1
|
Zou J, Wang Y, Yang S, Zhang Y, Chen Q, Fu Z. Echolocation frequency alteration, and hearing loss induced by an ototoxic drug in the echolocating bat Hipposideros pratti. Hear Res 2025; 463:109304. [PMID: 40383085 DOI: 10.1016/j.heares.2025.109304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Noise exposure increases the level of reactive oxygen species (ROS) in the outer hair cells (OHCs) of the cochlea, which subsequently damages OHCs and causes noise-induced hearing loss. However, increasing evidences have shown that echolocating bats can maintain their auditory sensitivity after intense noise exposure, indicating that they have a strong capacity to clear ROS, or that noise exposure does not increase ROS levels in the cochlea of the animals. To differentiate between these possibilities, the constant frequency-frequency modulation bats, Hipposideros pratti, were intraperitoneally injected with the ototoxic drug Kanamycin, which increases ROS levels in the cochlea of other mammalian species. The results showed that Kanamycin application efficiently altered the echolocation frequency, shifted the auditory brainstem response threshold, and damaged the OHCs, suggesting that echolocating bats were sensitive to ototoxic drugs. Therefore, H. pratti does not seem to be able to clear ROS efficiently, and the decreased susceptibility to noise exposure of echolocating bats might be due to the failed increasement of ROS levels in their cochleae by the noise exposure. Furthermore, our data also showed that the precision of resting frequency (RF) was greatly decreased after the auditory sensitivity was impaired by Kanamycin application, suggesting that the precision of the RF was dependent on the auditory feedback. These findings could provide insights to understand the adaptation mechanisms of the auditory system of echolocating bats to intense sound environments.
Collapse
Affiliation(s)
- Jianwen Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yalin Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Shuilian Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Yanjie Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Qicai Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Ziying Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Cui Z, Zou J, Zhou Y, Cao Y, Song H, Xu H, Wu J, Jin B, Yang L, Jia Y, Chen Q, Fu Z. Vocalization-induced middle ear muscle reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity after intense noise exposure in the CF-FM bat, Hipposideros pratti. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:53-67. [PMID: 39212726 DOI: 10.1007/s00359-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Behaviors and auditory physiological responses of some species of echolocating bats remain unaffected after exposure to intense noise, but information on the underlying mechanisms remains limited. Here, we studied whether the vocalization-induced middle ear muscle (MEM) contractions (MEM reflex) and auditory fovea contributed to the unimpaired auditory sensitivity of constant frequency-frequency modulation (CF-FM) bats after exposure to broad-band intense noise. The vocalizations of the CF-FM bat, Hipposideros pratti, were inhibited through anesthesia to eliminate the vocalization-induced MEM reflex. First, the anesthetized bats were exposed to intense broad-band noise, and the findings showed that the bats could still maintain their auditory sensitivities. However, auditory sensitivities were seriously impaired in CBA/Ca mice exposed to intense noise under anesthesia. This indicated that the unimpaired auditory sensitivity in H. pratti after exposure to intense noise under anesthesia was not due to anesthetization. The bats were further exposed to low-frequency band-limited noise, whose passband did not overlap with echolocation call frequencies. The results showed that the auditory responses to sound frequencies within the noise spectrum and one-half octave higher than the spectrum were also unimpaired. Taken together, the results indicate that both vocalization-induced MEM reflex and auditory fovea do not contribute to the unimpaired auditory sensitivity in H. pratti after exposure to intense noise. The possible mechanisms underlying the unimpaired auditory sensitivity after echolocating bats were exposed to intense noise are discussed.
Collapse
Affiliation(s)
- Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jianwen Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuting Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuntu Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haonan Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haoyue Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Baoling Jin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lijian Yang
- College of Physical Science and Technology, Central China Normal University, Hubei, 430079, Wuhan, China
| | - Ya Jia
- College of Physical Science and Technology, Central China Normal University, Hubei, 430079, Wuhan, China
| | - Qicai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ziying Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Capshaw G, Diebold CA, Adams DM, Rayner JG, Wilkinson GS, Moss CF, Lauer AM. Resistance to age-related hearing loss in the echolocating big brown bat ( Eptesicus fuscus). Proc Biol Sci 2024; 291:20241560. [PMID: 39500378 PMCID: PMC11708781 DOI: 10.1098/rspb.2024.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218, USA
| | - Clarice A. Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218, USA
| | - Danielle M. Adams
- Department of Biology, University of Maryland, College Park, MD20742, USA
| | - Jack G. Rayner
- Department of Biology, University of Maryland, College Park, MD20742, USA
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD21218, USA
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, USA
| | - Amanda M. Lauer
- The Solomon H. Snyder Dept of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland21205, USA
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD21205, USA
| |
Collapse
|
4
|
Simmons AM, Simmons JA. Echolocating Bats Have Evolved Decreased Susceptibility to Noise-Induced Temporary Hearing Losses. J Assoc Res Otolaryngol 2024; 25:229-238. [PMID: 38565735 PMCID: PMC11150213 DOI: 10.1007/s10162-024-00941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Glenis Long championed the application of quantitative psychophysical methods to understand comparative hearing abilities across species. She contributed the first psychophysical studies of absolute and masked hearing sensitivities in an auditory specialist, the echolocating horseshoe bat. Her data demonstrated that this bat has hyperacute frequency discrimination in the 83-kHz range of its echolocation broadcast. This specialization facilitates the bat's use of Doppler shift compensation to separate echoes of fluttering insects from concurrent echoes of non-moving objects. In this review, we discuss another specialization for hearing in a species of echolocating bat that contributes to perception of echoes within a complex auditory scene. Psychophysical and behavioral studies with big brown bats show that exposures to long duration, intense wideband or narrowband ultrasonic noise do not induce significant increases in their thresholds to echoes and do not impair their ability to orient through a naturalistic sonar scene containing multiple distracting echoes. Thresholds of auditory brainstem responses also remain low after intense noise exposures. These data indicate that big brown bats are not susceptible to temporary threshold shifts as measured in comparable paradigms used with other mammals, at least within the range of stimulus parameters that have been tested so far. We hypothesize that echolocating bats have evolved a decreased susceptibility to noise-induced hearing losses as a specialization for echolocation in noisy environments.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA.
| | - James A Simmons
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
5
|
Simmons JA, Simmons AM. Echo detection thresholds in big brown bats (Eptesicus fuscus) vary with echo spectral content. JASA EXPRESS LETTERS 2024; 4:031201. [PMID: 38467469 DOI: 10.1121/10.0025240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Echolocating big brown bats (Eptesicus fuscus) broadcast downward frequency-modulated sweeps covering the ultrasonic range from 100-23 kHz in two harmonics. They perceive target range from the time delay between each broadcast and its returning echo. Previous experiments indicated that the bat's discrimination acuity for broadcast-echo delay declines when the lowest frequencies (23-35 kHz) in the first harmonic of an echo are removed. This experiment examined whether echo detection is similarly impaired. Results show that detection thresholds for echoes missing these lowest frequencies are raised. Increased thresholds for echoes differing in spectra facilitates the bat's ability to discriminate against clutter.
Collapse
Affiliation(s)
- James A Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| | - Andrea Megela Simmons
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
- Department of Cognitive, Linguistic and Psychological Sciences, Providence, Rhode Island 02912, ,
| |
Collapse
|
6
|
Simmons JA, Hom KN, Simmons AM. Temporal coherence of harmonic frequencies affects echo detection in the big brown bat, Eptesicus fuscus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3321-3327. [PMID: 37983295 DOI: 10.1121/10.0022444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Echolocating big brown bats (Eptesicus fuscus) broadcast frequency modulated (FM) ultrasonic pulses containing two prominent harmonic sweeps (FM1, FM2). Both harmonics typically return as echoes at the same absolute time delay following the broadcast, making them coherent. Electronically splitting FM1 and FM2 allows their time delays to be controlled separately, making them non-coherent. Earlier work shows that big brown bats discriminate coherent from split harmonic, non-coherent echoes and that disruptions of harmonic coherence produce blurry acoustic images. A psychophysical experiment on two trained big brown bats tested the hypothesis that detection thresholds for split harmonic, non-coherent echoes are higher than those for coherent echoes. Thresholds of the two bats for detecting 1-glint echoes with coherent harmonics were around 35 and 36 dB sound pressure level, respectively, while thresholds for split harmonic echoes were about 10 dB higher. When the delay of FM2 in split harmonic echoes is shortened by 75 μs to offset neural amplitude-latency trading and restore coherence in the auditory representation, thresholds decreased back down to those estimated for coherent echoes. These results show that echo detection is affected by loss of harmonic coherence, consistent with the proposed broader role of coherence across frequencies for auditory perception.
Collapse
Affiliation(s)
- James A Simmons
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Kelsey N Hom
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Andrea Megela Simmons
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, 185 Meeting Street, Providence, Rhode Island 02912, USA
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
7
|
Transcriptome Analyses Provide Insights into the Auditory Function in Trachemys scripta elegans. Animals (Basel) 2022; 12:ani12182410. [PMID: 36139269 PMCID: PMC9495000 DOI: 10.3390/ani12182410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
An auditory ability is essential for communication in vertebrates, and considerable attention has been paid to auditory sensitivity in mammals, birds, and frogs. Turtles were thought to be deaf for a long time; however, recent studies have confirmed the presence of an auditory ability in Trachemys scripta elegans as well as sex-related differences in hearing sensitivity. Earlier studies mainly focused on the morphological and physiological functions of the hearing organ in turtles; thus, the gene expression patterns remain unclear. In this study, 36 transcriptomes from six tissues (inner ear, tympanic membrane, brain, eye, lung, and muscle) were sequenced to explore the gene expression patterns of the hearing system in T. scripta elegans. A weighted gene co-expression network analysis revealed that hub genes related to the inner ear and tympanic membrane are involved in development and signal transduction. Moreover, we identified six differently expressed genes (GABRA1, GABRG2, GABBR2, GNAO1, SLC38A1, and SLC12A5) related to the GABAergic synapse pathway as candidate genes to explain the differences in sexually dimorphic hearing sensitivity. Collectively, this study provides a critical foundation for genetic research on auditory functions in turtles.
Collapse
|
8
|
Weinberg MM, Retta NA, Schrode KM, Screven LA, Peterson JL, Moss CF, Sterbing S, Lauer AM. Deafness in an auditory specialist, the big brown bat (Eptesicus fuscus). Hear Res 2021; 412:108377. [PMID: 34735823 DOI: 10.1016/j.heares.2021.108377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Bats are long-lived animals that show presumed resistance to noise-induced and age-related hearing loss, which has been attributed to their dependence on sound processing for survival. Echolocation and basic auditory functions have been studied extensively in the big brown bat (Eptesicus fuscus), an insectivorous microchiropteran species. We conducted hearing tests and analysis of cochlear sensory cells in a group of big brown bats that exhibited anomalies in behavioral sonar tracking experiments and/or lacked neural responses to acoustic stimulation in subcortical auditory nuclei. We show for the first time the presence of profound deafness and extensive cochlear damage in an echolocating bat species. Auditory brainstem responses were abnormal or absent in these bats, and histological analyses of their cochleae revealed extensive loss of hair cells, supporting cells, and spiral ganglion neurons. The underlying cause of deafness is unknown.
Collapse
Affiliation(s)
- Madison M Weinberg
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Nazrawit A Retta
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katrina M Schrode
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laurel A Screven
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie L Peterson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susanne Sterbing
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amanda M Lauer
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Ketten DR, Simmons JA, Riquimaroux H, Simmons AM. Functional Analyses of Peripheral Auditory System Adaptations for Echolocation in Air vs. Water. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.661216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The similarity of acoustic tasks performed by odontocete (toothed whale) and microchiropteran (insectivorous bat) biosonar suggests they may have common ultrasonic signal reception and processing mechanisms. However, there are also significant media and prey dependent differences, notably speed of sound and wavelengths in air vs. water, that may be reflected in adaptations in their auditory systems and peak spectra of out-going signals for similarly sized prey. We examined the anatomy of the peripheral auditory system of two species of FM bat (big brown bat Eptesicus fuscus; Japanese house bat Pipistrellus abramus) and two toothed whales (harbor porpoise Phocoena phocoena; bottlenose dolphin Tursiops truncatus) using ultra high resolution (11–100 micron) isotropic voxel computed tomography (helical and microCT). Significant differences were found for oval and round window location, cochlear length, basilar membrane gradients, neural distributions, cochlear spiral morphometry and curvature, and basilar membrane suspension distributions. Length correlates with body mass, not hearing ranges. High and low frequency hearing range cut-offs correlate with basilar membrane thickness/width ratios and the cochlear radius of curvature. These features are predictive of high and low frequency hearing limits in all ears examined. The ears of the harbor porpoise, the highest frequency echolocator in the study, had significantly greater stiffness, higher basal basilar membrane ratios, and bilateral bony support for 60% of the basilar membrane length. The porpoise’s basilar membrane includes a “foveal” region with “stretched” frequency representation and relatively constant membrane thickness/width ratio values similar to those reported for some bat species. Both species of bats and the harbor porpoise displayed unusual stapedial input locations and low ratios of cochlear radii, specializations that may enhance higher ultrasonic frequency signal resolution and deter low frequency cochlear propagation.
Collapse
|
10
|
Wang Z, Ma Q, Lu J, Cui X, Chen H, Wu H, Huang Z. Functional Parameters of Prestin Are Not Correlated With the Best Hearing Frequency. Front Cell Dev Biol 2021; 9:638530. [PMID: 34046403 PMCID: PMC8144510 DOI: 10.3389/fcell.2021.638530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/23/2021] [Indexed: 11/29/2022] Open
Abstract
Among the vertebrate lineages with different hearing frequency ranges, humans lie between the low-frequency hearing (1 kHz) of fish and amphibians and the high-frequency hearing (100 kHz) of bats and dolphins. Little is known about the mechanism underlying such a striking difference in the limits of hearing frequency. Prestin, responsible for cochlear amplification and frequency selectivity in mammals, seems to be the only candidate to date. Mammalian prestin is densely expressed in the lateral plasma membrane of the outer hair cells (OHCs) and functions as a voltage-dependent motor protein. To explore the molecular basis for the contribution of prestin in hearing frequency detection, we collected audiogram data from humans, dogs, gerbils, bats, and dolphins because their average hearing frequency rises in steps. We generated stable cell lines transfected with human, dog, gerbil, bat, and dolphin prestins (hPres, dPres, gPres, bPres, and nPres, respectively). The non-linear capacitance (NLC) of different prestins was measured using a whole-cell patch clamp. We found that the Qmax/Clin of bPres and nPres was significantly higher than that of humans. The V1/2 of hPres was more hyperpolarized than that of nPres. The z values of hPres and bPres were higher than that of nPres. We further analyzed the relationship between the high-frequency hearing limit (Fmax) and the functional parameters (V1/2, z, and Qmax/Clin) of NLC among five prestins. Interestingly, no significant correlation was found between the functional parameters and Fmax. Additionally, a comparative study showed that the amino acid sequences and tertiary structures of five prestins were quite similar. There might be a common fundamental mechanism driving the function of prestins. These findings call for a reconsideration of the leading role of prestin in hearing frequency perception. Other intriguing kinetics underlying the hearing frequency response of auditory organs might exist.
Collapse
Affiliation(s)
- Zhongying Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qingping Ma
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiaochen Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Zhiwu Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
11
|
The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise. Hear Res 2020; 400:108142. [PMID: 33310564 DOI: 10.1016/j.heares.2020.108142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Although acoustic communication is inevitably influenced by noise, behaviorally relevant sounds are perceived reliably. The noise-tolerant and -invariant responses of auditory neurons are thought to be the underlying mechanism. So, it is reasonable to speculate that neurons with best frequency tuned to behaviorally relevant sounds will play important role in noise-tolerant perception. Echolocating bats live in groups and emit multiple harmonic signals and analyze the returning echoes to extract information about the target features, making them prone to deal with noise in their natural habitat. The echolocation signal of Hipposideros pratti usually contains 3-4 harmonics (H1H4), the second harmonic has the highest amplitude and is thought to play an essential role during echolocation behavior. Therefore, it is reasonable to propose that neurons tuned to the H2, named the H2 neurons, can be more noise-tolerant to background noise. Taking advantage of bat's stereotypical echolocation signal and single-cell recording, our present study showed that the minimal threshold increases (12.2 dB) of H2 neurons in the auditory midbrain were comparable to increase in bat's call intensity (14.2 dB) observed in 70 dB SPL white noise condition, indicating that the H2 neurons could work as background noise monitor. The H2 neurons had higher minimal thresholds and sharper frequency tuning, which enabled them to be more tolerant to background noise. Furthermore, the H2 neurons had consistent best amplitude spikes and sharper intensity tuning in background white noise condition than in silence. Taken together, these results suggest that the H2 neurons might account for noise-tolerant perception of behaviorally relevant sounds.
Collapse
|
12
|
Big brown bats (Eptesicus fuscus) successfully navigate through clutter after exposure to intense band-limited sound. Sci Rep 2018; 8:13555. [PMID: 30201987 PMCID: PMC6131230 DOI: 10.1038/s41598-018-31872-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Echolocating big brown bats fly, orient, forage, and roost in cluttered acoustic environments in which aggregate sound pressure levels can be as intense as 100 to 140 dB SPL, levels that would impair auditory perception in other terrestrial mammals. We showed previously that bats exposed to intense wide-band sound (116 dB SPL) can navigate successfully through dense acoustic clutter. Here, we extend these results by quantifying performance of bats navigating through a cluttered scene after exposure to intense band-limited sounds (bandwidths 5-25 kHz, 123 dB SPL). Behavioral performance was not significantly affected by prior sound exposure, with the exception of one bat after exposure to one sound. Even in this outlying case, performance recovered rapidly, by 10 min post-exposure. Temporal patterning of biosonar emissions during successful flights showed that bats maintained their individual strategies for navigating through the cluttered scene before and after exposures. In unsuccessful flights, interpulse intervals were skewed towards shorter values, suggesting a shift in strategy for solving the task rather than a hearing impairment. Results confirm previous findings that big brown bats are not as susceptible to noise-induced perceptual impairments as are other terrestrial mammals exposed to sounds of similar intensity and bandwidth.
Collapse
|