1
|
Wang Z, Gong L, Wu H, Feng J, Jiang T. Auditory sensitivity in the great evening bat (Ia io): Insights from auditory brainstem response. Hear Res 2025; 464:109310. [PMID: 40408799 DOI: 10.1016/j.heares.2025.109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
The great evening bat (Ia io), a large frequency-modulating (FM) bat species in the Vespertilionidae family, may exhibit unique auditory adaptations that support its bird-predatory behavior. In this study, we employed auditory brainstem response (ABR) measurements to evaluate the auditory sensitivity of five adult male I. io across a 2 to 80 kHz frequency range. The results showed the most sensitive auditory threshold appears at 24-28 kHz (range 24 to 32 kHz for individual bats), aligning with the species' peak frequency of echolocation calls, enhancing large prey detection and localization. ABRs identify five distinct wave peaks (P1-P5) at high sound pressure levels, with the largest amplitude peak observed for P4. Furthermore, I. io has lower auditory thresholds across higher frequencies than most other FM bats. These findings suggest I. io has a broad auditory range that may facilitate adaptive flexibility in varied ecological settings.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Lixin Gong
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China.
| | - Huan Wu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China; College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Zou J, Wang Y, Yang S, Zhang Y, Chen Q, Fu Z. Echolocation frequency alteration, and hearing loss induced by an ototoxic drug in the echolocating bat Hipposideros pratti. Hear Res 2025; 463:109304. [PMID: 40383085 DOI: 10.1016/j.heares.2025.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Noise exposure increases the level of reactive oxygen species (ROS) in the outer hair cells (OHCs) of the cochlea, which subsequently damages OHCs and causes noise-induced hearing loss. However, increasing evidences have shown that echolocating bats can maintain their auditory sensitivity after intense noise exposure, indicating that they have a strong capacity to clear ROS, or that noise exposure does not increase ROS levels in the cochlea of the animals. To differentiate between these possibilities, the constant frequency-frequency modulation bats, Hipposideros pratti, were intraperitoneally injected with the ototoxic drug Kanamycin, which increases ROS levels in the cochlea of other mammalian species. The results showed that Kanamycin application efficiently altered the echolocation frequency, shifted the auditory brainstem response threshold, and damaged the OHCs, suggesting that echolocating bats were sensitive to ototoxic drugs. Therefore, H. pratti does not seem to be able to clear ROS efficiently, and the decreased susceptibility to noise exposure of echolocating bats might be due to the failed increasement of ROS levels in their cochleae by the noise exposure. Furthermore, our data also showed that the precision of resting frequency (RF) was greatly decreased after the auditory sensitivity was impaired by Kanamycin application, suggesting that the precision of the RF was dependent on the auditory feedback. These findings could provide insights to understand the adaptation mechanisms of the auditory system of echolocating bats to intense sound environments.
Collapse
Affiliation(s)
- Jianwen Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yalin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Shuilian Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yanjie Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Qicai Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ziying Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
3
|
Cui Z, Zou J, Zhou Y, Cao Y, Song H, Xu H, Wu J, Jin B, Yang L, Jia Y, Chen Q, Fu Z. Vocalization-induced middle ear muscle reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity after intense noise exposure in the CF-FM bat, Hipposideros pratti. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:53-67. [PMID: 39212726 DOI: 10.1007/s00359-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Behaviors and auditory physiological responses of some species of echolocating bats remain unaffected after exposure to intense noise, but information on the underlying mechanisms remains limited. Here, we studied whether the vocalization-induced middle ear muscle (MEM) contractions (MEM reflex) and auditory fovea contributed to the unimpaired auditory sensitivity of constant frequency-frequency modulation (CF-FM) bats after exposure to broad-band intense noise. The vocalizations of the CF-FM bat, Hipposideros pratti, were inhibited through anesthesia to eliminate the vocalization-induced MEM reflex. First, the anesthetized bats were exposed to intense broad-band noise, and the findings showed that the bats could still maintain their auditory sensitivities. However, auditory sensitivities were seriously impaired in CBA/Ca mice exposed to intense noise under anesthesia. This indicated that the unimpaired auditory sensitivity in H. pratti after exposure to intense noise under anesthesia was not due to anesthetization. The bats were further exposed to low-frequency band-limited noise, whose passband did not overlap with echolocation call frequencies. The results showed that the auditory responses to sound frequencies within the noise spectrum and one-half octave higher than the spectrum were also unimpaired. Taken together, the results indicate that both vocalization-induced MEM reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity in H. pratti after exposure to intense noise. The possible mechanisms underlying the unimpaired auditory sensitivity after echolocating bats were exposed to intense noise are discussed.
Collapse
Affiliation(s)
- Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jianwen Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuntu Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haonan Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haoyue Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Baoling Jin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lijian Yang
- College of Physical Science and Technology, Central China Normal University, Hubei, 430079, Wuhan, China
| | - Ya Jia
- College of Physical Science and Technology, Central China Normal University, Hubei, 430079, Wuhan, China
| | - Qicai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ziying Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Simmons AM, Simmons JA. Echolocating Bats Have Evolved Decreased Susceptibility to Noise-Induced Temporary Hearing Losses. J Assoc Res Otolaryngol 2024; 25:229-238. [PMID: 38565735 PMCID: PMC11150213 DOI: 10.1007/s10162-024-00941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Glenis Long championed the application of quantitative psychophysical methods to understand comparative hearing abilities across species. She contributed the first psychophysical studies of absolute and masked hearing sensitivities in an auditory specialist, the echolocating horseshoe bat. Her data demonstrated that this bat has hyperacute frequency discrimination in the 83-kHz range of its echolocation broadcast. This specialization facilitates the bat's use of Doppler shift compensation to separate echoes of fluttering insects from concurrent echoes of non-moving objects. In this review, we discuss another specialization for hearing in a species of echolocating bat that contributes to perception of echoes within a complex auditory scene. Psychophysical and behavioral studies with big brown bats show that exposures to long duration, intense wideband or narrowband ultrasonic noise do not induce significant increases in their thresholds to echoes and do not impair their ability to orient through a naturalistic sonar scene containing multiple distracting echoes. Thresholds of auditory brainstem responses also remain low after intense noise exposures. These data indicate that big brown bats are not susceptible to temporary threshold shifts as measured in comparable paradigms used with other mammals, at least within the range of stimulus parameters that have been tested so far. We hypothesize that echolocating bats have evolved a decreased susceptibility to noise-induced hearing losses as a specialization for echolocation in noisy environments.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
| | - James A Simmons
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
5
|
Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y. Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 2023; 6:e202201847. [PMID: 36997281 PMCID: PMC10067528 DOI: 10.26508/lsa.202201847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Hearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it. We tested the hearing of 47 wild Egyptian fruit bats by recording their auditory brainstem response and cochlear microphonics, and we also assessed the cochlear histology in four of these bats. We used the bats' DNA methylation profile to evaluate their age and found that bats exhibit age-related hearing loss, with more prominent deterioration at the higher frequencies. The rate of the deterioration was ∼1 dB per year, comparable to the hearing loss observed in humans. Assessing the noise in the fruit bat roost revealed that these bats are exposed to continuous immense noise-mostly of social vocalizations-supporting the assumption that bats might be partially resistant to loud noise. Thus, in contrast to previous assumptions, our results suggest that bats constitute a model animal for the study of age-related hearing loss.
Collapse
Affiliation(s)
- Yifat Chaya Tarnovsky
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yomiran Nissan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Karen B Avraham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Pedersen MB, Uebel AS, Beedholm K, Foskolos I, Stidsholt L, Madsen PT. Echolocating Daubenton's bats call louder, but show no spectral jamming avoidance in response to bands of masking noise during a landing task. J Exp Biol 2022; 225:274668. [PMID: 35262171 DOI: 10.1242/jeb.243917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/20/2022]
Abstract
Echolocating bats listen for weak echoes to navigate and hunt, which makes them prone to masking from background noise and jamming from other bats and prey. Like for electrical fish that display clear spectral jamming avoidance responses (JAR), some studies have reported that bats mitigate the effects of jamming by shifting the spectral contents of their calls, thereby reducing acoustic interference to improve echo-to-noise ratios (ENR). Here we test the hypothesis that FM bats employ a spectral JAR in response to six masking noise-bands ranging from 15-90kHz, by measuring the -3dB endpoints and peak frequency of echolocation calls from five male Daubenton's bats (Myotis daubentonii) during a landing task. The bats were trained to land on a noise generating spherical transducer surrounded by a star-shaped microphone array, allowing for acoustic localization and source parameter quantification of on-axis calls. We show that the bats did not employ spectral JAR as the peak frequency during jamming remained unaltered compared to silent controls (all P>0.05, 60.73±0.96 kHz) (mean±s.e.m.), and -3dB endpoints decreased in noise irrespective of treatment-type. Instead, Daubenton's bats responded to acoustic jamming by increasing call amplitude via a Lombard response that was bandwidth dependent ranging from 0.05 [0.04-0.06 mean±95% CI] dB/dB noise for the most narrowband (15-30 kHz) to 0.17 [0.16-0.18] dB/dB noise for the most broadband noise (30-90 kHz). We conclude that Daubenton's bats, despite the vocal flexibility to do so, do not employ a spectral JAR, but defend ENRs via a bandwidth dependent Lombard response.
Collapse
Affiliation(s)
- Michael Bjerre Pedersen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Astrid Særmark Uebel
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Kristian Beedholm
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Ilias Foskolos
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Laura Stidsholt
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Peter Teglberg Madsen
- Marine Bioacoustics Lab, Zoophysiology, Department of Biology, Aarhus University, 8000, Aarhus, Denmark
| |
Collapse
|
7
|
Cochlear hair cells of echolocating bats are immune to intense noise. J Genet Genomics 2021; 48:984-993. [PMID: 34393089 DOI: 10.1016/j.jgg.2021.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
Exposure to intense noise can damage cochlear hair cells, leading to hearing loss in mammals. To avoid this constraint, most mammals have evolved in relatively quiet environments. Echolocating bats, however, are naturally exposed to continuous intense sounds from their own and neighboring sonar emissions for maintaining sonar directionality and range. Here, we propose the presence of intense noise resistance in cochlear hair cells of echolocating bats against noise-induced hearing loss (NIHL). To test this hypothesis, we performed noise exposure experiments for laboratory mice, one nonecholocating bat species, and five echolocating bat species. Contrary to nonecholocating fruit bats and mice, the hearing and the cochlear hair cells of echolocating bats remained unimpaired after continuous intense noise exposure. The comparative analyses of cochleae transcriptomic data showed that several genes protecting cochlear hair cells from intense sounds were overexpressed in echolocating bats. Particularly, the experimental examinations revealed that ISL1 overexpression significantly improved the survival of cochlear hair cells. Our findings support the existence of protective effects in cochlear hair cells of echolocating bats against intense noises, which provides new insight into understanding the relationship between cochlear hair cells and intense noises, and preventing or ameliorating NIHL in mammals.
Collapse
|
8
|
Möckel D, Groulx T, Faure PA. Development of hearing in the big brown bat. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:27-42. [PMID: 33200279 DOI: 10.1007/s00359-020-01452-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 10/23/2020] [Indexed: 01/14/2023]
Abstract
We studied the development of hearing in newborn pups of the big brown bat, Eptesicus fuscus. In the majority of pups, the opening of both outer auditory canals occurred on or before postnatal day (PND) 7, but in some, it extended to PND 11. Using repeated auditory brainstem response (ABR) recordings, we tracked the progressive development and maturation of auditory sensitivity in 22 E. fuscus pups every 3 days, from PND 10 to PND 31, with additional recordings in a subset of bats at 2 months, 3 months and 1 year of life. There was a profound increase in auditory sensitivity across development for frequencies between 4 and 100 kHz, with the largest threshold shifts occurring early in development between PND 10 and 19. Prior to PND 13-16 and when pups were still non-volant, most bats were unable to hear frequencies above 48 kHz; however, sensitivity to these higher ultrasonic frequencies increased with age. Notably, this change occurred near the age when young bats started learning how to fly and echolocate.
Collapse
Affiliation(s)
- Doreen Möckel
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Thomas Groulx
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
9
|
Hörpel SG, Firzlaff U. Post-natal development of the envelope following response to amplitude modulated sounds in the bat Phyllostomus discolor. Hear Res 2020; 388:107904. [PMID: 32028065 DOI: 10.1016/j.heares.2020.107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/20/2019] [Accepted: 01/24/2020] [Indexed: 01/15/2023]
Abstract
Bats use a large repertoire of calls for social communication, which are often characterized by temporal amplitude and frequency modulations. As bats are considered to be among the few mammalian species capable of vocal learning, the perception of temporal sound modulations should be crucial for juvenile bats to develop social communication abilities. However, the post-natal development of auditory processing of temporal modulations has not been investigated in bats, so far. Here we use the minimally invasive technique of recording auditory brainstem responses to measure the envelope following response (EFR) to sinusoidally amplitude modulated noise (range of modulation frequencies: 11-130 Hz) in three juveniles (p8-p72) of the bat, Phyllostomus discolor. In two out of three animals, we show that although amplitude modulation processing is basically developed at p8, EFRs maturated further over a period of about two weeks until p33. Maturation of the EFR generally took longer for higher modulation frequencies (87-130 Hz) than for lower modulation frequencies (11-58 Hz).
Collapse
Affiliation(s)
- Stephen Gareth Hörpel
- Department of Animal Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany.
| | - Uwe Firzlaff
- Department of Animal Sciences, Technical University of Munich, Liesel-Beckmann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
10
|
Fu Z, Xu N, Zhang G, Zhou D, Liu L, Tang J, Jen PHS, Chen Q. Evoked potential study of the inferior collicular response to constant frequency-frequency modulation (CF-FM) sounds in FM and CF-FM bats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:239-252. [DOI: 10.1007/s00359-019-01326-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
|
11
|
Linnenschmidt M, Wiegrebe L. Ontogeny of auditory brainstem responses in the bat, Phyllostomus discolor. Hear Res 2019; 373:85-95. [PMID: 30612027 DOI: 10.1016/j.heares.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/15/2023]
Abstract
Hearing is the primary sensory modality in bats, but its development is poorly studied. For newborns, hearing appears essential in maintaining contact with their mothers and to develop echolocation abilities. Here we measured auditory brainstem responses (ABRs) to clicks and narrowband tone pips covering a large frequency range (5-90 kHz) in juveniles (p7 to p200) and adults of the bat, Phyllostomus discolor. Tone-pip audiograms show that juveniles at p7 are already quite responsive, not only below 20 kHz but up to 90 kHz. Hearing sensitivity increases further until about p14 and is then refined, possibly correlated with growth and differentiation of the animals' outer ears. ABR amplitudes decrease within the first 3-4 months, inversely correlated with the bat weight and forearm length. ABR Wave I latency decreases with increasing stimulation level. ABR duration (measured between Waves I and V) is longer in juveniles and shortens with age which may reflect temporal refinement of auditory brainstem neurons to accommodate the exceptional temporal precision required for effective echolocation. Overall our data show that P. discolor bats have good hearing very early in life. The current method represents a fast and minimally invasive way of characterizing basic hearing in bats.
Collapse
Affiliation(s)
- Meike Linnenschmidt
- Division of Neurobiology, Dept. Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| | - Lutz Wiegrebe
- Division of Neurobiology, Dept. Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Smotherman M, Bakshi K. Forward masking enhances the auditory brainstem response in the free-tailed bat, Tadarida brasiliensis, during a critical time window for sonar reception. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:EL19. [PMID: 30710968 DOI: 10.1121/1.5087278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Forward masking is a widespread auditory phenomenon in which the response to one sound transiently reduces the response to a succeeding sound. This study used auditory brainstem responses to measure temporal masking effects in the free-tailed bat, Tadarida brasiliensis. A digital subtraction protocol was used to isolate responses to the second of a pair of pulses varying in interval, revealing a suppression phase lasting <4 ms followed by an enhancement phase lasting 4-15 ms during which the ABR waveform was amplified up to 100%. The results suggest echolocating bats possess adaptations for enhancing sonar receiver gain shortly after pulse emission.
Collapse
Affiliation(s)
- Michael Smotherman
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| | - Kushal Bakshi
- Institute for Neuroscience, Texas A&M University, College Station, Texas 77843-3258, ,
| |
Collapse
|
13
|
Mao B, Moss CF, Wilkinson GS. Age-dependent gene expression in the inner ear of big brown bats (Eptesicus fuscus). PLoS One 2017; 12:e0186667. [PMID: 29073148 PMCID: PMC5658057 DOI: 10.1371/journal.pone.0186667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
For echolocating bats, hearing is essential for survival. Specializations for detecting and processing high frequency sounds are apparent throughout their auditory systems. Recent studies on echolocating mammals have reported evidence of parallel evolution in some hearing-related genes in which distantly related groups of echolocating animals (bats and toothed whales), cluster together in gene trees due to apparent amino acid convergence. However, molecular adaptations can occur not only in coding sequences, but also in the regulation of gene expression. The aim of this study was to examine the expression of hearing-related genes in the inner ear of developing big brown bats, Eptesicus fuscus, during the period in which echolocation vocalizations increase dramatically in frequency. We found that seven genes were significantly upregulated in juveniles relative to adults, and that the expression of four genes through development correlated with estimated age. Compared to available data for mice, it appears that expression of some hearing genes is extended in juvenile bats. These results are consistent with a prolonged growth period required to develop larger cochlea relative to body size, a later maturation of high frequency hearing, and a greater dependence on high frequency hearing in echolocating bats.
Collapse
Affiliation(s)
- Beatrice Mao
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gerald S. Wilkinson
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
14
|
Simmons AM, Hom KN, Simmons JA. Big brown bats (Eptesicus fuscus) maintain hearing sensitivity after exposure to intense band-limited noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1481. [PMID: 28372082 DOI: 10.1121/1.4976820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thresholds to short-duration narrowband frequency-modulated (FM) sweeps were measured in six big brown bats (Eptesicus fuscus) in a two-alternative forced choice passive listening task before and after exposure to band-limited noise (lower and upper frequencies between 10 and 50 kHz, 1 h, 116-119 dB sound pressure level root mean square; sound exposure level 152 dB). At recovery time points of 2 and 5 min post-exposure, thresholds varied from -4 to +4 dB from pre-exposure threshold estimates. Thresholds after sham (control) exposures varied from -6 to +2 dB from pre-exposure estimates. The small differences in thresholds after noise and sham exposures support the hypothesis that big brown bats do not experience significant temporary threshold shifts under these experimental conditions. These results confirm earlier findings showing stability of thresholds to broadband FM sweeps at longer recovery times after exposure to broadband noise. Big brown bats may have evolved a lessened susceptibility to noise-induced hearing losses, related to the special demands of echolocation.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, Rhode Island 02912, USA
| | - Kelsey N Hom
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - James A Simmons
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
15
|
Hom KN, Linnenschmidt M, Simmons JA, Simmons AM. Echolocation behavior in big brown bats is not impaired after intense broadband noise exposures. ACTA ACUST UNITED AC 2016; 219:3253-3260. [PMID: 27510961 DOI: 10.1242/jeb.143578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022]
Abstract
Echolocating bats emit trains of intense ultrasonic biosonar pulses and listen to weaker echoes returning from objects in their environment. Identification and categorization of echoes are crucial for orientation and prey capture. Bats are social animals and often fly in groups in which they are exposed to their own emissions and to those from other bats, as well as to echoes from multiple surrounding objects. Sound pressure levels in these noisy conditions can exceed 110 dB, with no obvious deleterious effects on echolocation performance. Psychophysical experiments show that big brown bats (Eptesicus fuscus) do not experience temporary threshold shifts after exposure to intense broadband ultrasonic noise, but it is not known if they make fine-scale adjustments in their pulse emissions to compensate for any effects of the noise. We investigated whether big brown bats adapt the number, temporal patterning or relative amplitude of their emitted pulses while flying through an acoustically cluttered corridor after exposure to intense broadband noise (frequency range 10-100 kHz; sound exposure level 152 dB). Under these conditions, four bats made no significant changes in navigation errors or in pulse number, timing and amplitude 20 min, 24 h or 48 h after noise exposure. These data suggest that big brown bats remain able to perform difficult echolocation tasks after exposure to ecologically realistic levels of broadband noise.
Collapse
Affiliation(s)
- Kelsey N Hom
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | - James A Simmons
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Andrea Megela Simmons
- Department of Neuroscience, Brown University, Providence, RI 02912, USA .,Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
| |
Collapse
|
16
|
Simmons AM, Hom KN, Warnecke M, Simmons JA. Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus). J Exp Biol 2016; 219:1031-40. [DOI: 10.1242/jeb.135319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In many vertebrates, exposure to intense sounds under certain stimulus conditions can induce temporary threshold shifts that reduce hearing sensitivity. Susceptibility to these hearing losses may reflect the relatively quiet environments in which most of these species have evolved. Echolocating big brown bats (Eptesicus fuscus) live in extremely intense acoustic environments in which they navigate and forage successfully, both alone and in company with other bats. We hypothesized that bats may have evolved a mechanism to minimize noise-induced hearing losses that otherwise could impair natural echolocation behaviors. The hearing sensitivity of seven big brown bats was measured in active echolocation and passive hearing tasks, before and after exposure to broadband noise spanning their audiometric range (10–100 kHz, 116 dB SPL re. 20 µPa rms, 1 h duration; sound exposure level 152 dB). Detection thresholds measured 20 min, 2 h or 24 h after exposure did not vary significantly from pre-exposure thresholds or from thresholds in control (sham exposure) conditions. These results suggest that big brown bats may be less susceptible to temporary threshold shifts than are other terrestrial mammals after exposure to similarly intense broadband sounds. These experiments provide fertile ground for future research on possible mechanisms employed by echolocating bats to minimize hearing losses while orienting effectively in noisy biological soundscapes.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Kelsey N. Hom
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michaela Warnecke
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - James A. Simmons
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|