1
|
Guo LX, Zhang C. Development and Validation of a Whole Human Body Finite Element Model with Detailed Lumbar Spine. World Neurosurg 2022; 163:e579-e592. [PMID: 35436583 DOI: 10.1016/j.wneu.2022.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Investigations showed that low back pain of occupational drivers might be closely related to the whole-body vibration. Restricted by ethical concerns, the finite element method had become a viable alternative to invasive human experiments. Many mechanical behaviors of the human spine inside of the human body were unclear; therefore, a human whole-body finite element model might be required to better understand the lumbar behavior under whole-body vibration. METHODS In this study, a human whole-body finite element model with a detailed lumbar spine segment was developed. Several validations were performed to ensure the correctness of this model. RESULTS The results of anthropometry and geometry validation, static validation, and dynamic validation were presented in this study. The validation results showed that the whole human body model was reasonable and valid by comparing with published data. CONCLUSIONS The model developed in this study could reflect the biomechanical response of the human lumbar spine under vibration and could be used in further vibration analysis and offer proposals for protecting human body under whole-body vibration environment.
Collapse
Affiliation(s)
- Li-Xin Guo
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China.
| | - Chi Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| |
Collapse
|
2
|
Grindle D, Pak W, Guleyupoglu B, Koya B, Gayzik FS, Song E, Untaroiu C. A detailed finite element model of a mid-sized male for the investigation of traffic pedestrian accidents. Proc Inst Mech Eng H 2020; 235:300-313. [DOI: 10.1177/0954411920976223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pedestrian is one of the most vulnerable road users and comprises approximately 23% of the road crash-related fatalities in the world. To protect pedestrians during Car-to-Pedestrian Collisions (CPC), subsystem impact tests are used in regulations. These tests provide insight but cannot characterize the complex vehicle-pedestrian interaction. The main purpose of this study was to develop and validate a detailed pedestrian Finite Element (FE) model corresponding to a 50th percentile male to predict CPC induced injuries. The model geometry was reconstructed using a multi-modality protocol from medical images and exterior scan data corresponding to a mid-sized male volunteer. To investigate injury response, this model included internal organs, muscles and vessels. The lower extremity, shoulder and upper body of the model were validated against Post Mortem Human Surrogate (PMHS) test data in valgus bending, and lateral/anterior-lateral blunt impacts, respectively. The whole-body pedestrian model was validated in CPC simulations using a mid-sized sedan and simplified generic vehicles bucks and previously unpublished PMHS coronal knee angle data. In the component validations, the responses of the FE model were mostly within PMHS test corridors and in whole body validations the kinematic and injury responses predicted by the model showed similar trends to PMHS test data. Overall, the detailed model showed higher biofidelity, especially in the upper body regions, compared to a previously reported simplified pedestrian model, which recommends using it in future pedestrian automotive safety research.
Collapse
Affiliation(s)
- Daniel Grindle
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Center for Injury Biomechanics, Blacksburg, VA, USA
| | - Wansoo Pak
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Center for Injury Biomechanics, Blacksburg, VA, USA
| | - Berkan Guleyupoglu
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - F Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Costin Untaroiu
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Center for Injury Biomechanics, Blacksburg, VA, USA
| |
Collapse
|
3
|
Pak W, Meng Y, Schap J, Koya B, Gayzik FS, Untaroiu CD. Development and validation of a finite element model of a small female pedestrian. Comput Methods Biomech Biomed Engin 2020; 23:1336-1346. [DOI: 10.1080/10255842.2020.1801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wansoo Pak
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Yunzhu Meng
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Jeremy Schap
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - F. Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Costin D. Untaroiu
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
4
|
Objective Evaluation of Whole Body Kinematics in a Simulated, Restrained Frontal Impact. Ann Biomed Eng 2018; 47:512-523. [PMID: 30523467 DOI: 10.1007/s10439-018-02180-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
The use of human body models as an additional data point in the evaluation of human-machine interaction requires quantitative validation. In this study a validation of the Global Human Body Models Consortium (GHBMC) average male occupant model (M50-O v. 4.5) in a restrained frontal sled test environment is presented. For vehicle passengers, frontal crash remains the most common mode, and the most common source of fatalities. A total of 55-time history traces of reaction loads and kinematics from the model were evaluated against corresponding PMHS data (n = 5). Further, the model's sensitivity to the belt path was studied by replicating two documented PMHS cases with prominent lateral and medial belt paths respectively. Results were quantitatively evaluated using open source CORA software. A tradeoff was observed; better correlation scores were achieved on gross measures (e.g. reaction loads), whereas better corridor scores were achieved on localized measures (rib deflections), indicating that subject specificity may dominate the comparison at localized anatomical regions. On an overall basis, the CORA scores were 0.68, 0.66 and 0.60 for force, body kinematics and chest wall kinematics. Belt force responses received the highest grouped CORA score of 0.85. Head and sternum kinematics earning a 0.8 and 0.7 score respectively. The model demonstrated high sensitivity to belt path, resulting in a 20-point increase in CORA score when the belt was routed closer to analogous location of data collection. The human model demonstrated overall reasonable biofidelity and sensitivity to countermeasures in frontal crash kinematics.
Collapse
|
5
|
Gayzik FS, Koya B, Davis ML. A preliminary study of human model head and neck response to frontal loading in nontraditional occupant seating configurations. TRAFFIC INJURY PREVENTION 2018; 19:S183-S186. [PMID: 29584505 DOI: 10.1080/15389588.2018.1426915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Computational human body models (HBMs) are nominally omnidirectional surrogates given their structural basis in human anatomy. As a result, such models are well suited for studies related to occupant safety in anticipated highly automated vehicles (HAVs). We utilize a well-validated HBM to study the head and neck kinematics in simulations of nontraditional occupant seating configurations. METHODS The GHBMC M50-O v. 4.4 HBM was gravity settled into a generic seat buck and situated in a seated posture. The model was simulated in angular increments of 15 degrees clockwise from forward facing to rear facing. A pulse of 17.0 kph (NASS median) was used in each to simulate a frontal impact for each of the 13 seating configurations. Belt anchor points were rotated with the seat; the airbag was appropriately powered based on delta-V, and was not used in rear-facing orientations. Neck forces and moments were calculated. RESULTS The 30-degree oblique case was found to result in the maximum neck load and sagittal moment, and thus Neck Injury Criteria (NIJ). Neck loads were minimized in the rear facing condition. The moments and loads, however, were greatest in the lateral seating configuration for these frontal crash simulations. CONCLUSIONS In a recent policy statement on HAVs, the NHTSA indicated that vehicle manufacturers will be expected to provide countermeasures that will fully protect occupants given any planned seating or interior configurations. Furthermore, the agency indicated that virtual tests using human models could be used to demonstrate such efficacy. While the results presented are only appropriate for comparison within this study, they do indicate that human models provide reasonable biomechanical data for nontraditional occupant seating arrangements.
Collapse
Affiliation(s)
- F S Gayzik
- a Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| | - B Koya
- a Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| | - M L Davis
- a Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| |
Collapse
|
6
|
Guleyupoglu B, Koya B, Barnard R, Gayzik FS. Failed rib region prediction in a human body model during crash events with precrash braking. TRAFFIC INJURY PREVENTION 2018; 19:S37-S43. [PMID: 29584477 DOI: 10.1080/15389588.2017.1395873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/19/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. METHODS The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. RESULTS Kinematics between both methods were similar (peak max deviation: ΔXhead = 17 mm; ΔZhead = 4 mm; ΔXthorax = 5 mm; ΔZthorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. CONCLUSIONS Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
Collapse
Affiliation(s)
- B Guleyupoglu
- a Wake Forest University School of Medicine , Winston-Salem , North Carolina
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| | - B Koya
- a Wake Forest University School of Medicine , Winston-Salem , North Carolina
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| | - R Barnard
- a Wake Forest University School of Medicine , Winston-Salem , North Carolina
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| | - F S Gayzik
- a Wake Forest University School of Medicine , Winston-Salem , North Carolina
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston-Salem , North Carolina
| |
Collapse
|
7
|
Untaroiu CD, Pak W, Meng Y, Schap J, Koya B, Gayzik S. A Finite Element Model of a Midsize Male for Simulating Pedestrian Accidents. J Biomech Eng 2017; 140:2653833. [DOI: 10.1115/1.4037854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 11/08/2022]
Abstract
Pedestrians represent one of the most vulnerable road users and comprise nearly 22% the road crash-related fatalities in the world. Therefore, protection of pedestrians in car-to-pedestrian collisions (CPC) has recently generated increased attention with regulations involving three subsystem tests. The development of a finite element (FE) pedestrian model could provide a complementary component that characterizes the whole-body response of vehicle–pedestrian interactions and assesses the pedestrian injuries. The main goal of this study was to develop and to validate a simplified full body FE model corresponding to a 50th male pedestrian in standing posture (M50-PS). The FE model mesh and defined material properties are based on a 50th percentile male occupant model. The lower limb-pelvis and lumbar spine regions of the human model were validated against the postmortem human surrogate (PMHS) test data recorded in four-point lateral knee bending tests, pelvic\abdomen\shoulder\thoracic impact tests, and lumbar spine bending tests. Then, a pedestrian-to-vehicle impact simulation was performed using the whole pedestrian model, and the results were compared to corresponding PMHS tests. Overall, the simulation results showed that lower leg response is mostly within the boundaries of PMHS corridors. In addition, the model shows the capability to predict the most common lower extremity injuries observed in pedestrian accidents. Generally, the validated pedestrian model may be used by safety researchers in the design of front ends of new vehicles in order to increase pedestrian protection.
Collapse
Affiliation(s)
- Costin D. Untaroiu
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060 e-mail:
| | - Wansoo Pak
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060
| | - Yunzhu Meng
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060
| | - Jeremy Schap
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Bharath Koya
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC 27101
| |
Collapse
|
8
|
Guleyupoglu B, Schap J, Kusano KD, Gayzik FS. The effect of precrash velocity reduction on occupant response using a human body finite element model. TRAFFIC INJURY PREVENTION 2017; 18:508-514. [PMID: 28102701 DOI: 10.1080/15389588.2016.1269896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions. METHODS The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.S. New Car Assessment Program (U.S.-NCAP) and 3 extra per model with high-intensity braking. The 4 scenarios were no precollision system (no PCS), forward collision warning (FCW), FCW with prebraking assist (FCW+PBA), and FCW and PBA with autonomous precrash braking (FCW + PBA + PB). The baseline ΔV was 17, 34, and 56.4 kph for median, severe, and U.S.-NCAP scenarios, respectively, and were based on crash reconstructions from NASS/CDS. Pulses were then developed based on the assumed precrash systems equipped. Restraint properties and the generic pulse used were based on literature. RESULTS In median crash severity cases, little to no risk (<10% risk for Abbreviated injury Scale [AIS] 3+) was found for all injury measures for both models. In the severe set of cases, little to no risk for AIS 3+ injury was also found for all injury measures. In NCAP cases, highest risk was typically found with No PCS and lowest with FCW + PBA + PB. In the higher intensity braking cases (1.0-1.4 g), head injury criterion (HIC), brain injury criterion (BrIC), and chest deflection injury measures increased with increased braking intensity. All other measures for these cases tended to decrease. The ATD also predicted and trended similar to the human body models predictions for both the median, severe, and NCAP cases. Forward excursion for both models decreased across median, severe, and NCAP cases and diverged from each other in cases above 1.0 g of braking intensity. CONCLUSIONS The addition of precrash systems simulated through reduced precrash speeds caused reductions in some injury criteria, whereas others (chest deflection, HIC, and BrIC) increased due to a modified occupant position. The human model and ATD models trended similarly in nearly all cases with greater risk indicated in the human model. These results suggest the need for integrated safety systems that have restraints that optimize the occupant's position during precrash braking and prior to impact.
Collapse
Affiliation(s)
- B Guleyupoglu
- a Wake Forest University School of Medicine
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston Salem , North Carolina
| | - J Schap
- a Wake Forest University School of Medicine
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston Salem , North Carolina
| | - K D Kusano
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston Salem , North Carolina
- c Virginia Polytechnic Institute and State University , Blacksburg , Virginia
| | - F S Gayzik
- a Wake Forest University School of Medicine
- b Virginia Tech-Wake Forest University Center for Injury Biomechanics , Winston Salem , North Carolina
| |
Collapse
|
9
|
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts. Ann Biomed Eng 2015; 43:2163-74. [DOI: 10.1007/s10439-015-1286-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/19/2015] [Indexed: 11/26/2022]
|
10
|
Schwartz D, Guleyupoglu B, Koya B, Stitzel JD, Gayzik FS. Development of a computationally efficient full human body finite element model. TRAFFIC INJURY PREVENTION 2015; 16 Suppl 1:S49-S56. [PMID: 26027975 DOI: 10.1080/15389588.2015.1021418] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
INTRODUCTION A simplified and computationally efficient human body finite element model is presented. The model complements the Global Human Body Models Consortium (GHBMC) detailed 50th percentile occupant (M50-O) by providing kinematic and kinetic data with a significantly reduced run time using the same body habitus. METHODS The simplified occupant model (M50-OS) was developed using the same source geometry as the M50-O. Though some meshed components were preserved, the total element count was reduced by remeshing, homogenizing, or in some cases omitting structures that are explicitly contained in the M50-O. Bones are included as rigid bodies, with the exception of the ribs, which are deformable but were remeshed to a coarser element density than the M50-O. Material models for all deformable components were drawn from the biomechanics literature. Kinematic joints were implemented at major articulations (shoulder, elbow, wrist, hip, knee, and ankle) with moment vs. angle relationships from the literature included for the knee and ankle. The brain of the detailed model was inserted within the skull of the simplified model, and kinematics and strain patterns are compared. RESULTS The M50-OS model has 11 contacts and 354,000 elements; in contrast, the M50-O model has 447 contacts and 2.2 million elements. The model can be repositioned without requiring simulation. Thirteen validation and robustness simulations were completed. This included denuded rib compression at 7 discrete sites, 5 rigid body impacts, and one sled simulation. Denuded tests showed a good match to the experimental data of force vs. deflection slopes. The frontal rigid chest impact simulation produced a peak force and deflection within the corridor of 4.63 kN and 31.2%, respectively. Similar results vs. experimental data (peak forces of 5.19 and 8.71 kN) were found for an abdominal bar impact and lateral sled test, respectively. A lateral plate impact at 12 m/s exhibited a peak of roughly 20 kN (due to stiff foam used around the shoulder) but a more biofidelic response immediately afterward, plateauing at 9 kN at 12 ms. Results from a frontal sled simulation showed that reaction forces and kinematic trends matched experimental results well. The robustness test demonstrated that peak femur loads were nearly identical to the M50-O model. Use of the detailed model brain within the simplified model demonstrated a paradigm for using the M50-OS to leverage aspects of the M50-O. Strain patterns for the 2 models showed consistent patterns but greater strains in the detailed model, with deviations thought to be the result of slightly different kinematics between models. The M50-OS with the deformable skull and brain exhibited a run time 4.75 faster than the M50-O on the same hardware. CONCLUSIONS The simplified GHBMC model is intended to complement rather than replace the detailed M50-O model. It exhibited, on average, a 35-fold reduction in run time for a set of rigid impacts. The model can be used in a modular fashion with the M50-O and more broadly can be used as a platform for parametric studies or studies focused on specific body regions.
Collapse
Affiliation(s)
- Doron Schwartz
- a Wake Forest University School of Medicine , Winston-Salem , North Carolina
| | | | | | | | | |
Collapse
|
11
|
Vavalle NA, Schoell SL, Weaver AA, Stitzel JD, Gayzik FS. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model. STAPP CAR CRASH JOURNAL 2014; 58:361-384. [PMID: 26192960 DOI: 10.4271/2014-22-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human body finite element models (FEMs) are a valuable tool in the study of injury biomechanics. However, the traditional model development process can be time-consuming. Scaling and morphing an existing FEM is an attractive alternative for generating morphologically distinct models for further study. The objective of this work is to use a radial basis function to morph the Global Human Body Models Consortium (GHBMC) average male model (M50) to the body habitus of a 95th percentile male (M95) and to perform validation tests on the resulting model. The GHBMC M50 model (v. 4.3) was created using anthropometric and imaging data from a living subject representing a 50th percentile male. A similar dataset was collected from a 95th percentile male (22,067 total images) and was used in the morphing process. Homologous landmarks on the reference (M50) and target (M95) geometries, with the existing FE node locations (M50 model), were inputs to the morphing algorithm. The radial basis function was applied to morph the FE model. The model represented a mass of 103.3 kg and contained 2.2 million elements with 1.3 million nodes. Simulations of the M95 in seven loading scenarios were presented ranging from a chest pendulum impact to a lateral sled test. The morphed model matched anthropometric data to within a rootmean square difference of 4.4% while maintaining element quality commensurate to the M50 model and matching other anatomical ranges and targets. The simulation validation data matched experimental data well in most cases.
Collapse
Affiliation(s)
- Nicholas A Vavalle
- Wake Forest School of Medicine, Virginia Tech - Wake Forest University Center for Injury Biomechanics
| | - Samantha L Schoell
- Wake Forest School of Medicine, Virginia Tech - Wake Forest University Center for Injury Biomechanics
| | - Ashley A Weaver
- Wake Forest School of Medicine, Virginia Tech - Wake Forest University Center for Injury Biomechanics
| | - Joel D Stitzel
- Wake Forest School of Medicine, Virginia Tech - Wake Forest University Center for Injury Biomechanics
| | - F Scott Gayzik
- Wake Forest School of Medicine, Virginia Tech - Wake Forest University Center for Injury Biomechanics
| |
Collapse
|