). The CDLD reflects both the number and the temporal firing properties of excited ANFs. The present study aimed to determine to what extent the CDLD derived from intraoperatively recorded eCAPs is related to speech perception in individuals with CIs. DESIGN This retrospective study acquired data on monosyllabic word recognition scores and intraoperative eCAP amplitude growth functions from 124 adult patients with postlingual deafness that received the Advanced Bionics HiRes 90K device. The CDLD was determined for each recorded eCAP waveform by deconvolution. Each of the two Gaussian components of the CDLD was described by three parameters: the amplitude, the firing latency (the average latency of each component of the CDLD), and the variance of the CDLD components (an indication of the synchronicity of excited ANFs). Apart from these six CDLD parameters, the area under the CDLD curve (AUCD) and the slope of the AUCD growth function were determined as well. The AUCD was indicative of the total number of excited ANFs over time. The slope of the AUCD growth function indicated the increases in the number of excited ANFs with stimulus level. Associations between speech perception and each of these eight CDLD-related parameters were investigated with linear mixed modeling. RESULTS In individuals with CIs, larger amplitudes of the two CDLD components, greater AUCD, and steeper slopes of the AUCD growth function were all significantly associated with better speech perception. In addition, a smaller latency variance in the early CDLD component, but not in the late, was significantly associated with better speech recognition scores. Speech recognition was not significantly dependent on CDLD latencies. The AUCD and the slope of the AUCD growth function provided a similar explanation of the variance in speech perception (R 2 ) as the eCAP amplitude, the slope of the amplitude growth function, the amplitude, and variance of the first CDLD component. CONCLUSION The results demonstrate that both the number and the neural synchrony of excited ANFs, as revealed by CDLDs, are indicative of postimplantation speech perception in individuals with a CI. Because the CDLD-based parameters yielded a higher significance than the eCAP amplitude or the AGF slope, the authors conclude that CDLDs can serve as a clinical predictor of the survival of ANFs and that they have predictive value for postoperative speech perception performance. Thus, it would be worthwhile to incorporate the CDLD into eCAP measures in future clinical applications.
Collapse
Affiliation(s)
- Yu Dong
- ENT-Department, Leiden University Medical Centre, RC Leiden, the Netherlands
- Beijing Language and Culture University, Beijing, China
| | - Jeroen J Briaire
- ENT-Department, Leiden University Medical Centre, RC Leiden, the Netherlands
| | | | - Johan H M Frijns
- ENT-Department, Leiden University Medical Centre, RC Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, RC Leiden, the Netherlands
| |
Collapse
|
6
|
Zhou N, Shi X, Dixit O, Firszt JB, Holden TA. Relationship between electrode position and temporal modulation sensitivity in cochlear implant users: Are close electrodes always better? Heliyon 2023; 9:e12467. [PMID: 36852047 PMCID: PMC9958279 DOI: 10.1016/j.heliyon.2022.e12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Temporal modulation sensitivity has been studied extensively for cochlear implant (CI) users due to its strong correlation to speech recognition outcomes. Previous studies reported that temporal modulation detection thresholds (MDTs) vary across the tonotopic axis and attributed this variation to patchy neural survival. However, correlates of neural health identified in animal models depend on electrode position in humans. Nonetheless, the relationship between MDT and electrode location has not been explored. We tested 13 ears for the effect of distance on modulation sensitivity, specifically targeting the question of whether electrodes closer to the modiolus are universally beneficial. Participants in this study were postlingually deafened and users of Cochlear Nucleus CIs. The distance of each electrode from the medial wall (MW) of the cochlea and mid-modiolar axis (MMA) was measured from scans obtained using computerized tomography (CT) imaging. The distance measures were correlated with slopes of spatial tuning curves measured on selected electrodes to investigate if electrode position accounts, at least in part, for the width of neural excitation. In accordance with previous findings, electrode position explained 24% of the variance in slopes of the spatial tuning curves. All functioning electrodes were also measured for MDTs. Five ears showed a positive correlation between MDTs and at least one distance measure across the array; 6 ears showed negative correlations and the remaining two ears showed no relationship. The ears showing positive MDT-distance correlations, thus benefiting from electrodes being close to the neural elements, were those who performed better on the two speech recognition measures, i.e., speech reception thresholds (SRTs) and recognition of the AzBio sentences. These results could suggest that ears able to take advantage of the proximal placement of electrodes are likely to have better speech recognition outcomes. Previous histological studies of humans demonstrated that speech recognition is correlated with spiral ganglion cell counts. Alternatively, ears with good speech recognition outcomes may have good overall neural health, which is a precondition for close electrodes to produce spatially confined neural excitation patterns that facilitate modulation sensitivity. These findings suggest that the methods to reduce channel interaction, e.g., perimodiolar electrode array or current focusing, may only be beneficial for a subgroup of CI users. Additionally, it suggests that estimating neural survival preoperatively is important for choosing the most appropriate electrode array type (perimodiolar vs. lateral wall) for optimal implant function.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Xuyang Shi
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Omkar Dixit
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27834, USA
| | - Jill B Firszt
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Timothy A Holden
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| |
Collapse
|
7
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
8
|
Anderson SR, Kan A, Litovsky RY. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:3294. [PMID: 36586876 PMCID: PMC9731674 DOI: 10.1121/10.0016365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
For listeners with bilateral cochlear implants (BiCIs), patient-specific differences in the interface between cochlear implant (CI) electrodes and the auditory nerve can lead to degraded temporal envelope information, compromising the ability to distinguish between targets of interest and background noise. It is unclear how comparisons of degraded temporal envelope information across spectral channels (i.e., electrodes) affect the ability to detect differences in the temporal envelope, specifically amplitude modulation (AM) rate. In this study, two pulse trains were presented simultaneously via pairs of electrodes in different places of stimulation, within and/or across ears, with identical or differing AM rates. Results from 11 adults with BiCIs indicated that sensitivity to differences in AM rate was greatest when stimuli were paired between different places of stimulation in the same ear. Sensitivity from pairs of electrodes was predicted by the poorer electrode in the pair or the difference in fidelity between both electrodes in the pair. These findings suggest that electrodes yielding poorer temporal fidelity act as a bottleneck to comparisons of temporal information across frequency and ears, limiting access to the cues used to segregate sounds, which has important implications for device programming and optimizing patient outcomes with CIs.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
9
|
Skidmore J, Ramekers D, Colesa DJ, Schvartz-Leyzac KC, Pfingst BE, He S. A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function. Ear Hear 2022; 43:150-164. [PMID: 34241983 PMCID: PMC8674380 DOI: 10.1097/aud.0000000000001084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Amplitudes of electrically evoked compound action potentials (eCAPs) as a function of the stimulation level constitute the eCAP amplitude growth function (AGF). The slope of the eCAP AGF (i.e., rate of growth of eCAP amplitude as a function of stimulation level), recorded from subjects with cochlear implants (CIs), has been widely used as an indicator of survival of cochlear nerve fibers. However, substantial variation in the approach used to calculate the slope of the eCAP AGF makes it difficult to compare results across studies. In this study, we developed an improved slope-fitting method by addressing the limitations of previously used approaches and ensuring its application for the estimation of the maximum slopes of the eCAP AGFs recorded in both animal models and human listeners with various etiologies. DESIGN The new eCAP AGF fitting method was designed based on sliding window linear regression. Slopes of the eCAP AGF estimated using this new fitting method were calculated and compared with those estimated using four other fitting methods reported in the literature. These four methods were nonlinear regression with a sigmoid function, linear regression, gradient calculation, and boxcar smoothing. The comparison was based on the fitting results of 72 eCAP AGFs recorded from 18 acutely implanted guinea pigs, 46 eCAP AGFs recorded from 23 chronically implanted guinea pigs, and 2094 eCAP AGFs recorded from 200 human CI users from 4 patient populations. The effect of the choice of input units of the eCAP AGF (linear versus logarithmic) on fitting results was also evaluated. RESULTS The slope of the eCAP AGF was significantly influenced by the slope-fitting method and by the choice of input units. Overall, slopes estimated using all five fitting methods reflected known patterns of neural survival in human patient populations and were significantly correlated with speech perception scores. However, slopes estimated using the newly developed method showed the highest correlation with spiral ganglion neuron density among all five fitting methods for animal models. In addition, this new method could reliably and accurately estimate the slope for 4 human patient populations, while the performance of the other methods was highly influenced by the morphology of the eCAP AGF. CONCLUSIONS The novel slope-fitting method presented in this study addressed the limitations of the other methods reported in the literature and successfully characterized the slope of the eCAP AGF for various animal models and CI patient populations. This method may be useful for researchers in conducting scientific studies and for clinicians in providing clinical care for CI users.
Collapse
Affiliation(s)
- Jeffrey Skidmore
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212, USA
| | - Dyan Ramekers
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Room G.02.531, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Deborah J. Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | - Kara C. Schvartz-Leyzac
- Department of Otolaryngology, Medical University of South Carolina, 135 Rutledge Ave, MSC 550, Charleston, SC 29425, USA
| | - Bryan E. Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | - Shuman He
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University, 915 Olentangy River Road, Columbus, OH 43212, USA
- Department of Audiology, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
10
|
Garadat SN, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Estimating health of the implanted cochlea using psychophysical strength-duration functions and electrode configuration. Hear Res 2022; 414:108404. [PMID: 34883366 PMCID: PMC8761176 DOI: 10.1016/j.heares.2021.108404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
Abstract
It is generally believed that the efficacy of cochlear implants is partly dependent on the condition of the stimulated neural population. Cochlear pathology is likely to affect the manner in which neurons respond to electrical stimulation, potentially resulting in differences in perception of electrical stimuli across cochlear implant recipients and across the electrode array in individual cochlear implant users. Several psychophysical and electrophysiological measures have been shown to predict cochlear health in animals and were used to assess conditions near individual stimulation sites in humans. In this study, we examined the relationship between psychophysical strength-duration functions and spiral ganglion neuron density in two groups of guinea pigs with cochlear implants who had minimally-overlapping cochlear health profiles. One group was implanted in a hearing ear (N = 10) and the other group was deafened by cochlear perfusion of neomycin, inoculated with an adeno-associated viral vector with an Ntf3-gene insert (AAV.Ntf3) and implanted (N = 14). Psychophysically measured strength-duration functions for both monopolar and tripolar electrode configurations were then compared for the two treatment groups. Results were also compared to their histological outcomes. Overall, there were considerable differences between the two treatment groups in terms of their psychophysical performance as well as the relation between their functional performance and histological data. Animals in the neomycin-deafened, neurotrophin-treated, and implanted group (NNI) exhibited steeper strength-duration function slopes; slopes were positively correlated with SGN density (steeper slopes in animals that had higher SGN densities). In comparison, the implanted hearing (IH) group had shallower slopes and there was no relation between slopes and spiral ganglion density. Across all animals, slopes were negatively correlated with ensemble spontaneous activity levels (shallower slopes with higher ensemble spontaneous activity levels). We hypothesize that differences in strength-duration function slopes between the two treatment groups were related to the condition of the inner hair cells, which generate spontaneous activity that could affect the across-fiber synchrony and/or the size of the population of neural elements responding to electrical stimulation. In addition, it is likely that spiral ganglion neuron peripheral processes were present in the IH group, which could affect membrane properties of the stimulated neurons. Results suggest that the two treatment groups exhibited distinct patterns of variation in conditions near the stimulating electrodes that altered detection thresholds. Overall, the results of this study suggest a complex relationship between psychophysical detection thresholds for cochlear implant stimulation and nerve survival in the implanted cochlea. This relationship seems to depend on the characteristics of the electrical stimulus, the electrode configuration, and other biological features of the implanted cochlea such as the condition of the inner hair cells and the peripheral processes.
Collapse
Affiliation(s)
- Soha N Garadat
- Department of Hearing and Speech Sciences, The University of Jordan, Amman 11942, Jordan; Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA.
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109-5616, USA
| |
Collapse
|
11
|
Camarena A, Manchala G, Papadopoulos J, O’Connell SR, Goldsworthy RL. Pleasantness Ratings of Musical Dyads in Cochlear Implant Users. Brain Sci 2021; 12:brainsci12010033. [PMID: 35053777 PMCID: PMC8773901 DOI: 10.3390/brainsci12010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Cochlear implants have been used to restore hearing to more than half a million people around the world. The restored hearing allows most recipients to understand spoken speech without relying on visual cues. While speech comprehension in quiet is generally high for recipients, many complain about the sound of music. The present study examines consonance and dissonance perception in nine cochlear implant users and eight people with no known hearing loss. Participants completed web-based assessments to characterize low-level psychophysical sensitivities to modulation and pitch, as well as higher-level measures of musical pleasantness and speech comprehension in background noise. The underlying hypothesis is that sensitivity to modulation and pitch, in addition to higher levels of musical sophistication, relate to higher-level measures of music and speech perception. This hypothesis tested true with strong correlations observed between measures of modulation and pitch with measures of consonance ratings and speech recognition. Additionally, the cochlear implant users who were the most sensitive to modulations and pitch, and who had higher musical sophistication scores, had similar pleasantness ratings as those with no known hearing loss. The implication is that better coding and focused rehabilitation for modulation and pitch sensitivity will broadly improve perception of music and speech for cochlear implant users.
Collapse
Affiliation(s)
- Andres Camarena
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.C.); (G.M.); (J.P.); (S.R.O.)
| | - Grace Manchala
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.C.); (G.M.); (J.P.); (S.R.O.)
| | - Julianne Papadopoulos
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.C.); (G.M.); (J.P.); (S.R.O.)
- Thornton School of Music, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha R. O’Connell
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.C.); (G.M.); (J.P.); (S.R.O.)
| | - Raymond L. Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (A.C.); (G.M.); (J.P.); (S.R.O.)
- Correspondence:
| |
Collapse
|
12
|
Gransier R, Wouters J. Neural auditory processing of parameterized speech envelopes. Hear Res 2021; 412:108374. [PMID: 34800800 DOI: 10.1016/j.heares.2021.108374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Speech perception depends highly on the neural processing of the speech envelope. Several auditory processing deficits are hypothesized to result in a reduction in fidelity of the neural representation of the speech envelope across the auditory pathway. Furthermore, this reduction in fidelity is associated with supra-threshold speech processing deficits. Investigating the mechanisms that affect the neural encoding of the speech envelope can be of great value to gain insight in the different mechanisms that account for this reduced neural representation, and to develop stimulation strategies for hearing prosthesis that aim to restore it. In this perspective, we discuss the importance of neural assessment of phase-locking to the speech envelope from an audiological view and introduce the Temporal Envelope Speech Tracking (TEMPEST) stimulus framework which enables the electrophysiological assessment of envelope processing across the auditory pathway in a systematic and standardized way. We postulate that this framework can be used to gain insight in the salience of speech-like temporal envelopes in the neural code and to evaluate the effectiveness of stimulation strategies that aim to restore temporal processing across the auditory pathway with auditory prostheses.
Collapse
Affiliation(s)
- Robin Gransier
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Jan Wouters
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Carlyon RP, Goehring T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol 2021; 22:481-508. [PMID: 34432222 PMCID: PMC8476711 DOI: 10.1007/s10162-021-00811-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation. The introduction of directional microphones and of new noise reduction and pre-processing algorithms has produced robust and sometimes substantial improvements. Novel speech-processing algorithms, the use of current-focusing methods, and individualised (patient-by-patient) deactivation of subsets of electrodes have produced more modest improvements. We argue that incremental advances have and will continue to be made, that collectively these may substantially improve patient outcomes, but that the modest size of each individual advance will require greater attention to experimental design and power. We also briefly discuss the potential and limitations of promising technologies that are currently being developed in animal models, and suggest strategies for researchers to collectively maximise the potential of CIs to improve hearing in a wide range of listening situations.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
14
|
Bosen AK, Sevich VA, Cannon SA. Forward Digit Span and Word Familiarity Do Not Correlate With Differences in Speech Recognition in Individuals With Cochlear Implants After Accounting for Auditory Resolution. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:3330-3342. [PMID: 34251908 PMCID: PMC8740688 DOI: 10.1044/2021_jslhr-20-00574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 04/09/2021] [Indexed: 06/07/2023]
Abstract
Purpose In individuals with cochlear implants, speech recognition is not associated with tests of working memory that primarily reflect storage, such as forward digit span. In contrast, our previous work found that vocoded speech recognition in individuals with normal hearing was correlated with performance on a forward digit span task. A possible explanation for this difference across groups is that variability in auditory resolution across individuals with cochlear implants could conceal the true relationship between speech and memory tasks. Here, our goal was to determine if performance on forward digit span and speech recognition tasks are correlated in individuals with cochlear implants after controlling for individual differences in auditory resolution. Method We measured sentence recognition ability in 20 individuals with cochlear implants with Perceptually Robust English Sentence Test Open-set sentences. Spectral and temporal modulation detection tasks were used to assess individual differences in auditory resolution, auditory forward digit span was used to assess working memory storage, and self-reported word familiarity was used to assess vocabulary. Results Individual differences in speech recognition were predicted by spectral and temporal resolution. A correlation was found between forward digit span and speech recognition, but this correlation was not significant after controlling for spectral and temporal resolution. No relationship was found between word familiarity and speech recognition. Forward digit span performance was not associated with individual differences in auditory resolution. Conclusions Our findings support the idea that sentence recognition in individuals with cochlear implants is primarily limited by individual differences in working memory processing, not storage. Studies examining the relationship between speech and memory should control for individual differences in auditory resolution.
Collapse
Affiliation(s)
| | - Victoria A. Sevich
- Boys Town National Research Hospital, Omaha, NE
- The Ohio State University, Columbus
| | | |
Collapse
|
15
|
Neural Modulation Transmission Is a Marker for Speech Perception in Noise in Cochlear Implant Users. Ear Hear 2021; 41:591-602. [PMID: 31567565 DOI: 10.1097/aud.0000000000000783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cochlear implants (CIs) restore functional hearing in persons with a severe hearing impairment. Despite being one of the most successful bionic prosthesis, performance with CI (in particular speech understanding in noise) varies considerably across its users. The ability of the auditory pathway to encode temporal envelope modulations (TEMs) and the effect of degenerative processes associated with hearing loss on TEM encoding is assumed to be one of the reasons underlying the large intersubject differences in CI performance. The objective of the present study was to investigate how TEM encoding of the stimulated neural ensembles of human CI recipients is related to speech perception in noise (SPIN). DESIGN We used electroencephalography as a noninvasive electrophysiological measure to assess TEM encoding in the auditory pathway of CI users by means of the 40-Hz electrically evoked auditory steady state response (EASSR). Nine CI users with a wide range of SPIN outcome were included in the present study. TEM encoding was assessed for each stimulation electrode of each subject and new metrics; the CI neural modulation transmission difference (CIMTD) and the CI neural modulation transmission index (CIMTI) were developed to quantify the amount of variability in TEM encoding across the stimulated neural ensembles of the CI electrode array. RESULTS EASSR patterns varied across the CI electrode array and subjects. We found a strong correlation (r = 0.89, p = 0.001) between the SPIN outcomes and the variability in EASSR amplitudes across the array as assessed with CIMTD/CIMTI. CONCLUSIONS The results of the present study show that the 40-Hz EASSR can be used to objectively assess the neural encoding of TEMs in human CI recipients. Overall reduced or largely variable TEM encoding of the neural ensembles across the electrode array, as quantified with the CIMTD/CIMTI, is highly correlated with speech perception in noise outcome with a CI.
Collapse
|
16
|
Archer-Boyd AW, Goehring T, Carlyon RP. The Effect of Free-Field Presentation and Processing Strategy on a Measure of Spectro-Temporal Processing by Cochlear-Implant Listeners. Trends Hear 2021; 24:2331216520964281. [PMID: 33305696 PMCID: PMC7734493 DOI: 10.1177/2331216520964281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is a psychophysical test of spectro-temporal resolution developed for cochlear-implant (CI) listeners. Previously, the test has been strictly controlled to minimize the introduction of extraneous, nonspectro-temporal cues. Here, the effect of relaxing many of those controls was investigated to ascertain the generalizability of the STRIPES test. Preemphasis compensation was removed from the STRIPES stimuli, the test was presented over a loudspeaker at a level similar to conversational speech and above the automatic gain control threshold of the CI processor, and listeners were tested using the everyday setting of their clinical devices. There was no significant difference in STRIPES thresholds measured across conditions for the 10 CI listeners tested. One listener obtained higher (better) thresholds when listening with their clinical processor. An analysis of longitudinal results showed excellent test–retest reliability of STRIPES over multiple listening sessions with similar conditions. Overall, the results show that the STRIPES test is robust to extraneous cues, and that thresholds are reliable over time. It is sufficiently robust for use with different processing strategies, free-field presentation, and in nonresearch settings.
Collapse
Affiliation(s)
- Alan W Archer-Boyd
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, 2152University of Cambridge, Cambridge, United Kingdom
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, 2152University of Cambridge, Cambridge, United Kingdom
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, 2152University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Assessing temporal responsiveness of primary stimulated neurons in auditory brainstem and cochlear implant users. Hear Res 2021; 401:108163. [PMID: 33434815 PMCID: PMC7855898 DOI: 10.1016/j.heares.2020.108163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/19/2020] [Accepted: 12/27/2020] [Indexed: 11/24/2022]
Abstract
The reasons why clinical outcomes with auditory brainstem implants (ABIs) are generally poorer than with cochlear implants (CIs) are still somewhat elusive. Prior work has focused on differences in processing of spectral information due to possibly poorer tonotopic representation and higher channel interaction with ABIs than with CIs. In contrast, this study examines the hypothesis that a potential contributing reason for poor speech perception in ABI users may be the relative lack of temporal responsiveness of the primary neurons that are stimulated by the ABI. The cochlear nucleus, the site of ABI stimulation, consists of different neuron types, most of which have much more complex responses than the auditory nerve neurons stimulated by a CI. Temporal responsiveness of primary stimulated neurons was assessed in a group of ABI and CI users by measuring recovery of electrically evoked compound action potentials (ECAPs) from single-pulse forward masking. Slower ECAP recovery tended to be associated with poorer hearing outcomes in both groups. ABI subjects with the longest recovery time had no speech understanding or even no hearing sensation with their ABI device; speech perception for the one CI outlier with long ECAP recovery time was well below average. To the extent that ECAP recovery measures reveal temporal properties of the primary neurons that receive direct stimulation form neural prosthesis devices, they may provide a physiological underpinning for clinical outcomes of auditory implants. ECAP recovery measures may be used to determine which portions of the cochlear nucleus to stimulate, and possibly allow us to enhance the stimulation paradigms.
Collapse
|
18
|
Zhan KY, Adunka OF, Eshraghi A, Riggs WJ, Prentiss SM, Yan D, Telischi FF, Liu X, He S. Electrophysiology and genetic testing in the precision medicine of congenital deafness: A review. J Otol 2021; 16:40-46. [PMID: 33505449 PMCID: PMC7814082 DOI: 10.1016/j.joto.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Congenital hearing loss is remarkably heterogeneous, with over 130 deafness genes and thousands of variants, making for innumerable genotype/phenotype combinations. Understanding both the pathophysiology of hearing loss and molecular site of lesion along the auditory pathway permits for significantly individualized counseling. Electrophysiologic techniques such as electrocochleography (ECochG) and electrically-evoked compound action potentials (eCAP) are being studied to localize pathology and estimate residual cochlear vs. neural health. This review describes the expanding roles of genetic and electrophysiologic evaluation in the precision medicine of congenital hearing loss.The basics of genetic mutations in hearing loss and electrophysiologic testing (ECochG and eCAP) are reviewed, and how they complement each other in the diagnostics and prognostication of hearing outcomes. Used together, these measures improve the understanding of insults to the auditory system, allowing for individualized counseling for CI candidacy/outcomes or other habilitation strategies. CONCLUSION Despite tremendous discovery in deafness genes, the effects of individual genes on neural function remain poorly understood. Bridging the understanding between molecular genotype and neural and functional phenotype is paramount to interpreting genetic results in clinical practice. The future hearing healthcare provider must consolidate an ever-increasing amount of genetic and phenotypic information in the precision medicine of hearing loss.
Collapse
Affiliation(s)
- Kevin Y. Zhan
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Oliver F. Adunka
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Adrien Eshraghi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - William J. Riggs
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Sandra M. Prentiss
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denise Yan
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fred F. Telischi
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xuezhong Liu
- Department of Otolaryngology – Head & Neck Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shuman He
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Audiology, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
19
|
Undurraga JA, Van Yper L, Bance M, McAlpine D, Vickers D. Neural encoding of spectro-temporal cues at slow and near speech-rate in cochlear implant users. Hear Res 2020; 403:108160. [PMID: 33461048 DOI: 10.1016/j.heares.2020.108160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The ability to process rapid modulations in the spectro-temporal structure of sounds is critical for speech comprehension. For users of cochlear implants (CIs), spectral cues in speech are conveyed by differential stimulation of electrode contacts along the cochlea, and temporal cues in terms of the amplitude of stimulating electrical pulses, which track the amplitude-modulated (AM'ed) envelope of speech sounds. Whilst survival of inner-ear neurons and spread of electrical current are known factors that limit the representation of speech information in CI listeners, limitations in the neural representation of dynamic spectro-temporal cues common to speech are also likely to play a role. We assessed the ability of CI listeners to process spectro-temporal cues varying at rates typically present in human speech. Employing an auditory change complex (ACC) paradigm, and a slow (0.5Hz) alternating rate between stimulating electrodes, or different AM frequencies, to evoke a transient cortical ACC, we demonstrate that CI listeners-like normal-hearing listeners-are sensitive to transitions in the spectral- and temporal-domain. However, CI listeners showed impaired cortical responses when either spectral or temporal cues were alternated at faster, speech-like (6-7Hz), rates. Specifically, auditory change following responses-reliably obtained in normal-hearing listeners-were small or absent in CI users, indicating that cortical adaptation to alternating cues at speech-like rates is stronger under electrical stimulation. In CI listeners, temporal processing was also influenced by the polarity-behaviourally-and rate of presentation of electrical pulses-both neurally and behaviorally. Limitations in the ability to process dynamic spectro-temporal cues will likely impact speech comprehension in CI users.
Collapse
Affiliation(s)
- Jaime A Undurraga
- Department of Linguistics, 16 University Avenue, Macquarie University, NSW 2109, Australia.
| | - Lindsey Van Yper
- Department of Linguistics, 16 University Avenue, Macquarie University, NSW 2109, Australia
| | - Manohar Bance
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, CB2 0QQ, UK
| | - David McAlpine
- Department of Linguistics, 16 University Avenue, Macquarie University, NSW 2109, Australia
| | - Deborah Vickers
- Cambridge Hearing Group, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, CB2 0QQ, UK
| |
Collapse
|
20
|
Zhou N, Dixon S, Zhu Z, Dong L, Weiner M. Spectrotemporal Modulation Sensitivity in Cochlear-Implant and Normal-Hearing Listeners: Is the Performance Driven by Temporal or Spectral Modulation Sensitivity? Trends Hear 2020; 24:2331216520948385. [PMID: 32895024 PMCID: PMC7482033 DOI: 10.1177/2331216520948385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study examined the contribution of temporal and spectral modulation sensitivity to discrimination of stimuli modulated in both the time and frequency domains. The spectrotemporally modulated stimuli contained spectral ripples that shifted systematically across frequency over time at a repetition rate of 5 Hz. As the ripple density increased in the stimulus, modulation depth of the 5 Hz amplitude modulation (AM) reduced. Spectrotemporal modulation discrimination was compared with subjects’ ability to discriminate static spectral ripples and the ability to detect slow AM. The general pattern from both the cochlear implant (CI) and normal hearing groups showed that spectrotemporal modulation thresholds were correlated more strongly with AM detection than with static ripple discrimination. CI subjects’ spectrotemporal modulation thresholds were also highly correlated with speech recognition in noise, when partialing out static ripple discrimination, but the correlation was not significant when partialing out AM detection. The results indicated that temporal information was more heavily weighted in spectrotemporal modulation discrimination, and for CI subjects, it was AM sensitivity that drove the correlation between spectrotemporal modulation thresholds and speech recognition. The results suggest that for the rates tested here, temporal information processing may limit performance more than spectral information processing in both CI users and normal hearing listeners.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Susannah Dixon
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Zhen Zhu
- Department of Engineering, East Carolina University, Greenville, North Carolina, United States
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Marti Weiner
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
21
|
Shader MJ, Gordon-Salant S, Goupell MJ. Impact of Aging and the Electrode-to-Neural Interface on Temporal Processing Ability in Cochlear-Implant Users: Amplitude-Modulation Detection Thresholds. Trends Hear 2020; 24:2331216520936160. [PMID: 32833587 PMCID: PMC7448135 DOI: 10.1177/2331216520936160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although cochlear implants (CIs) are a viable treatment option for severe hearing loss in adults of any age, older adults may be at a disadvantage compared with younger adults. CIs deliver signals that contain limited spectral information, requiring CI users to attend to the temporal information within the signal to recognize speech. Older adults are susceptible to acquiring auditory temporal processing deficits, presenting a potential age-related limitation for recognizing speech signals delivered by CIs. The goal of this study was to measure auditory temporal processing ability via amplitude-modulation (AM) detection as a function of age in CI users. The contribution of the electrode-to-neural interface, in addition to age, was estimated using electrically evoked compound action potential (ECAP) amplitude growth functions. Within each participant, two electrodes were selected: one with the steepest ECAP slope and one with the shallowest ECAP slope, in order to represent electrodes with varied estimates of the electrode-to-neural interface. Single-electrode AM detection thresholds were measured using direct stimulation at these two electrode locations. Results revealed that AM detection ability significantly declined as a function of chronological age. ECAP slope did not significantly impact AM detection, but ECAP slope decreased (became shallower) with increasing age, suggesting that factors influencing the electrode-to-neural interface change with age. Results demonstrated a significant negative impact of chronological age on auditory temporal processing. The locus of the age-related limitation (peripheral vs. central origin), however, is difficult to evaluate because the peripheral influence (ECAPs) was correlated with the central factor (age).
Collapse
Affiliation(s)
- Maureen J Shader
- Department of Hearing and Speech Sciences, University of Maryland
| | | | | |
Collapse
|
22
|
Heshmat A, Sajedi S, Johnson Chacko L, Fischer N, Schrott-Fischer A, Rattay F. Dendritic Degeneration of Human Auditory Nerve Fibers and Its Impact on the Spiking Pattern Under Regular Conditions and During Cochlear Implant Stimulation. Front Neurosci 2020; 14:599868. [PMID: 33328872 PMCID: PMC7710996 DOI: 10.3389/fnins.2020.599868] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/22/2020] [Indexed: 12/04/2022] Open
Abstract
Due to limitations of human in vivo studies, detailed computational models enable understanding the neural signaling in the degenerated auditory system and cochlear implants (CIs). Four human cochleae were used to quantify hearing levels depending on dendritic changes in diameter and myelination thickness from type I of the auditory nerve fibers (ANFs). Type I neurons transmit the auditory information as spiking pattern from the inner hair cells (IHCs) to the cochlear nucleus. The impact of dendrite diameter and degree of myelination on neural signal transmission was simulated for (1) synaptic excitation via IHCs and (2) stimulation from CI electrodes. An accurate three-dimensional human cochlear geometry, along with 30 auditory pathways, mimicked the CI environment. The excitation properties of electrical potential distribution induced by two CI were analyzed. Main findings: (1) The unimodal distribution of control dendrite diameters becomes multimodal for hearing loss cases; a group of thin dendrites with diameters between 0.3 and 1 μm with a peak at 0.5 μm appeared. (2) Postsynaptic currents from IHCs excite such thin dendrites easier and earlier than under control conditions. However, this advantage is lost as their conduction velocity decreases proportionally with the diameter and causes increased spike latency and jitter in soma and axon. Firing probability reduces through the soma passage due to the low intracellular current flow in thin dendrites during spiking. (3) Compared with dendrite diameter, variations in myelin thickness have a small impact on spiking performance. (4) Contrary to synaptic excitation, CIs cause several spike initiation sites in dendrite, soma region, and axon; moreover, fiber excitability reduces with fiber diameter. In a few cases, where weak stimuli elicit spikes of a target neuron (TN) in the axon, dendrite diameter reduction has no effect. However, in many cases, a spike in a TN is first initiated in the dendrite, and consequently, dendrite degeneration demands an increase in threshold currents. (5) Threshold currents of a TN and co-stimulation of degenerated ANFs in other frequency regions depend on the electrode position, including its distance to the outer wall, the cochlear turn, and the three-dimensional pathway of the TN.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Faculty of Mathematics and Geoinformation, Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.,Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sogand Sajedi
- Faculty of Mathematics and Geoinformation, Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Lejo Johnson Chacko
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anneliese Schrott-Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Rattay
- Faculty of Mathematics and Geoinformation, Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
23
|
Gransier R, Carlyon RP, Wouters J. Electrophysiological assessment of temporal envelope processing in cochlear implant users. Sci Rep 2020; 10:15406. [PMID: 32958791 PMCID: PMC7506023 DOI: 10.1038/s41598-020-72235-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
Cochlear-implant (CI) users rely on temporal envelope modulations (TEMs) to understand speech, and clinical outcomes depend on the accuracy with which these TEMs are encoded by the electrically-stimulated neural ensembles. Non-invasive EEG measures of this encoding could help clinicians identify and disable electrodes that evoke poor neural responses so as to improve CI outcomes. However, recording EEG during CI stimulation reveals huge stimulation artifacts that are up to orders of magnitude larger than the neural response. Here we used a custom-built EEG system having an exceptionally high sample rate to accurately measure the artefact, which we then removed using linear interpolation so as to reveal the neural response during continuous electrical stimulation. In ten adult CI users, we measured the 40-Hz electrically evoked auditory steady-state response (eASSR) and electrically evoked auditory change complex (eACC) to amplitude-modulated 900-pulses-per-second pulse trains, stimulated in monopolar mode (i.e. the clinical default), and at different modulation depths. We successfully measured artifact-free 40-Hz eASSRs and eACCs. Moreover, we found that the 40-Hz eASSR, in contrast to the eACC, showed substantial responses even at shallow modulation depths. We argue that the 40-Hz eASSR is a clinically feasible objective measure to assess TEM encoding in CI users.
Collapse
Affiliation(s)
- Robin Gransier
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium.
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium
| |
Collapse
|
24
|
Konerding W, Arenberg JG, Kral A, Baumhoff P. Late electrically-evoked compound action potentials as markers for acute micro-lesions of spiral ganglion neurons. Hear Res 2020; 413:108057. [PMID: 32883545 DOI: 10.1016/j.heares.2020.108057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/13/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
Cochlear implants (CIs) are the treatment of choice for profoundly hearing impaired people. It has been proposed that speech perception in CI users is influenced by the neural health (deafferentation, demyelination and degeneration) of the cochlea, which may be heterogeneous along an individual cochlea. Several options have been put forward to account for these local differences in neural health when fitting the speech processor settings, however with mixed results. The interpretation of the results is hampered by the fact that reliable markers of locally restricted changes in spiral ganglion neuron (SGN) health are lacking. The aim of the study was (i) to establish mechanical micro-lesions in the guinea pig as a model of heterogeneous SGN deafferentation and degeneration and (ii) to assess potential electrophysiological markers that can also be used in human subjects. First, we defined the extent of micro-lesions in normal hearing animals using acoustically-evoked compound action potentials (aCAPs); second, we measured electrically-evoked CAPs (eCAPs) before and after focal lesioning in neomycin-deafened and implanted animals. Therefore, we inserted guinea pig adjusted 6-contact CIs through a cochleostomy in the scala tympani. The eCAP was recorded from a ball electrode at the round window niche in response to monopolar or bipolar, 50 µs/phase biphasic pulses of alternating anodic- and cathodic-leading polarity. To exclude the large electrical artifact from the analysis, we focused on the late eCAP component. We systematically isolated the eCAP parameter that showed local pre- versus post-lesion changes and lesion-target specificity. Histological evaluation of the cleared cochleae revealed focal damage of an average size of 0.0036 mm3 with an apical-basal span of maximal 440 µm. We found that the threshold of the late N2P2 eCAP component was significantly elevated after lesioning when stimulating at basal (near the lesion), but not apical (distant to the lesion) CI contacts. To circumvent the potentially conflicting influence of the apical-basal gradient in eCAP thresholds, we used the polarity effect (PE=cathodic-anodic) as a relative measure. During monopolar stimulation, but not bipolar stimulation, the PE was sensitive to the lesion target and showed significantly better cathodic than anodic thresholds after soma lesions. We conclude that the difference in N2P2 thresholds in response to cathodic versus anodic-leading monopolar stimulation corresponds to the presence of SGN soma damage, and may therefore be a marker for SGN loss. We consider this electrophysiological estimate of local neural health a potentially relevant tool for human applications because of the temporal separation from the stimulation artifact and possible implementation into common eCAP measurements.
Collapse
Affiliation(s)
- Wiebke Konerding
- Department of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
| | - Julie G Arenberg
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Andrej Kral
- Department of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all", Germany.
| | - Peter Baumhoff
- Department of Experimental Otology, Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
| |
Collapse
|
25
|
Prediction of the Functional Status of the Cochlear Nerve in Individual Cochlear Implant Users Using Machine Learning and Electrophysiological Measures. Ear Hear 2020; 42:180-192. [PMID: 32826505 DOI: 10.1097/aud.0000000000000916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study aimed to create an objective predictive model for assessing the functional status of the cochlear nerve (CN) in individual cochlear implant (CI) users. DESIGN Study participants included 23 children with cochlear nerve deficiency (CND), 29 children with normal-sized CNs (NSCNs), and 20 adults with various etiologies of hearing loss. Eight participants were bilateral CI users and were tested in both ears. As a result, a total of 80 ears were tested in this study. All participants used Cochlear Nucleus CIs in their test ears. For each participant, the CN refractory recovery function and input/output (I/O) function were measured using electrophysiological measures of the electrically evoked compound action potential (eCAP) at three electrode sites across the electrode array. Refractory recovery time constants were estimated using statistical modeling with an exponential decay function. Slopes of I/O functions were estimated using linear regression. The eCAP parameters used as input variables in the predictive model were absolute refractory recovery time estimated based on the refractory recovery function, eCAP threshold, slope of the eCAP I/O function, and negative-peak (i.e., N1) latency. The output variable of the predictive model was CN index, an indicator for the functional status of the CN. Predictive models were created by performing linear regression, support vector machine regression, and logistic regression with eCAP parameters from children with CND and the children with NSCNs. One-way analysis of variance with post hoc analysis with Tukey's honest significant difference criterion was used to compare study variables among study groups. RESULTS All three machine learning algorithms created two distinct distributions of CN indices for children with CND and children with NSCNs. Variations in CN index when calculated using different machine learning techniques were observed for adult CI users. Regardless of these variations, CN indices calculated using all three techniques in adult CI users were significantly correlated with Consonant-Nucleus-Consonant word and AzBio sentence scores measured in quiet. The five oldest CI users had smaller CN indices than the five youngest CI users in this study. CONCLUSIONS The functional status of the CN for individual CI users was estimated by our newly developed analytical models. Model predictions of CN function for individual adult CI users were positively and significantly correlated with speech perception performance. The models presented in this study may be useful for understanding and/or predicting CI outcomes for individual patients.
Collapse
|
26
|
Swiderski DL, Colesa DJ, Hughes AP, Raphael Y, Pfingst BE. Relationships between Intrascalar Tissue, Neuron Survival, and Cochlear Implant Function. J Assoc Res Otolaryngol 2020; 21:337-352. [PMID: 32691251 PMCID: PMC7445211 DOI: 10.1007/s10162-020-00761-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrous tissue and/or new bone are often found surrounding a cochlear implant in the cochlear scalae. This new intrascalar tissue could potentially limit cochlear implant function by increasing impedance and altering signaling pathways between the implant and the auditory nerve. In this study, we investigated the relationship between intrascalar tissue and 5 measures of implant function in guinea pigs. Variation in both spiral ganglion neuron (SGN) survival and intrascalar tissue was produced by implanting hearing ears, ears deafened with neomycin, and neomycin-deafened ears treated with a neurotrophin. We found significant effects of SGN density on 4 functional measures but adding intrascalar tissue level to the analysis did not explain more variation in any measure than was explained by SGN density alone. These results suggest that effects of intrascalar tissue on electrical hearing are relatively unimportant in comparison to degeneration of the auditory nerve, although additional studies in human implant recipients are still needed to assess the effects of this tissue on complex hearing tasks like speech perception. The results also suggest that efforts to minimize the trauma that aggravates both tissue development and SGN loss could be beneficial.
Collapse
Affiliation(s)
- Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Deborah J Colesa
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron P Hughes
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Goehring T, Arenberg JG, Carlyon RP. Using Spectral Blurring to Assess Effects of Channel Interaction on Speech-in-Noise Perception with Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:353-371. [PMID: 32519088 PMCID: PMC7445227 DOI: 10.1007/s10162-020-00758-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 01/07/2023] Open
Abstract
Cochlear implant (CI) listeners struggle to understand speech in background noise. Interactions between electrode channels due to current spread increase the masking of speech by noise and lead to difficulties with speech perception. Strategies that reduce channel interaction therefore have the potential to improve speech-in-noise perception by CI listeners, but previous results have been mixed. We investigated the effects of channel interaction on speech-in-noise perception and its association with spectro-temporal acuity in a listening study with 12 experienced CI users. Instead of attempting to reduce channel interaction, we introduced spectral blurring to simulate some of the effects of channel interaction by adjusting the overlap between electrode channels at the input level of the analysis filters or at the output by using several simultaneously stimulated electrodes per channel. We measured speech reception thresholds in noise as a function of the amount of blurring applied to either all 15 electrode channels or to 5 evenly spaced channels. Performance remained roughly constant as the amount of blurring applied to all channels increased up to some knee point, above which it deteriorated. This knee point differed across listeners in a way that correlated with performance on a non-speech spectro-temporal task, and is proposed here as an individual measure of channel interaction. Surprisingly, even extreme amounts of blurring applied to 5 channels did not affect performance. The effects on speech perception in noise were similar for blurring at the input and at the output of the CI. The results are in line with the assumption that experienced CI users can make use of a limited number of effective channels of information and tolerate some deviations from their everyday settings when identifying speech in the presence of a masker. Furthermore, these findings may explain the mixed results by strategies that optimized or deactivated a small number of electrodes evenly distributed along the array by showing that blurring or deactivating one-third of the electrodes did not harm speech-in-noise performance.
Collapse
Affiliation(s)
- Tobias Goehring
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Julie G Arenberg
- Massachusetts Eye and Ear, Harvard Medical School, 243 Charles St, Boston, MA, 02114, USA
| | - Robert P Carlyon
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
28
|
The Effect of Increasing Interphase Gap on N1 Latency of the Electrically Evoked Compound Action Potential and the Stimulation Level Offset in Human Cochlear Implant Users. Ear Hear 2020; 42:244-247. [PMID: 32701729 DOI: 10.1097/aud.0000000000000919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study reports two potential biomarkers of the physiological status of the cochlear nerve (CN) in cochlear implant users. DESIGN This project represents a complementary analysis on a subset of electrophysiological data from our recently published study. This study compared changes in N1 latency and stimulation level (i.e., N1 latency offset and stimulation level offset) with increasing interphase gap of a biphasic pulse between children with cochlear nerve deficiency and children with normal-sized CNs. RESULTS Children with cochlear nerve deficiency showed smaller N1 latency offsets and larger stimulation level offsets than children with normal-sized CNs at all electrode locations tested. CONCLUSIONS The N1 latency and stimulation level offsets differ in two patient populations with different physiological statuses of the CN. These parameters may be useful for evaluating CN function in individual cochlear implant patients.
Collapse
|
29
|
Kreft HA, DeVries LA, Arenberg JG, Oxenham AJ. Comparing Rapid and Traditional Forward-Masked Spatial Tuning Curves in Cochlear-Implant Users. Trends Hear 2019; 23:2331216519851306. [PMID: 31134842 PMCID: PMC6540501 DOI: 10.1177/2331216519851306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A rapid forward-masked spatial tuning curve measurement procedure, based on Bekesy tracking, was adapted and evaluated for use with cochlear implants. Twelve postlingually-deafened adult cochlear-implant users participated. Spatial tuning curves using the new procedure and using a traditional forced-choice adaptive procedure resulted in similar estimates of parameters. The Bekesy-tracking method was almost 3 times faster than the forced-choice procedure, but its test-retest reliability was significantly poorer. Although too time-consuming for general clinical use, the new method may have some benefits in individual cases, where identifying electrodes with poor spatial selectivity as candidates for deactivation is deemed necessary.
Collapse
Affiliation(s)
- Heather A Kreft
- 1 Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay A DeVries
- 2 Department Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Julie G Arenberg
- 3 Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Andrew J Oxenham
- 1 Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
30
|
Prevalence of Extracochlear Electrodes: Computerized Tomography Scans, Cochlear Implant Maps, and Operative Reports. Otol Neurotol 2019; 39:e325-e331. [PMID: 29738386 DOI: 10.1097/mao.0000000000001818] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. STUDY DESIGN Retrospective. SETTING Academic Medical Center. METHODS Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. RESULTS 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. CONCLUSIONS Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.
Collapse
|
31
|
|
32
|
Goehring T, Archer-Boyd A, Deeks JM, Arenberg JG, Carlyon RP. A Site-Selection Strategy Based on Polarity Sensitivity for Cochlear Implants: Effects on Spectro-Temporal Resolution and Speech Perception. J Assoc Res Otolaryngol 2019; 20:431-448. [PMID: 31161338 PMCID: PMC6646483 DOI: 10.1007/s10162-019-00724-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
Thresholds of asymmetric pulses presented to cochlear implant (CI) listeners depend on polarity in a way that differs across subjects and electrodes. It has been suggested that lower thresholds for cathodic-dominant compared to anodic-dominant pulses reflect good local neural health. We evaluated the hypothesis that this polarity effect (PE) can be used in a site-selection strategy to improve speech perception and spectro-temporal resolution. Detection thresholds were measured in eight users of Advanced Bionics CIs for 80-pps, triphasic, monopolar pulse trains where the central high-amplitude phase was either anodic or cathodic. Two experimental MAPs were then generated for each subject by deactivating the five electrodes with either the highest or the lowest PE magnitudes (cathodic minus anodic threshold). Performance with the two experimental MAPs was evaluated using two spectro-temporal tests (Spectro-Temporal Ripple for Investigating Processor EffectivenesS (STRIPES; Archer-Boyd et al. in J Acoust Soc Am 144:2983–2997, 2018) and Spectral-Temporally Modulated Ripple Test (SMRT; Aronoff and Landsberger in J Acoust Soc Am 134:EL217–EL222, 2013)) and with speech recognition in quiet and in noise. Performance was also measured with an experimental MAP that used all electrodes, similar to the subjects’ clinical MAP. The PE varied strongly across subjects and electrodes, with substantial magnitudes relative to the electrical dynamic range. There were no significant differences in performance between the three MAPs at group level, but there were significant effects at subject level—not all of which were in the hypothesized direction—consistent with previous reports of a large variability in CI users’ performance and in the potential benefit of site-selection strategies. The STRIPES but not the SMRT test successfully predicted which strategy produced the best speech-in-noise performance on a subject-by-subject basis. The average PE across electrodes correlated significantly with subject age, duration of deafness, and speech perception scores, consistent with a relationship between PE and neural health. These findings motivate further investigations into site-specific measures of neural health and their application to CI processing strategies.
Collapse
Affiliation(s)
- Tobias Goehring
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Alan Archer-Boyd
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Julie G Arenberg
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| | - Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| |
Collapse
|
33
|
Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients. Ear Hear 2019; 39:344-358. [PMID: 28885234 DOI: 10.1097/aud.0000000000000490] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The primary objective of the present study was to examine the relationship between suprathreshold electrically evoked compound action potential (ECAP) measures and speech recognition abilities in bilateral cochlear implant listeners. We tested the hypothesis that the magnitude of ear differences in ECAP measures within a subject (right-left) could predict the difference in speech recognition performance abilities between that subject's ears (right-left). DESIGN To better control for across-subject variables that contribute to speech understanding, the present study used a within-subject design. Subjects were 10 bilaterally implanted adult cochlear implant recipients. We measured ECAP amplitudes and slopes of the amplitude growth function in both ears for each subject. We examined how each of these measures changed when increasing the interphase gap of the biphasic pulses. Previous animal studies have shown correlations between these ECAP measures and auditory nerve survival. Speech recognition measures included speech reception thresholds for sentences in background noise, as well as phoneme discrimination in quiet and in noise. RESULTS Results showed that the between-ear difference (right-left) of one specific ECAP measure (increase in amplitude growth function slope as the interphase gap increased from 7 to 30 µs) was significantly related to the between-ear difference (right-left) in speech recognition. Frequency-specific response patterns for ECAP data and consonant transmission cues support the hypothesis that this particular ECAP measure may represent localized functional acuity. CONCLUSIONS The results add to a growing body of literature suggesting that when using a well-controlled research design, there is evidence that underlying neural function is related to postoperative performance with a cochlear implant.
Collapse
|
34
|
Archer-Boyd AW, Southwell RV, Deeks JM, Turner RE, Carlyon RP. Development and validation of a spectro-temporal processing test for cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2983. [PMID: 30522311 PMCID: PMC6805218 DOI: 10.1121/1.5079636] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/01/2018] [Indexed: 06/06/2023]
Abstract
Psychophysical tests of spectro-temporal resolution may aid the evaluation of methods for improving hearing by cochlear implant (CI) listeners. Here the STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is described and validated. Like speech, the test requires both spectral and temporal processing to perform well. Listeners discriminate between complexes of sine sweeps which increase or decrease in frequency; difficulty is controlled by changing the stimulus spectro-temporal density. Care was taken to minimize extraneous cues, forcing listeners to perform the task only on the direction of the sweeps. Vocoder simulations with normal hearing listeners showed that the STRIPES test was sensitive to the number of channels and temporal information fidelity. An evaluation with CI listeners compared a standard processing strategy with one having very wide filters, thereby spectrally blurring the stimulus. Psychometric functions were monotonic for both strategies and five of six participants performed better with the standard strategy. An adaptive procedure revealed significant differences, all in favour of the standard strategy, at the individual listener level for six of eight CI listeners. Subsequent measures validated a faster version of the test, and showed that STRIPES could be performed by recently implanted listeners having no experience of psychophysical testing.
Collapse
Affiliation(s)
- Alan W. Archer-Boyd
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Rosy V. Southwell
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - John M. Deeks
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Richard E. Turner
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Robert P. Carlyon
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
35
|
Brochier T, McKay C, McDermott H. Encoding speech in cochlear implants using simultaneous amplitude and rate modulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2042. [PMID: 30404505 DOI: 10.1121/1.5055989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
To improve speech perception for cochlear implant (CI) users, it is essential to improve the transmission of temporal envelopes. The most common speech processors deliver temporal envelopes via the CI using fixed-rate amplitude modulated (AM) pulse trains. Psychophysical studies suggest that rate modulation (RM) and AM are perceived by a shared temporal integration mechanism, but the potential for them to constructively combine to encode temporal envelopes has yet to be explored. In this experiment, a speech processing strategy called amplitude and rate temporal modulation was developed to encode speech temporal envelopes with simultaneous AM and RM. The strategy was tested for perception of clean speech at 60 and 40 dBA, and 60 dBA speech in noise (+10 dB SNR). The amount of RM was varied and the amount of AM was held constant to determine whether the addition of RM could enhance the perception of temporal envelopes and improve speech understanding. At the lowest RM amount, speech scores were poorest for all speech conditions. For 60 dBA clean speech and speech in noise, speech scores were significantly better at the highest RM amounts, suggesting that RM combined with AM can be used to enhance perception of temporal envelopes.
Collapse
Affiliation(s)
- Tim Brochier
- Department of Medical Bionics, University of Melbourne, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Colette McKay
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Hugh McDermott
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
36
|
Carlyon RP, Cosentino S, Deeks JM, Parkinson W, Arenberg JG. Effect of Stimulus Polarity on Detection Thresholds in Cochlear Implant Users: Relationships with Average Threshold, Gap Detection, and Rate Discrimination. J Assoc Res Otolaryngol 2018; 19:559-567. [PMID: 29881937 PMCID: PMC6226408 DOI: 10.1007/s10162-018-0677-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 12/03/2022] Open
Abstract
Previous psychophysical and modeling studies suggest that cathodic stimulation by a cochlear implant (CI) may preferentially activate the peripheral processes of the auditory nerve, whereas anodic stimulation may preferentially activate the central axons. Because neural degeneration typically starts with loss of the peripheral processes, lower thresholds for cathodic than for anodic stimulation may indicate good local neural survival. We measured thresholds for 99-pulse-per-second trains of triphasic (TP) pulses where the central high-amplitude phase was either anodic (TP-A) or cathodic (TP-C). Thresholds were obtained in monopolar mode from four or five electrodes and a total of eight ears from subjects implanted with the Advanced Bionics CI. When between-subject differences were removed, there was a modest but significant correlation between the polarity effect (TP-C threshold minus TP-A threshold) and the average of TP-C and TP-A thresholds, consistent with the hypothesis that a large polarity effect corresponds to good neural survival. When data were averaged across electrodes for each subject, relatively low thresholds for TP-C correlated with a high "upper limit" (the pulse rate up to which pitch continues to increase) from a previous study (Cosentino et al. J Assoc Otolaryngol 17:371-382). Overall, the results provide modest indirect support for the hypothesis that the polarity effect provides an estimate of local neural survival.
Collapse
Affiliation(s)
- Robert P Carlyon
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Stefano Cosentino
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - John M Deeks
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Wendy Parkinson
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| | - Julie G Arenberg
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St., Seattle, WA, 98105, USA
| |
Collapse
|
37
|
Zhou N, Cadmus M, Dong L, Mathews J. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning. J Assoc Res Otolaryngol 2018; 19:317-330. [PMID: 29696448 DOI: 10.1007/s10162-018-0663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Prior research has shown that in electrical hearing, cochlear implant (CI) users' speech recognition performance is related in part to their ability to detect temporal modulation (i.e., modulation sensitivity). Previous studies have also shown better speech recognition when selectively stimulating sites with good modulation sensitivity rather than all stimulation sites. Site selection based on channel interaction measures, such as those using imaging or psychophysical estimates of spread of neural excitation, has also been shown to improve speech recognition. This led to the question of whether temporal modulation sensitivity and spatial selectivity of neural excitation are two related variables. In the present study, CI users' modulation sensitivity was compared for sites with relatively broad or narrow neural excitation patterns. This was achieved by measuring temporal modulation detection thresholds (MDTs) at stimulation sites that were significantly different in their sharpness of the psychophysical spatial tuning curves (PTCs) and measuring MDTs at the same sites in monopolar (MP) and bipolar (BP) stimulation modes. Nine postlingually deafened subjects implanted with Cochlear Nucleus® device took part in the study. Results showed a significant correlation between the sharpness of PTCs and MDTs, indicating that modulation detection benefits from a more spatially restricted neural activation pattern. There was a significant interaction between stimulation site and mode. That is, using BP stimulation only improved MDTs at stimulation sites with broad PTCs but had no effect or sometimes a detrimental effect on MDTs at stimulation sites with sharp PTCs. This interaction could suggest that a criterion number of nerve fibers is needed to achieve optimal temporal resolution, and, to achieve optimized speech recognition outcomes, individualized selection of site-specific current focusing strategies may be necessary. These results also suggest that the removal of stimulation sites measured with poor MDTs might improve both temporal and spectral resolution.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA.
| | - Matthew Cadmus
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| | - Juliana Mathews
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| |
Collapse
|
38
|
The Relationship Between Intensity Coding and Binaural Sensitivity in Adults With Cochlear Implants. Ear Hear 2018; 38:e128-e141. [PMID: 27787393 DOI: 10.1097/aud.0000000000000382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Many bilateral cochlear implant users show sensitivity to binaural information when stimulation is provided using a pair of synchronized electrodes. However, there is large variability in binaural sensitivity between and within participants across stimulation sites in the cochlea. It was hypothesized that within-participant variability in binaural sensitivity is in part affected by limitations and characteristics of the auditory periphery which may be reflected by monaural hearing performance. The objective of this study was to examine the relationship between monaural and binaural hearing performance within participants with bilateral cochlear implants. DESIGN Binaural measures included dichotic signal detection and interaural time difference discrimination thresholds. Diotic signal detection thresholds were also measured. Monaural measures included dynamic range and amplitude modulation detection. In addition, loudness growth was compared between ears. Measures were made at three stimulation sites per listener. RESULTS Greater binaural sensitivity was found with larger dynamic ranges. Poorer interaural time difference discrimination was found with larger difference between comfortable levels of the two ears. In addition, poorer diotic signal detection thresholds were found with larger differences between the dynamic ranges of the two ears. No relationship was found between amplitude modulation detection thresholds or symmetry of loudness growth and the binaural measures. CONCLUSIONS The results suggest that some of the variability in binaural hearing performance within listeners across stimulation sites can be explained by factors nonspecific to binaural processing. The results are consistent with the idea that dynamic range and comfortable levels relate to peripheral neural survival and the width of the excitation pattern which could affect the fidelity with which central binaural nuclei process bilateral inputs.
Collapse
|
39
|
Schvartz-Leyzac KC, Zwolan TA, Pfingst BE. Effects of electrode deactivation on speech recognition in multichannel cochlear implant recipients. Cochlear Implants Int 2017; 18:324-334. [PMID: 28793847 DOI: 10.1080/14670100.2017.1359457] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The objective of the current study is to evaluate how speech recognition performance is affected by the number of active electrodes that are turned off in multichannel cochlear implants. Several recent studies have demonstrated positive effects of deactivating stimulation sites based on an objective measure in cochlear implant processing strategies. Previous studies using an analysis of variance have shown that, on average, cochlear implant listeners' performance does not improve beyond eight active electrodes. We hypothesized that using a generalized linear mixed model would allow for better examination of this question. METHODS Seven peri- and post-lingual adult cochlear implant users (eight ears) were tested on speech recognition tasks using experimental MAPs which contained either 8, 12, 16 or 20 active electrodes. Speech recognition tests included CUNY sentences in speech-shaped noise, TIMIT sentences in quiet as well as vowel (CVC) and consonant (CV) stimuli presented in quiet and in signal-to-noise ratios of 0 and +10 dB. RESULTS The speech recognition threshold in noise (dB SNR) significantly worsened by approximately 2 dB on average as the number of active electrodes was decreased from 20 to 8. Likewise, sentence recognition scores in quiet significantly decreased by an average of approximately 12%. DISCUSSION/CONCLUSION Cochlear implant recipients can utilize and benefit from using more than eight spectral channels when listening to complex sentences or sentences in background noise. The results of the current study suggest a conservative approach for turning off stimulation sites is best when using site-selection procedures.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- a Department of Otolaryngology , Kresge Hearing Research Institute, University of Michigan , Ann Arbor , USA.,b Department of Otolaryngology , Hearing Rehabilitation Center, University of Michigan , Ann Arbor , USA
| | - Teresa A Zwolan
- b Department of Otolaryngology , Hearing Rehabilitation Center, University of Michigan , Ann Arbor , USA
| | - Bryan E Pfingst
- a Department of Otolaryngology , Kresge Hearing Research Institute, University of Michigan , Ann Arbor , USA
| |
Collapse
|
40
|
He S, Teagle HFB, Buchman CA. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic. Front Neurosci 2017; 11:339. [PMID: 28690494 PMCID: PMC5481377 DOI: 10.3389/fnins.2017.00339] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.
Collapse
Affiliation(s)
- Shuman He
- Center for Hearing Research, Boys Town National Research HospitalOmaha, NE, United States
| | - Holly F. B. Teagle
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington UniversitySt. Louis, MO, United States
| |
Collapse
|
41
|
Chatterjee M, Kulkarni AM. Recovery from forward masking in cochlear implant listeners depends on stimulation mode, level, and electrode location. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3190. [PMID: 28682084 PMCID: PMC5482749 DOI: 10.1121/1.4983156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Psychophysical recovery from forward masking was measured in adult cochlear implant users of CochlearTM and Advanced BionicsTM devices, in monopolar and in focused (bipolar and tripolar) stimulation modes, at four electrode sites across the arrays, and at two levels (loudness balanced across modes and electrodes). Results indicated a steeper psychophysical recovery from forward masking in monopolar over bipolar and tripolar modes, modified by differential effects of electrode and level. The interactions between factors varied somewhat across devices. It is speculated that psychophysical recovery from forward masking may be driven by different populations of neurons in the different modes, with a broader stimulation pattern resulting in a greater likelihood of response by healthier and/or faster-recovering neurons within the stimulated population. If a more rapid recovery from prior stimulation reflects responses of neurons not necessarily close to the activating site, the spectral pattern of the incoming acoustic signal may be distorted. These results have implications for speech processor implementations using different degrees of focusing of the electric field. The primary differences in the shape of the recovery function were observed in the earlier portion (between 2 and 45 ms) of recovery, which is significant in terms of the speech envelope.
Collapse
Affiliation(s)
- Monita Chatterjee
- Auditory Prostheses & Perception Laboratory, Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Aditya M Kulkarni
- Auditory Prostheses & Perception Laboratory, Center for Hearing Research, Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
42
|
Scheperle RA. Suprathreshold compound action potential amplitude as a measure of auditory function in cochlear implant users. J Otol 2017; 12:18-28. [PMID: 29937833 PMCID: PMC6011805 DOI: 10.1016/j.joto.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 10/28/2022] Open
Abstract
Electrically evoked compound action potential (eCAP) amplitudes elicited at suprathreshold levels were assessed as a measure of the effectiveness of cochlear implant (CI) stimulation. Twenty-one individuals participated; one was excluded due to facial stimulation during eCAP testing. For each participant, eCAPs were elicited with stimulation from seven electrodes near the upper limit of the individual's electrical dynamic range. A reduced-channel CI program was created using those same seven electrodes, and participants performed a vowel discrimination task. Consistent with previous reports, eCAP amplitudes varied across tested electrodes; the profiles were unique to each individual. In 6 subjects (30%), eCAP amplitude variability was partially explained by the impedance of the recording electrode. The remaining amplitude variability within subjects, and the variability observed across subjects could not be explained by recording electrode impedance. This implies that other underlying factors, such as variations in neural status across the array, are responsible. Across-site mean eCAP amplitude was significantly correlated with vowel discrimination scores (r2 = 0.56). A single eCAP amplitude measured from the middle of the array was also significantly correlated with vowel discrimination, but the correlation was weaker (r2 = 0.37), though not statistically different from the across-site mean. Normalizing each eCAP amplitude by its associated recording electrode impedance did not improve the correlation with vowel discrimination (r2 = 0.52). Further work is needed to assess whether combining eCAP amplitude with other measures of the electrode-neural interface and/or with more central measures of auditory function provides a more complete picture of auditory function in CI recipients.
Collapse
|
43
|
Adel Y, Hilkhuysen G, Noreña A, Cazals Y, Roman S, Macherey O. Forward Masking in Cochlear Implant Users: Electrophysiological and Psychophysical Data Using Pulse Train Maskers. J Assoc Res Otolaryngol 2017; 18:495-512. [PMID: 28224320 DOI: 10.1007/s10162-016-0613-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
Electrical stimulation of auditory nerve fibers using cochlear implants (CI) shows psychophysical forward masking (pFM) up to several hundreds of milliseconds. By contrast, recovery of electrically evoked compound action potentials (eCAPs) from forward masking (eFM) was shown to be more rapid, with time constants no greater than a few milliseconds. These discrepancies suggested two main contributors to pFM: a rapid-recovery process due to refractory properties of the auditory nerve and a slow-recovery process arising from more central structures. In the present study, we investigate whether the use of different maskers between eCAP and psychophysical measures, specifically single-pulse versus pulse train maskers, may have been a source of confound.In experiment 1, we measured eFM using the following: a single-pulse masker, a 300-ms low-rate pulse train masker (LTM, 250 pps), and a 300-ms high-rate pulse train masker (HTM, 5000 pps). The maskers were presented either at same physical current (Φ) or at same perceptual (Ψ) level corresponding to comfortable loudness. Responses to a single-pulse probe were measured for masker-probe intervals ranging from 1 to 512 ms. Recovery from masking was much slower for pulse trains than for the single-pulse masker. When presented at Φ level, HTM produced more and longer-lasting masking than LTM. However, results were inconsistent when LTM and HTM were compared at Ψ level. In experiment 2, masked detection thresholds of single-pulse probes were measured using the same pulse train masker conditions. In line with our eFM findings, masked thresholds for HTM were higher than those for LTM at Φ level. However, the opposite result was found when the pulse trains were presented at Ψ level.Our results confirm the presence of slow-recovery phenomena at the level of the auditory nerve in CI users, as previously shown in animal studies. Inconsistencies between eFM and pFM results, despite using the same masking conditions, further underline the importance of comparing electrophysiological and psychophysical measures with identical stimulation paradigms.
Collapse
Affiliation(s)
- Youssef Adel
- Aix Marseille Université, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla CS 40006, 13453, Marseille Cedex 13, France.
- Audiological Acoustics, Department of Otorhinolaryngology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Gaston Hilkhuysen
- Aix Marseille Université, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla CS 40006, 13453, Marseille Cedex 13, France
| | - Arnaud Noreña
- Laboratoire Neurosciences Intégratives et Adaptatives, UMR CNRS 7260 and Aix-Marseille Université, Fédération de Recherche 3C, Marseille, France
| | - Yves Cazals
- Laboratoire Neurosciences Intégratives et Adaptatives, UMR CNRS 7260 and Aix-Marseille Université, Fédération de Recherche 3C, Marseille, France
| | - Stéphane Roman
- Department of Pediatric Otorhinolaryngology Head and Neck Surgery, La Timone Children's Hospital, Aix Marseille Université, 264 rue Saint-Pierre, 13385, Marseille Cedex 5, France
| | - Olivier Macherey
- Aix Marseille Université, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla CS 40006, 13453, Marseille Cedex 13, France
| |
Collapse
|
44
|
Bosen AK, Chatterjee M. Band importance functions of listeners with cochlear implants using clinical maps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3718. [PMID: 27908046 PMCID: PMC5392084 DOI: 10.1121/1.4967298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Band importance functions estimate the relative contribution of individual acoustic frequency bands to speech intelligibility. Previous studies of band importance in listeners with cochlear implants have used experimental maps and direct stimulation. Here, band importance was estimated for clinical maps with acoustic stimulation. Listeners with cochlear implants had band importance functions that relied more heavily on lower frequencies and showed less cross-listener consistency than in listeners with normal hearing. The intersubject variability observed here indicates that averaging band importance functions across listeners with cochlear implants, as has been done in previous studies, may not be meaningful. Additionally, band importance functions of listeners with normal hearing for vocoded speech that either did or did not simulate spread of excitation were not different from one another, suggesting that additional factors beyond spread of excitation are necessary to account for changes in band importance in listeners with cochlear implants.
Collapse
Affiliation(s)
- Adam K Bosen
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Monita Chatterjee
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
45
|
Azadpour M, Smith RL. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing. Hear Res 2016; 342:48-57. [PMID: 27697486 DOI: 10.1016/j.heares.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Cochlear implants (CIs) bypass some of the mechanisms that underlie normal neural behavior as occurs in acoustic hearing. One such neural mechanism is short-term adaptation, which has been proposed to have a significant role in speech perception. Acoustically-evoked neural adaptation has been mainly attributed to the depletion of neurotransmitter in the hair-cell to auditory-nerve synapse and is therefore not fully present in CI stimulation. This study evaluated a signal processing method that integrated a physiological model of hair-cell adaptation into CI speech processing. The linear high-pass adaptation process expanded the range of rapid variations of the electrical signal generated by the clinical processing strategy. Speech perception performance with the adaptation-based processing was compared to that of the clinical strategy in seven CI users. While there was large variability across subjects, the new processing improved sentence recognition and consonant identification scores in quiet in all the tested subjects with an average improvement of 8% and 6% respectively. Consonant recognition scores in babble noise were improved at the higher signal-to-noise ratios tested (10 and 6 dB) only. Information transfer analysis of consonant features showed significant improvements for manner and place of articulation features, but not for voicing. Enhancement of within-channel envelope cues was confirmed by consonant recognition results obtained with single-channel strategies that presented the overall amplitude envelope of the signal on a single active electrode. Adaptation-inspired envelope enhancement techniques can potentially improve perception of important speech features by CI users.
Collapse
Affiliation(s)
- Mahan Azadpour
- Institute for Sensory Research, Department of Biomedical and Chemical Engineering, Syracuse University, 621 Skytop Road, Syracuse, NY 13244, United States.
| | - Robert L Smith
- Institute for Sensory Research, Department of Biomedical and Chemical Engineering, Syracuse University, 621 Skytop Road, Syracuse, NY 13244, United States.
| |
Collapse
|
46
|
George SS, Shivdasani MN, Fallon JB. Effect of current focusing on the sensitivity of inferior colliculus neurons to amplitude-modulated stimulation. J Neurophysiol 2016; 116:1104-16. [PMID: 27306672 DOI: 10.1152/jn.00126.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/15/2016] [Indexed: 11/22/2022] Open
Abstract
In multichannel cochlear implants (CIs), current is delivered to specific electrodes along the cochlea in the form of amplitude-modulated pulse trains, to convey temporal and spectral cues. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation and reduced channel interactions in the inferior colliculus (IC) compared with traditional monopolar (MP) stimulation, suggesting that focusing of stimulation could produce better transmission of spectral information. The present study explored the capability of IC neurons to detect modulated CI stimulation with FMP and TP stimulation compared with MP stimulation. The study examined multiunit responses of IC neurons in acutely deafened guinea pigs by systematically varying the stimulation configuration, modulation depth, and stimulation level. Stimuli were sinusoidal amplitude-modulated pulse trains (carrier rate of 120 pulses/s). Modulation sensitivity was quantified by measuring modulation detection thresholds (MDTs), defined as the lowest modulation depth required to differentiate the response of a modulated stimulus from an unmodulated one. Whereas MP stimulation showed significantly lower MDTs than FMP and TP stimulation (P values <0.05) at stimulation ≤2 dB above threshold, all stimulation configurations were found to have similar modulation sensitivities at 4 dB above threshold. There was no difference found in modulation sensitivity between FMP and TP stimulation. The present study demonstrates that current focusing techniques such as FMP and TP can adequately convey amplitude modulation and are comparable to MP stimulation, especially at higher stimulation levels, although there may be some trade-off between spectral and temporal fidelity with current focusing stimulation.
Collapse
Affiliation(s)
- Shefin S George
- The Bionics Institute, East Melbourne, Australia; and Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| | - Mohit N Shivdasani
- The Bionics Institute, East Melbourne, Australia; and Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| | - James B Fallon
- The Bionics Institute, East Melbourne, Australia; and Department of Medical Bionics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
47
|
Abstract
HYPOTHESIS Image-guided cochlear implant (CI) programming can improve hearing outcomes for pediatric CI recipients. BACKGROUND CIs have been highly successful for children with severe-to-profound hearing loss, offering potential for mainstreamed education and auditory-oral communication. Despite this, a significant number of recipients still experience poor speech understanding, language delay, and, even among the best performers, restoration to normal auditory fidelity is rare. Although significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. Recently introduced techniques for image-guided CI programming (IGCIP) permit creating patient-customized CI programs by making it possible, for the first time, to estimate the position of implanted CI electrodes relative to the nerves they stimulate using CT images. This approach permits identification of electrodes with high levels of stimulation overlap and to deactivate them from a patient's map. Previous studies have shown that IGCIP can significantly improve hearing outcomes for adults with CIs. METHODS The IGCIP technique was tested for 21 ears of 18 pediatric CI recipients. Participants had long-term experience with their CI (5 mo to 13 yr) and ranged in age from 5 to 17 years old. Speech understanding was assessed after approximately 4 weeks of experience with the IGCIP map. RESULTS Using a two-tailed Wilcoxon signed-rank test, statistically significant improvement (p < 0.05) was observed for word and sentence recognition in quiet and noise, as well as pediatric self-reported quality-of-life (QOL) measures. CONCLUSION Our results indicate that image guidance significantly improves hearing and QOL outcomes for pediatric CI recipients.
Collapse
|
48
|
Cosentino S, Carlyon RP, Deeks JM, Parkinson W, Bierer JA. Rate discrimination, gap detection and ranking of temporal pitch in cochlear implant users. J Assoc Res Otolaryngol 2016; 17:371-82. [PMID: 27101997 PMCID: PMC4940289 DOI: 10.1007/s10162-016-0569-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/10/2016] [Indexed: 01/04/2023] Open
Abstract
Cochlear implant (CI) users have poor temporal pitch perception, as revealed by two key outcomes of rate discrimination tests: (i) rate discrimination thresholds (RDTs) are typically larger than the corresponding frequency difference limen for pure tones in normal hearing listeners, and (ii) above a few hundred pulses per second (i.e. the "upper limit" of pitch), CI users cannot discriminate further increases in pulse rate. Both RDTs at low rates and the upper limit of pitch vary across listeners and across electrodes in a given listener. Here, we compare across-electrode and across-subject variation in these two measures with the variation in performance on another temporal processing task, gap detection, in order to explore the limitations of temporal processing in CI users. RDTs were obtained for 4-5 electrodes in each of 10 Advanced Bionics CI users using two interleaved adaptive tracks, corresponding to standard rates of 100 and 400 pps. Gap detection was measured using the adaptive procedure and stimuli described by Bierer et al. (JARO 16:273-284, 2015), and for the same electrodes and listeners as for the rate discrimination measures. Pitch ranking was also performed using a mid-point comparison technique. There was a marginal across-electrode correlation between gap detection and rate discrimination at 400 pps, but neither measure correlated with rate discrimination at 100 pps. Similarly, there was a highly significant across-subject correlation between gap detection and rate discrimination at 400, but not 100 pps, and these two correlations differed significantly from each other. Estimates of low-rate sensitivity and of the upper limit of pitch, obtained from the pitch ranking experiment, correlated well with rate discrimination for the 100- and 400-pps standards, respectively. The results are consistent with the upper limit of rate discrimination sharing a common basis with gap detection. There was no evidence that this limitation also applied to rate discrimination at lower rates.
Collapse
Affiliation(s)
- Stefano Cosentino
- />MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF UK
| | - Robert P. Carlyon
- />MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF UK
| | - John M. Deeks
- />MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF UK
| | - Wendy Parkinson
- />Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA 98105 USA
| | - Julie A. Bierer
- />Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA 98105 USA
| |
Collapse
|
49
|
Bierer JA, Litvak L. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception: Current Focusing and Channel Deactivation. Trends Hear 2016; 20:20/0/2331216516653389. [PMID: 27317668 PMCID: PMC4948253 DOI: 10.1177/2331216516653389] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Speech perception among cochlear implant (CI) listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a) focused stimulation will improve phoneme recognition and (b) speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects’ threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a) 14-channel partial tripolar (pTP) and (b) 14-channel monopolar (MP), and four variable-channel programs, derived from these two base programs, (c) pTP with high- and (d) low-threshold channels deactivated, and (e) MP with high- and (f) low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring < 62% correct on vowel identification) tended to perform better with the all-channel pTP than with the MP program (1 > 2). These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6). Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners.
Collapse
|
50
|
Won JH, Moon IJ, Jin S, Park H, Woo J, Cho YS, Chung WH, Hong SH. Spectrotemporal Modulation Detection and Speech Perception by Cochlear Implant Users. PLoS One 2015; 10:e0140920. [PMID: 26485715 PMCID: PMC4617902 DOI: 10.1371/journal.pone.0140920] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/01/2015] [Indexed: 11/18/2022] Open
Abstract
Spectrotemporal modulation (STM) detection performance was examined for cochlear implant (CI) users. The test involved discriminating between an unmodulated steady noise and a modulated stimulus. The modulated stimulus presents frequency modulation patterns that change in frequency over time. In order to examine STM detection performance for different modulation conditions, two different temporal modulation rates (5 and 10 Hz) and three different spectral modulation densities (0.5, 1.0, and 2.0 cycles/octave) were employed, producing a total 6 different STM stimulus conditions. In order to explore how electric hearing constrains STM sensitivity for CI users differently from acoustic hearing, normal-hearing (NH) and hearing-impaired (HI) listeners were also tested on the same tasks. STM detection performance was best in NH subjects, followed by HI subjects. On average, CI subjects showed poorest performance, but some CI subjects showed high levels of STM detection performance that was comparable to acoustic hearing. Significant correlations were found between STM detection performance and speech identification performance in quiet and in noise. In order to understand the relative contribution of spectral and temporal modulation cues to speech perception abilities for CI users, spectral and temporal modulation detection was performed separately and related to STM detection and speech perception performance. The results suggest that that slow spectral modulation rather than slow temporal modulation may be important for determining speech perception capabilities for CI users. Lastly, test–retest reliability for STM detection was good with no learning. The present study demonstrates that STM detection may be a useful tool to evaluate the ability of CI sound processing strategies to deliver clinically pertinent acoustic modulation information.
Collapse
Affiliation(s)
- Jong Ho Won
- Division of Ophthalmic and Ear, Nose and Throat Devices, Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Il Joon Moon
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
- * E-mail:
| | - Sunhwa Jin
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Heesung Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Jihwan Woo
- School of Electrical Engineering, Biomedical Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Yang-Sun Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Won-Ho Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| | - Sung Hwa Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135-710, Republic of Korea
| |
Collapse
|