1
|
Case Study 3: Criticality of High-Quality Curve Fitting-"Getting a K m,app" Isn't as Simple as It May Seem. Methods Mol Biol 2021. [PMID: 34272710 DOI: 10.1007/978-1-0716-1554-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we illustrate the criticality of proper fitting of enzyme kinetic data. Simple techniques are provided to arrive at meaningful kinetic parameters, illustrated using an example, nonmonotonic data set. In the initial analysis of this data set, derived Km and Vmax parameters incorporated into PBPK models resulted in outcomes that did not adequately describe clinical data. This prompted a re-review of the in vitro data set and curve-fitting procedures. During this review, it was found that the 3-parameter model was fitted on data that was improperly unweighted. Reanalysis of the data using a weighted model returned a better fit and resulted in kinetic parameters better aligning with clinical data. Tools and techniques used to identify and compare kinetic models of this data set are provided, including various replots, visual inspection, examination of residuals, and the Akaike information criterion.
Collapse
|
2
|
Kumar S, Sinha N, Gerth KA, Rahman MA, Yallapu MM, Midde NM. Specific packaging and circulation of cytochromes P450, especially 2E1 isozyme, in human plasma exosomes and their implications in cellular communications. Biochem Biophys Res Commun 2017; 491:675-680. [PMID: 28756226 PMCID: PMC5901973 DOI: 10.1016/j.bbrc.2017.07.145] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 11/15/2022]
Abstract
Cytochrome P450 (CYP) enzymes metabolize the majority of xenobiotics and are mainly found in hepatic and some extra-hepatic cells. However, their presence and functional role in exosomes, small extracellular vesicles that are secreted from various cells into extracellular fluids including plasma, is unknown. In this study, we analyzed the expression and biological activity of CYP enzymes in human plasma exosomes. First, we optimized isolation of plasma exosomes and characterized them for their physical properties and quality. The results showed that the purity of exosomes (<200 nm) improved upon prior filtration of plasma using a 0.22 micron filter. We then analyzed the relative level of exosomal CYP mRNAs, proteins, and enzyme activity. The results showed that the relative level of CYP enzymes in exosomes is higher than in plasma, suggesting their specific packaging in exosomes. Of the seven CYP enzymes tested, the mRNA of CYP1B1, CYP2A6, CYP2E1, and CYP3A4 were detectable in exosomes. Interestingly, the relative level of CYP2E1 mRNA was >500-fold higher than the other CYPs. The results from the Western blot showed detectable levels of CYP1A1, CYP1B1, CYP2A6, CYP2E1, and CYP3A4. Our results also demonstrated that exosomal CYP2E1 and CYP3A4 show appreciable activity relative to their respective positive controls (CYP-induced baculosomes). Our results also showed that CYP2E1 is expressed relatively higher in plasma exosomes than hepatic and monocytic cells and exosomes derived from these cells. In conclusion, this is the first evidence of the specific packaging and circulation of CYP enzymes, especially CYP2E1, in human plasma exosomes. The findings have biological and clinical significance in terms of their implications in cellular communications and potential use of plasma exosomal CYPs as biomarkers.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Namita Sinha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kelli A Gerth
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad A Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Narasimha M Midde
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
4
|
Kumar S. Identification of a Novel Laser Dye Substrate of Mammalian Cytochromes P450: Application in Rapid Kinetic Analysis, Inhibitor Screening, and Directed Evolution. ACTA ACUST UNITED AC 2016; 12:677-82. [PMID: 17478480 DOI: 10.1177/1087057107301496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The author sought to develop a high-throughput activity screening assay to carry out rapid kinetic analysis, inhibitor screening, and directed evolution of cytochrome P450 2C enzymes. Initially, of the 9 fluorescent substrates and 10 P450 2C enzymes tested, several P450 2C enzymes showed > 1 nmol/min/nmol P450 activity in cumene hydroperoxide (CuOOH)—supported reaction with a laser dye, 7-dimethylamino-4-trifluoromethylcoumarin (C152). A high-throughput steady-state kinetic analysis of the human P450 2C8, 2C9, and 2C19 showed 1) kcat = 3 to 6 min—1, 2) Km, CuOOH = 100 to 200 µM, and 3) S50, C152 = 10 to 20 µM in the CuOOH system. In addition, P450 2C9 and 2C19 showed a very high kcat (27 and 38 min—1, respectively) in the nicotinamide adenine dinucleotide phosphate (NADPH)—supported reaction. Subsequently, when mammalian P450s from the other subfamilies were tested, P450 2B1dH, 2B4dH, 2B5dH, 3A4, and 3A5 exhibited a significant activity in both CuOOH and NADPH systems. Furthermore, a high-throughput activity screening assay using whole-cell suspensions of the human P450 2C8, 2C9, and 2C19 was optimized. Overall, the data suggested that C152 can be used as a model substrate for mammalian P450s in CuOOH-supported reaction to perform rapid kinetic analysis, inhibitor screening, and directed evolution. ( Journal of Biomolecular Screening 2007:677-682)
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| |
Collapse
|
5
|
Manoj KM, Parashar A, Gade SK, Venkatachalam A. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes. Front Pharmacol 2016; 7:161. [PMID: 27445805 PMCID: PMC4918403 DOI: 10.3389/fphar.2016.00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
Using oxygen and NADPH, the redox enzymes cytochrome P450 (CYP) and its reductase (CPR) work in tandem to carry out the phase I metabolism of a vast majority of drugs and xenobiotics. As per the erstwhile understanding of the catalytic cycle, binding of the substrate to CYP's heme distal pocket allows CPR to pump electrons through a CPR-CYP complex. In turn, this trigger (a thermodynamic push of electrons) leads to the activation of oxygen at CYP's heme-center, to give Compound I, a two-electron deficient enzyme reactive intermediate. The formation of diffusible radicals and reactive oxygen species (DROS, hitherto considered an undesired facet of the system) was attributed to the heme-center. Recently, we had challenged these perceptions and proposed the murburn ("mured burning" or "mild unrestricted burning") concept to explain heme enzymes' catalytic mechanism, electron-transfer phenomena and the regulation of redox equivalents' consumption. Murburn concept incorporates a one-electron paradigm, advocating obligatory roles for DROS. The new understanding does not call for high-affinity substrate-binding at the heme distal pocket of the CYP (the first and the most crucial step of the erstwhile paradigm) or CYP-CPR protein-protein complexations (the operational backbone of the erstwhile cycle). Herein, the dynamics of reduced nicotinamide nucleotides' consumption, peroxide formation and depletion, product(s) formation, etc. was investigated with various controls, by altering reaction variables, environments and through the incorporation of diverse molecular probes. In several CYP systems, control reactions lacking the specific substrate showed comparable or higher peroxide in milieu, thereby discrediting the foundations of the erstwhile hypothesis. The profiles obtained by altering CYP:CPR ratios and the profound inhibitions observed upon the incorporation of catalytic amounts of horseradish peroxidase confirm the obligatory roles of DROS in milieu, ratifying murburn as the operative concept. The mechanism of uncoupling (peroxide/water formation) was found to be dependent on multiple one and two electron equilibriums amongst the reaction components. The investigation explains the evolutionary implications of xenobiotic metabolism, confirms the obligatory role of diffusible reactive species in routine redox metabolism within liver microsomes and establishes that a redox enzyme like CYP enhances reaction rates (achieves catalysis) via a novel (hitherto unknown) modality.
Collapse
Affiliation(s)
| | - Abhinav Parashar
- Hemoproteins Lab, School of Bio Sciences and Technology, VIT University Vellore, India
| | - Sudeep K Gade
- Hemoproteins Lab, School of Bio Sciences and Technology, VIT University Vellore, India
| | | |
Collapse
|
6
|
Manoj KM, Gade SK, Venkatachalam A, Gideon DA. Electron transfer amongst flavo- and hemo-proteins: diffusible species effect the relay processes, not protein–protein binding. RSC Adv 2016. [DOI: 10.1039/c5ra26122h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reductase reduces cytochrome cviarelays of highly mobile diffusible agents; not by direct binding and inter-protein long-distance electron tunnelling.
Collapse
Affiliation(s)
| | - Sudeep K. Gade
- Hemoproteins Lab
- School of Biosciences and Technology
- VIT University
- Vellore
- India-632014
| | | | | |
Collapse
|
7
|
Estrada DF, Laurence JS, Scott EE. Cytochrome P450 17A1 Interactions with the FMN Domain of Its Reductase as Characterized by NMR. J Biol Chem 2015; 291:3990-4003. [PMID: 26719338 DOI: 10.1074/jbc.m115.677294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 11/06/2022] Open
Abstract
To accomplish key physiological processes ranging from drug metabolism to steroidogenesis, human microsomal cytochrome P450 enzymes require the sequential input of two electrons delivered by the FMN domain of NADPH-cytochrome P450 reductase. Although some human microsomal P450 enzymes can instead accept the second electron from cytochrome b5, for human steroidogenic CYP17A1, the cytochrome P450 reductase FMN domain delivers both electrons, and b5 is an allosteric modulator. The structural basis of these key but poorly understood protein interactions was probed by solution NMR using the catalytically competent soluble domains of each protein. Formation of the CYP17A1·FMN domain complex induced differential line broadening of the NMR signal for each protein. Alterations in the exchange dynamics generally occurred for residues near the surface of the flavin mononucleotide, including 87-90 (loop 1), and for key CYP17A1 active site residues. These interactions were modulated by the identity of the substrate in the buried CYP17A1 active site and by b5. The FMN domain outcompetes b5 for binding to CYP17A1 in the three-component system. These results and comparison with previous NMR studies of the CYP17A1·b5 complex suggest a model of CYP17A1 enzyme regulation.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| | - Jennifer S Laurence
- the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Emily E Scott
- From the Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 and
| |
Collapse
|
8
|
Storbeck KH, Swart AC, Fox CL, Swart P. Cytochrome b5 modulates multiple reactions in steroidogenesis by diverse mechanisms. J Steroid Biochem Mol Biol 2015; 151:66-73. [PMID: 25446886 DOI: 10.1016/j.jsbmb.2014.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/02/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022]
Abstract
Cytochrome b5 (cyt-b5) is a relatively small haemoprotein which plays an important role in the regulation of mammalian steroidogenesis. This unique protein has the ability to modulate the activity of key steroidogenic enzymes via a number of diverse reaction mechanisms. Cyt-b5 can augment the 17,20-lyase activity of CYP17A1 by promoting the interaction of CYP17A1 and POR; enhance the 16-ene-synthase activity of CYP17A1 by acting as an electron donor; and enhance the activity of 3βHSD by increasing the affinity of 3βHSD for its cofactor NAD(+). We review the modulation of CYP17A1 and 3βHSD activity by cyt-b5 and discuss the reaction mechanisms associated with each activity. The physiological importance of cyt-b5 in regulating mammalian steroidogenesis is presented and the impact of inactivating cyt-b5 mutations are reviewed. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Cheryl L Fox
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa.
| |
Collapse
|
9
|
Henderson CJ, McLaughlin LA, Scheer N, Stanley LA, Wolf CR. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo. Mol Pharmacol 2015; 87:733-9. [PMID: 25657337 DOI: 10.1124/mol.114.097394] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.
Collapse
Affiliation(s)
- Colin J Henderson
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - Lesley A McLaughlin
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - Nico Scheer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - Lesley A Stanley
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (C.J.H., L.A.M., C.R.W.), TaconicArtemis, Cologne, Germany (N.S.); and Consultant in Investigative Toxicology, Linlithgow, United Kingdom (L.A.S.)
| |
Collapse
|
10
|
Müller CS, Knehans T, Davydov DR, Bounds PL, von Mandach U, Halpert JR, Caflisch A, Koppenol WH. Concurrent cooperativity and substrate inhibition in the epoxidation of carbamazepine by cytochrome P450 3A4 active site mutants inspired by molecular dynamics simulations. Biochemistry 2015; 54:711-21. [PMID: 25545162 PMCID: PMC4310618 DOI: 10.1021/bi5011656] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Cytochrome P450 3A4 (CYP3A4) is the
major human P450 responsible
for the metabolism of carbamazepine (CBZ). To explore the mechanisms
of interactions of CYP3A4 with this anticonvulsive drug, we carried
out multiple molecular dynamics (MD) simulations, starting with the
complex of CYP3A4 manually docked with CBZ. On the basis of these
simulations, we engineered CYP3A4 mutants I369F, I369L, A370V, and
A370L, in which the productive binding orientation was expected to
be stabilized, thus leading to increased turnover of CBZ to the 10,11-epoxide
product. In addition, we generated CYP3A4 mutant S119A as a control
construct with putative destabilization of the productive binding
pose. Evaluation of the kinetics profiles of CBZ epoxidation demonstrate
that CYP3A4-containing bacterial membranes (bactosomes) as well as
purified CYP3A4 (wild-type and mutants I369L/F) exhibit substrate
inhibition in reconstituted systems. In contrast, mutants S119A and
A370V/L exhibit S-shaped profiles that are indicative of homotropic
cooperativity. MD simulations with two to four CBZ molecules provide
evidence that the substrate-binding pocket of CYP3A4 can accommodate
more than one molecule of CBZ. Analysis of the kinetics profiles of
CBZ metabolism with a model that combines the formalism of the Hill
equation with an allowance for substrate inhibition demonstrates that
the mechanism of interactions of CBZ with CYP3A4 involves multiple
substrate-binding events (most likely three). Despite the retention
of the multisite binding mechanism in the mutants, functional manifestations
reveal an exquisite sensitivity to even minor structural changes in
the binding pocket that are introduced by conservative substitutions
such as I369F, I369L, and A370V.
Collapse
Affiliation(s)
- Christian S Müller
- Department of Obstetrics, University Hospital Zurich , Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kandel SE, Lampe JN. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity. Chem Res Toxicol 2014; 27:1474-86. [PMID: 25133307 PMCID: PMC4164225 DOI: 10.1021/tx500203s] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Through their unique oxidative chemistry,
cytochrome P450 monooxygenases
(CYPs) catalyze the elimination of most drugs and toxins from the
human body. Protein–protein interactions play a critical role
in this process. Historically, the study of CYP–protein interactions
has focused on their electron transfer partners and allosteric mediators,
cytochrome P450 reductase and cytochrome b5. However, CYPs can bind
other proteins that also affect CYP function. Some examples include
the progesterone receptor membrane component 1, damage resistance
protein 1, human and bovine serum albumin, and intestinal fatty acid
binding protein, in addition to other CYP isoforms. Furthermore, disruption
of these interactions can lead to altered paths of metabolism and
the production of toxic metabolites. In this review, we summarize
the available evidence for CYP protein–protein interactions
from the literature and offer a discussion of the potential impact
of future studies aimed at characterizing noncanonical protein–protein
interactions with CYP enzymes.
Collapse
Affiliation(s)
- Sylvie E Kandel
- XenoTech, LLC , 16825 West 116th Street, Lenexa, Kansas 66219, United States
| | | |
Collapse
|
12
|
Peng HM, Auchus RJ. Two surfaces of cytochrome b5 with major and minor contributions to CYP3A4-catalyzed steroid and nifedipine oxygenation chemistries. Arch Biochem Biophys 2013; 541:53-60. [PMID: 24256945 DOI: 10.1016/j.abb.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Conserved human cytochrome b5 (b5) residues D58 and D65 are critical for interactions with CYP2E1 and CYP2C19, whereas E48 and E49 are essential for stimulating the 17,20-lyase activity of CYP17A1. Here, we show that b5 mutations E48G, E49G, D58G, and D65G have reduced capacity to stimulate CYP3A4-catalyzed progesterone and testosterone 6β-hydroxylation or nifedipine oxidation. The b5 double mutation D58G/D65G fails to stimulate these reactions, similar to CYP2E1 and CYP2C19, whereas mutation E48G/E49G retains 23-42% of wild-type stimulation. Neither mutation impairs the activity stimulation of wild-type b5, nor does mutation D58G/D65G impair the partial stimulation of mutations E48G or E48G/E49G. For assays reconstituted with a single phospholipid, phosphatidyl serine afforded the highest testosterone 6β-hydroxylase activity with wild-type b5 but the poorest activity with b5 mutation E48G/E49G, and the activity stimulation of mutation E48G/E49G was lost at [NaCl]>50mM. Cross-linking of CYP3A4 and b5 decreased in the order wild-type>E48G/E49G>D58G/D65G and varied with phospholipid. We conclude that two b5 acidic surfaces, primarily the domain including residues D58-D65, participate in the stimulation of CYP3A4 activities. Our data suggest that a minor population of CYP3A4 molecules remains sensitive to b5 mutation E48G/E49G, consistent with phospholipid-dependent conformational heterogeneity of CYP3A4.
Collapse
Affiliation(s)
- Hwei-Ming Peng
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
13
|
Anisimova SI, Donchenko HV, Parkhomenko IM, Kovalenko VM. [Mechanism of hepatoprotective action of methionine and composition "Metovitan" against a background of antituberculosis drug administration to rats]. UKRAINIAN BIOCHEMICAL JOURNAL 2013; 85:59-67. [PMID: 23808311 DOI: 10.15407/ubj85.02.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Oral administration of antituberculosis drugs to rats for 60 days in doses that are equivalent to clinical ones, causes changes in mRNA levels expression of liver cytochrome P-450 isoforms CYP3A2, CYP2C23, CYP2E1 and pro- and antioxidant state. Experimental composition "Metovitan" given with anti-TB drugs provided a correction of these abnormalities, that is evidenced by modulation of the level of CYP3A2, CYP2C23, CYP2E1 gene expression and antioxidant activity, inhibition of lipid peroxidation. "Metovitan" normalizes the enzymatic activity and content of total billirubin in the blood serum, shows high hepatoprotective properties, exceeding the efficiency of methionine.
Collapse
|
14
|
Storbeck KH, Swart AC, Goosen P, Swart P. Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 2013; 371:87-99. [PMID: 23228600 DOI: 10.1016/j.mce.2012.11.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
Cytochrome b(5) (cyt-b(5)) is essential for the regulation of steroidogenesis and as such has been implicated in a number of clinical conditions. It is well documented that this small hemoprotein augments the 17,20-lyase activity of cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1). Studies have revealed that this augmentation is accomplished by cyt-b(5) enhancing the interaction between cytochrome P450 reductase (POR) and CYP17A1. In this paper we present evidence that cyt-b(5) induces a conformational change in CYP17A1, in addition to facilitating the interaction between CYP17A1 and POR. We also review the recently published finding that cyt-b(5) allosterically augments the activity of 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD), a non cytochrome P450 enzyme, by increasing the enzymes affinity for its cofactor, NAD(+). The physiological importance of this finding, in terms of understanding adrenal androstenedione production, is examined. Finally, evidence that cyt-b(5) is able to form homomeric complexes in living cells is presented and discussed.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa
| | | | | | | |
Collapse
|
15
|
Zhao C, Gao Q, Roberts AG, Shaffer SA, Doneanu CE, Xue S, Goodlett DR, Nelson SD, Atkins WM. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5). Biochemistry 2012; 51:9488-500. [PMID: 23150942 DOI: 10.1021/bi301069r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.
Collapse
Affiliation(s)
- Chunsheng Zhao
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee SJ, Goldstein JA. Comparison of CYP3A4 and CYP3A5: The Effects of Cytochrome b5 and NADPH-cytochrome P450 Reductase on Testosterone Hydroxylation Activities. Drug Metab Pharmacokinet 2012; 27:663-7. [DOI: 10.2133/dmpk.dmpk-12-sh-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Parashar A, Manoj KM. Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochem Biophys Res Commun 2012; 417:1041-5. [DOI: 10.1016/j.bbrc.2011.12.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
|
18
|
Experimental approaches to evaluate activities of cytochromes P450 3A. Interdiscip Toxicol 2011; 1:155-9. [PMID: 21218106 PMCID: PMC2993482 DOI: 10.2478/v10102-010-0032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/08/2008] [Accepted: 08/18/2008] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP) is a heme protein oxidizing various xenobiotics, as well as endogenous substrates. Understanding which CYP enzymes are involved in metabolic activation and/or detoxication of different compounds is important in the assessment of an individual's susceptibility to the toxic action of these substances. Therefore, investigation which of several in vitro experimental models are appropriate to mimic metabolism of xenobiotics in organisms is the major challenge for research of many laboratories. The aim of this study was to evaluate the efficiency of different in vitro systems containing individual enzymes of the mixed-function monooxygenase system to oxidize two model substrates of CYP3A enzymes, exogenous and endogenous compounds, α-naphtoflavone (α-NF) and testosterone, respectively. Several different enzymatic systems containing CYP3A enzymes were utilized in the study: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b(5) (Supersomes™), (iv) membranes isolated from of Escherichia coli, containing recombinant human CYP3A4 and cytochrome b(5), and (v) purified human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b(5) in liposomes. The most efficient systems oxidizing both compounds were Supersomes™ containing human CYP3A4 and cytochrome b(5). The results presented in this study demonstrate the suitability of the supersomal CYP3A4 systems for studies investigating oxidation of testosterone and α-NF in vitro.
Collapse
|
19
|
Kumar S, Kumar A. Differential effects of ethanol on spectral binding and inhibition of cytochrome P450 3A4 with eight protease inhibitors antiretroviral drugs. Alcohol Clin Exp Res 2011; 35:2121-7. [PMID: 21682753 DOI: 10.1111/j.1530-0277.2011.01575.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cytochrome P450 3A4 (CYP3A4) is the most abundant CYP enzyme in the liver, which metabolizes approximately 50% of the marketed drugs including antiretroviral agents. CYP3A4 induction by ethanol and its impact on drug metabolism and toxicity is known. However, CYP3A4-ethanol physical interaction and its impact on drug binding, inhibition, or metabolism is not known, except that we have recently shown that ethanol facilitates the binding of a protease inhibitor (PI), nelfinavir, with CYP3A4. The current study was designed to examine the effect of ethanol on spectral binding and inhibition of CYP3A4 with all currently used PIs that differ in physicochemical properties. METHODS We performed type I and type II spectral binding with CYP3A4 at 0 and 20 mM ethanol and varying PIs' concentrations. We also performed CYP3A4 inhibition using 7-benzyloxy-4-trifluoromethylcoumarin substrate and NADPH at varying concentrations of PIs and ethanol. RESULTS Atazanavir, lopinavir, saquinavir, and tipranavir showed type I spectral binding, whereas indinavir and ritonavir showed type II. However, amprenavir and darunavir did not show spectral binding with CYP3A4. Ethanol at 20 mM decreased the maximum spectral change (δA(max)) with type I lopinavir and saquinavir, but it did not alter δA(max) with other PIs. Ethanol did not alter spectral binding affinity (K(D)) and inhibition constant (IC(50)) of type I PIs. However, ethanol significantly decreased the IC(50) of type II PIs, indinavir and ritonavir, and markedly increased the IC(50) of amprenavir and darunavir. CONCLUSIONS Overall, our results suggest that ethanol differentially alters the binding and inhibition of CYP3A4 with the PIs that have different physicochemical properties. This study has clinical relevance because alcohol has been shown to alter the response to antiretroviral drugs, including PIs, in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 64108, USA.
| | | |
Collapse
|
20
|
Manoj KM, Baburaj A, Ephraim B, Pappachan F, Maviliparambathu PP, Vijayan UK, Narayanan SV, Periasamy K, George EA, Mathew LT. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PLoS One 2010; 5:e10601. [PMID: 20498847 PMCID: PMC2871781 DOI: 10.1371/journal.pone.0010601] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022] Open
Abstract
Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO) characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP), uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation) of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model) was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the “steady state kinetics” of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates) is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s) affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of “the product of interest” in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of “substrate concentration at maximum observed rate”. The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Center for BioMedical Research, Vellore Institute of Technology University, Vellore, Tamilnadu, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
22
|
Bořek-Dohalská L, Stiborová M. Cytochrome P450 3A activities and their modulation by α-naphthoflavone in vitro are dictated by the efficiencies of model experimental systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1135/cccc2009525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The knowledge on efficiencies of different in vitro systems containing cytochromes P450 (CYP) of a 3A subfamily is crucial to screen potential substrates of these CYPs. We evaluated and compared efficiencies of several in vitro CYP3A enzymatic systems to oxidize the model substrates, α-NF and testosterone, under the standardized experimental conditions. Five CYP3A systems were tested: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (SupersomesTM), (iv) membranes isolated from Escherichia coli, containing recombinant human CYP3A4, NADPH:CYP reductase and cytochrome b5, and (v) human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. All systems oxidize testosterone to its 6β-hydroxylated metabolite and α-NF to trans-7,8-dihydrodiol and 5,6-epoxide. The most efficient systems oxidizing both compounds were CYP3A4-SupersomesTM containing cytochrome b5, followed by human hepatic microsomes. This finding suggests these systems to be suitable for general evaluating a variety of compounds as potential substrates of CYP3A4. The lowest efficiencies to oxidize α-NF and testosterone were found for CYP3A4 expressed in membranes of E. coli, and for reconstituted CYP3A4 or CYP3A6. Utilizing the tested enzymatic systems, we also explain here the discrepancies, which showed previously the controversial effects of α-NF on CYP3A-mediated reactions. We demonstrate that inhibition or stimulation of the CYP3A-mediated testosterone hydroxylation by α-NF is dictated by efficiencies of individual enzymatic systems to oxidize the CYP3A substrates.
Collapse
|
23
|
Davydov DR, Halpert JR. Allosteric P450 mechanisms: multiple binding sites, multiple conformers or both? Expert Opin Drug Metab Toxicol 2008; 4:1523-35. [PMID: 19040328 PMCID: PMC2651226 DOI: 10.1517/17425250802500028] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to the initial hypothesis on the mechanisms of cooperativity in drug-metabolizing cytochromes P450, a loose fit of a single substrate molecule in the P450 active site results in a requirement for the binding of multiple ligand molecules for efficient catalysis. Although simultaneous occupancy of the active site by multiple ligands is now well established, there is increasing evidence that the mechanistic basis of cooperativity also involves an important ligand-induced conformational transition. Moreover, recent studies demonstrate that the conformational heterogeneity of the enzyme is stabilized by ligand-dependent interactions of several P450 molecules. Application of the concept of an oligomeric allosteric enzyme to microsomal cytochromes P450 in combination with a general paradigm of multiple ligand occupancy of the active site provides an excellent explanation for complex manifestations of the atypical kinetic behavior of the enzyme.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, 9500 Gilman Drive, La Jolla, CA 9209, USA.
| | | |
Collapse
|
24
|
Ma B, Polsky-Fisher SL, Vickers S, Cui D, Rodrigues AD. Cytochrome P450 3A-dependent metabolism of a potent and selective gamma-aminobutyric acid Aalpha2/3 receptor agonist in vitro: involvement of cytochrome P450 3A5 displaying biphasic kinetics. Drug Metab Dispos 2007; 35:1301-7. [PMID: 17460031 DOI: 10.1124/dmd.107.014753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro metabolism studies were conducted to determine the human cytochrome P450 enzyme(s) involved in the biotransformation of 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3b]pyridazine (TPA023), a selective agonist of human gamma-aminobutyric acid(A) receptor alpha2 and alpha3 subunits. Incubation of TPA023 with NADPH-fortified human liver microsomes resulted in the formation of t-butyl hydroxy TPA023, N-desethyl TPA023, and three minor metabolites. Both t-butyl hydroxylation and N-deethylation reactions were greatly inhibited (>85%) in the presence of CYP3A-selective inhibitory antibodies and chemical inhibitors, indicating that members of the CYP3A subfamily play an important role in TPA023 metabolism. Eadie-Hofstee plots of t-butyl hydroxylation and N-deethylation in pooled CYP3A5-rich human liver microsomes revealed a low K(m) (3.4 and 4.5 microM, respectively) and a high K(m) (12.7 and 40.0 microM, respectively) component. For both metabolites, the high K(m) component was not observed with a pool of microsomal preparations containing minimal levels of CYP3A5. Preincubation of liver microsomes with mifepristone (selectivity for CYP3A4 > CYP3A5) greatly inhibited both t-butyl hydroxylation and N-deethylation (>75%); however, the residual activities were significantly higher in the pooled CYP3A5-rich liver microsomes (p < 0.0005). In addition, elevated levels of residual t-butyl hydroxylase and N-deethylase activities were observed in the presence of both CYP3A5-rich and CYP3A5-deficient preparations when the substrate concentration increased from 4 to 40 microM. In agreement, metabolite formation catalyzed by recombinant CYP3A5 was described by a biphasic model. It is concluded that CYP3A4 plays a major role in TPA023 metabolism, and CYP3A5 may also contribute at higher concentrations of the compound.
Collapse
Affiliation(s)
- Bennett Ma
- Department of Drug Metabolism, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | |
Collapse
|
25
|
Locuson CW, Wienkers LC, Jones JP, Tracy TS. CYP2C9 protein interactions with cytochrome b(5): effects on the coupling of catalysis. Drug Metab Dispos 2007; 35:1174-81. [PMID: 17446262 PMCID: PMC2386961 DOI: 10.1124/dmd.107.014910] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hemoprotein cytochrome b(5) (cyt b5) has been demonstrated to affect the kinetics of drug oxidation by the microsomal cytochromes P450 (P450s). However, the mechanisms through which cyt b5 exerts these effects are variable and P450 isoform-dependent. Whereas the effects of cyt b5 on the major drug-metabolizing enzymes CYP2D6, CYP2E1, and CYP3A4 are well studied, fewer studies conducted over limited ranges of cyt b5 concentrations have been performed on CYP2C9. In the present study with CYP2C9, cyt b5 exerted complex actions upon P450 oxidative reactions by affecting the rate of metabolite formation, the consumption of NADPH by cytochrome P450 reductase, and uncoupling of the reaction cycle to hydrogen peroxide and water. Cytochrome b(5) devoid of the heme moiety (apo-b5) exhibited effects similar to those of native cyt b5. All rates were highly dependent on the cyt b5 to CYP2C9 enzyme ratio, suggesting that the amount of cyt b5 present in an in vitro incubation is an important factor that can have an impact on the reliability of extrapolating in vitro generated data to predict the in vivo condition. The major effects of cyt b5 are hypothesized to result from a cyt b5-induced conformational change in CYP2C9 that results in an increased collision frequency between the iron-oxygen species (Cpd I) and the substrate, and a decrease in the oxidase activity. Together, these findings suggest that cyt b5 can alter multiple steps in the P450 catalytic cycle via complex interactions with P450 and P450 reductase.
Collapse
Affiliation(s)
- Charles W Locuson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
26
|
Nath A, Grinkova YV, Sligar SG, Atkins WM. Ligand binding to cytochrome P450 3A4 in phospholipid bilayer nanodiscs: the effect of model membranes. J Biol Chem 2007; 282:28309-28320. [PMID: 17573349 DOI: 10.1074/jbc.m703568200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound protein cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme. Most studies of ligand binding by CYP3A4 are currently carried out in solution, in the absence of a model membrane. Therefore, there is little information concerning the membrane effects on CYP3A4 ligand binding behavior. Phospholipid bilayer Nanodiscs are a novel model membrane system derived from high density lipoprotein particles, whose stability, monodispersity, and consistency are ensured by their self-assembly. We explore the energetics of four ligands (6-(p-toluidino)-2-naphthalenesulfonic acid (TNS), alpha-naphthoflavone (ANF), miconazole, and bromocriptine) binding to CYP3A4 incorporated into Nanodiscs. Ligand binding to Nanodiscs was monitored by a combination of environment-sensitive ligand fluorescence and ligand-induced shifts in the fluorescence of tryptophan residues present in the scaffold proteins of Nanodiscs; binding to the CYP3A4 active site was monitored by ligand-induced shifts in the heme Soret band absorbance. The dissociation constants for binding to the active site in CYP3A4-Nanodiscs were 4.0 microm for TNS, 5.8 microm for ANF, 0.45 microm for miconazole, and 0.45 microm for bromocriptine. These values are for CYP3A4 incorporated into a lipid bilayer and are therefore presumably more biologically relevant that those measured using CYP3A4 in solution. In some cases, affinity measurements using CYP3A4 in Nanodiscs differ significantly from solution values. We also studied the equilibrium between ligand binding to CYP3A4 and to the membrane. TNS showed no marked preference for either environment; ANF preferentially bound to the membrane, and miconazole and bromocriptine preferentially bound to the CYP3A4 active site.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| |
Collapse
|
27
|
Fernando H, Davydov DR, Chin CC, Halpert JR. Role of subunit interactions in P450 oligomers in the loss of homotropic cooperativity in the cytochrome P450 3A4 mutant L211F/D214E/F304W. Arch Biochem Biophys 2007; 460:129-40. [PMID: 17274942 PMCID: PMC2040109 DOI: 10.1016/j.abb.2006.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/19/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
The contribution of conformational heterogeneity to cooperativity in cytochrome P450 3A4 was investigated using the mutant L211F/D214E/F304W. Initial spectral studies revealed a loss of cooperativity of the 1-pyrenebutanol (1-PB) induced spin shift (S(50)=5.4 microM, n=1.0) but retained cooperativity of alpha-naphthoflavone binding. Continuous variation (Job's titration) experiments showed the existence of two pools of enzyme with different 1-PB binding characteristics. Monitoring of 1-PB binding by fluorescence resonance energy transfer from the substrate to the heme confirmed that the high-affinity site (K(D)=0.3 microM) is retained in at least some fraction of the enzyme, although cooperativity is masked. Removal of apoprotein on a second column increased the high-spin content and restored cooperativity of 1-PB binding and of progesterone and testosterone 6beta-hydroxylation. The loss of cooperativity in the mutant is, therefore, mediated by the interaction of holo- and apo-P450 in mixed oligomers.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - Dmitri R. Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - Christopher C. Chin
- Sealy Center for Structural Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| | - James R. Halpert
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 775551031
| |
Collapse
|
28
|
Tsalkova TN, Davydova NY, Halpert JR, Davydov DR. Mechanism of interactions of alpha-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe. Biochemistry 2007; 46:106-19. [PMID: 17198380 PMCID: PMC2574515 DOI: 10.1021/bi061944p] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into alpha-helix A. The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-(bromoacetyl)-2-(dimethylamino)naphthalene (BADAN), 7-(diethylamino)-3-(4'-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and alpha-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of the BADAN-modified enzyme is characterized by an S50 of 18.2 +/- 0.7, compared with the value of 2.2 +/- 0.3 for the ANF-induced spin transition, thus revealing an additional low-affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer.
Collapse
Affiliation(s)
- Tamara N. Tsalkova
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - Nadezhda Y. Davydova
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - James R. Halpert
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| | - Dmitri R. Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1031
| |
Collapse
|
29
|
Sun L, Chen CS, Waxman DJ, Liu H, Halpert JR, Kumar S. Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide. Arch Biochem Biophys 2007; 458:167-74. [PMID: 17254539 PMCID: PMC1805465 DOI: 10.1016/j.abb.2006.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 11/17/2022]
Abstract
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.
Collapse
Affiliation(s)
- Ling Sun
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031
| | - Chong S. Chen
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - David J. Waxman
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Drug Discovery and Design Center, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
| | - James R. Halpert
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031
| | - Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031
- *Corresponding Author: Santosh Kumar, Ph. D., Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031 Phone: (409) 772 9677, Fax: (409) 772 9642,
| |
Collapse
|
30
|
Kumar S, Liu H, Halpert JR. Engineering of cytochrome P450 3A4 for enhanced peroxide-mediated substrate oxidation using directed evolution and site-directed mutagenesis. Drug Metab Dispos 2006; 34:1958-65. [PMID: 16987939 DOI: 10.1124/dmd.106.012054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP3A4 has been subjected to random and site-directed mutagenesis to enhance peroxide-supported metabolism of several substrates. Initially, a high-throughput screening method using whole cell suspensions was developed for H2O2-supported oxidation of 7-benzyloxyquinoline. Random mutagenesis by error-prone polymerase chain reaction and activity screening yielded several CYP3A4 mutants with enhanced activity. L216W and F228I showed a 3-fold decrease in Km, HOOH and a 2.5-fold increase in kcat/Km, HOOH compared with CYP3A4. Subsequently, T309V and T309A were created based on the observation that T309V in CYP2D6 has enhanced cumene hydroperoxide (CuOOH)-supported activity. T309V and T309A showed a > 6- and 5-fold higher kcat/Km, CuOOH than CYP3A4, respectively. Interestingly, L216W and F228I also exhibited, respectively, a > 4- and a > 3-fold higher kcat/Km, CuOOH than CYP3A4. Therefore, several multiple mutants were constructed from rationally designed and randomly isolated mutants; among them, F228I/T309A showed an 11-fold higher kcat/Km, CuOOH than CYP3A4. Addition of cytochrome b5, which is known to stimulate peroxide-supported activity, enhanced the kcat/Km, CuOOH of CYP3A4 by 4- to 7-fold. When the mutants were tested with other substrates, T309V and T433S showed enhanced kcat/Km, CuOOH with 7-benzyloxy-4-(trifluoromethyl)coumarin and testosterone, respectively, compared with CYP3A4. In addition, in the presence of cytochrome b5, T433S has the potential to produce milligram quantities of 6beta-hydroxytestosterone through peroxide-supported oxidation. In conclusion, a combination of random and site-directed mutagenesis approaches yielded CYP3A4 enzymes with enhanced peroxide-supported metabolism of several substrates.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA.
| | | | | |
Collapse
|
31
|
Atkins WM. Current views on the fundamental mechanisms of cytochrome P450 allosterism. Expert Opin Drug Metab Toxicol 2006; 2:573-9. [PMID: 16859405 DOI: 10.1517/17425255.2.4.573] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clinically relevant cytochrome P450 (CYP)-dependent drug metabolism and drug-drug interactions remain difficult to predict on the basis of in vitro data. One contribution to this difficulty is the complex allosteric kinetics that CYPs exhibit in vitro. In principle, an understanding of this behaviour at the molecular level could improve in vitro-in vivo correlations and prediction of in vivo drug behaviour. Recent results suggest a multiplicity of allosteric mechanisms, including drug-dependent conformational changes and protein conformational heterogeneity, occupancy by separate drug molecules of discrete binding sites, potentially at remote locations, and drug concentration-dependent or effector concentration-dependent orientation within the active site of the drug being metabolised. Most importantly, the recent research provides optimism that we can understand these complex enzymes; the research has included the creative use of biophysical techniques previously thought to be inapplicable to CYPs.
Collapse
Affiliation(s)
- William M Atkins
- University of Washington, Department of Medicinal Chemistry, Seattle, 98195-7610, USA.
| |
Collapse
|
32
|
Kumar S, Halpert JR. Use of directed evolution of mammalian cytochromes P450 for investigating the molecular basis of enzyme function and generating novel biocatalysts. Biochem Biophys Res Commun 2005; 338:456-64. [PMID: 16126165 DOI: 10.1016/j.bbrc.2005.08.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Directed evolution has been successfully applied to the design of industrial biocatalysts for enhanced catalytic efficiency and stability, and for examining the molecular basis of enzyme function. Xenobiotic-metabolizing mammalian cytochromes P450 with their catalytic versatility and broad substrate specificity offer the possibility of widespread applications in industrial synthesis, medicine, and bioremediation. However, the requirement for NADPH-cytochrome P450 reductase, often cytochrome b5, and an expensive cofactor, NADPH, complicates the design of mammalian P450 enzymes as biocatalysts. Recently, Guengerich and colleagues have successfully performed directed evolution of P450s 1A2 and 2A6 initially by using colony-based colorimetric and genotoxicity screening assays, respectively, followed by in vitro fluorescence-based activity screening assays. More recently, our laboratory has developed a fluorescence-based in vitro activity screening assay system for enhanced catalytic activity of P450s 2B1 and 3A4. The studies indicate an important role of amino acid residues outside of the active site, which would be difficult to target by other methods. The approach can now be expanded to design these as well as new P450s using more targeted substrates of environmental, industrial, and medical importance.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| | | |
Collapse
|