1
|
Hammarlund-Udenaes M, Loryan I. Assessing central nervous system drug delivery. Expert Opin Drug Deliv 2025; 22:421-439. [PMID: 39895003 DOI: 10.1080/17425247.2025.2462767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Delivering drugs to the central nervous system (CNS) remains a major challenge due to the blood-brain barrier, restricting the entry of drugs into the brain. This limitation contributes to the ongoing lack of effective treatments for CNS diseases. To improve the process of drug discovery and development, it is crucial to streamline methods that measure clinically relevant parameters, allowing for good selection of drug candidates. AREA COVERED In this paper, we discuss the essential prerequisites for successful CNS drug delivery and review relevant methods. We emphasize the need for closer collaboration between in vitro and in vivo scientists to improve the relevance of these methods and increase the success rate of developing effective CNS therapies. While our focus is on small molecule drugs, we also touch on some aspects of larger molecules. EXPERT OPINION Significant progress has been made in recent years in method development and their application. However, there is still work to be done before the use of in silico models, in vitro cell systems, and AI can consistently offer meaningful correlations and relationships to clinical data. This gap is partly due to limited patient data, but a lot can be achieved through in vivo research in animal models.
Collapse
Affiliation(s)
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Gulledge M, Carlezon WA, McHugh RK, Kinard EA, Prerau MJ, Chartoff EH. Spontaneous oxycodone withdrawal disrupts sleep, diurnal, and electrophysiological dynamics in rats. PLoS One 2025; 20:e0312794. [PMID: 39823427 PMCID: PMC11741586 DOI: 10.1371/journal.pone.0312794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/13/2024] [Indexed: 01/19/2025] Open
Abstract
Opioid dependence is defined by an aversive withdrawal syndrome upon drug cessation that can motivate continued drug-taking, development of opioid use disorder, and precipitate relapse. An understudied but common opioid withdrawal symptom is disrupted sleep, reported as both insomnia and daytime sleepiness. Despite the prevalence and severity of sleep disturbances during opioid withdrawal, there is a gap in our understanding of their interactions. The goal of this study was to establish an in-depth, temporal signature of spontaneous oxycodone withdrawal effects on the diurnal composition of discrete sleep stages and the dynamic spectral properties of the electroencephalogram (EEG) signal in male rats. We continuously recorded EEG and electromyography (EMG) signals for 8 d of spontaneous withdrawal after a 14-d escalating-dose oxycodone regimen (0.5-8.0 mg/kg, 2×d; SC). During withdrawal, there was a profound loss (peaking on days 2-3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. Withdrawal was associated with significant alterations in the slope of the aperiodic 1/f component of the EEG power spectrum, an established biomarker of arousal level. Early in withdrawal, NREM exhibited an acute flattening and return to baseline of both low (1-4 Hz) and high (15-50 Hz) frequency components of the 1/f spectrum. These findings suggest temporally dependent withdrawal effects on sleep, reflecting the complex way in which the allostatic forces of opioid withdrawal impinge upon sleep and diurnal processes. These foundational data based on continuous tracking of vigilance state, sleep stage composition, and spectral EEG properties provide a detailed construct with which to form and test hypotheses on the mechanisms of opioid-sleep interactions.
Collapse
Affiliation(s)
- Michael Gulledge
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
- Graduate Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A. Carlezon
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - R. Kathryn McHugh
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Elizabeth A. Kinard
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Michael J. Prerau
- Division of Sleep Medicine, Dept. of Medicine, Harvard Medical School, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Elena H. Chartoff
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| |
Collapse
|
3
|
Bällgren F, Hammarlund-Udenaes M, Loryan I. Reduced oxycodone brain delivery in rats due to lipopolysaccharide-induced inflammation: microdialysis insights into brain disposition and sex-specific pharmacokinetics. Fluids Barriers CNS 2024; 21:95. [PMID: 39623471 PMCID: PMC11613587 DOI: 10.1186/s12987-024-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Oxycodone, a widely used opioid analgesic, has an unbound brain-to-plasma concentration ratio (Kp,uu) greater than unity, indicating active uptake across brain barriers associated with the putative proton-coupled organic cation (H+/OC) antiporter system. With this study, we aimed to elucidate oxycodone's CNS disposition during lipopolysaccharide (LPS)-induced systemic inflammation in Sprague-Dawley rats. METHODS Using brain microdialysis, we dynamically and simultaneously monitored unbound oxycodone concentrations in blood, striatum, lateral ventricle, and cisterna magna following intravenous administration of oxycodone post-LPS challenge. RESULTS Our results indicated a reduced, sex-independent brain net uptake of oxycodone across the blood-brain barrier (BBB) measured in the striatum. Notably, the LPS challenge has significantly altered the systemic pharmacokinetics (PK) of oxycodone, in a sex-specific manner, leading to lower clearance and higher blood concentrations in females compared to LPS-treated males and healthy rats of both sexes. Proteomic analysis using Olink Target 96 Mouse Exploratory assay confirmed the induction of systemic inflammation and neuroinflammation. The inflammation led to an increased paracellular transport, measured using 4 kDa dextran, while preserving net active uptake of oxycodone across both BBB and the blood-cerebrospinal fluid barrier (BCSFB), with Kp,uu values of 2.7 and 2.5, respectively. The extent of uptake was 1.6-fold lower (p < 0.0001) at the BBB and unchanged at the BCSFB after the LPS challenge compared to that in healthy rats. However, the mean exposure of unbound oxycodone in the brain following LPS was similar to that in healthy rats, primarily due to the LPS-induced changes in systemic exposure. CONCLUSIONS These findings highlight the dissimilar responses at blood-brain interfaces during LPS-induced inflammation. Advancing the knowledge of neuropharmacokinetic mechanisms, specifically those involving the H+/OC antiporter system, will enable the development of more effective therapeutic strategies during inflammation conditions.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
4
|
McLaurin KA, Ott RK, Mactutus CF, Booze RM. Adolescent oral oxycodone self-administration disrupts neurobehavioral and neurocognitive development. Neuropharmacology 2024; 258:110064. [PMID: 38981578 PMCID: PMC11418068 DOI: 10.1016/j.neuropharm.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Nonmedical use of prescription opioids peaks during late adolescence, a developmental period associated with the maturation of higher-order cognitive processes. To date, however, how chronic adolescent oxycodone (OXY) self-administration alters neurobehavioral (i.e., locomotion, startle reactivity) and/or neurocognitive (i.e., preattentive processes, intrasession habituation, stimulus-reinforcement learning, sustained attention) function has not yet been systematically evaluated. Hence, the rationale was built for establishing the dose-dependency of adolescent OXY self-administration on the trajectory of neurobehavioral and neurocognitive development. From postnatal day (PD) 35 to PD 105, an age in rats that corresponds to the adolescent and young adult period in humans, male and female F344/N rats received access to either oral OXY (0, 2, 5, or 10 mg/kg) or water under a two-bottle choice experimental paradigm. Independent of biological sex or dose, rodents voluntarily escalated their OXY intake across ten weeks. A longitudinal experimental design revealed prominent OXY-induced impairments in neurobehavioral development, characterized by dose-dependent increases in locomotion and sex-dependent increases in startle reactivity. Systematic manipulation of the interstimulus interval in prepulse inhibition supports an OXY-induced impairment in preattentive processes. Despite the long-term cessation of OXY intake, rodents with a history of chronic adolescent oral OXY self-administration exhibited deficits in sustained attention; albeit no alterations in stimulus-reinforcement learning were observed. Taken together, adolescent oral OXY self-administration induces selective long-term alterations in neurobehavioral and neurocognitive development enjoining the implementation of safer prescribing guidelines for this population.
Collapse
Affiliation(s)
- Kristen A McLaurin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40508, USA.
| | - Rachael K Ott
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Charles F Mactutus
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Rosemarie M Booze
- Cognitive and Neural Science Program, Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| |
Collapse
|
5
|
Bällgren F, Hu Y, Li S, van de Beek L, Hammarlund-Udenaes M, Loryan I. Region-independent active CNS net uptake of marketed H +/OC antiporter system substrates. Front Cell Neurosci 2024; 18:1493644. [PMID: 39534684 PMCID: PMC11554538 DOI: 10.3389/fncel.2024.1493644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The pyrilamine-sensitive proton-coupled organic cation (H+/OC) antiporter system facilitates the active net uptake of several marketed organic cationic drugs across the blood-brain barrier (BBB). This rare phenomenon has garnered interest in the H+/OC antiporter system as a potential target for CNS drug delivery. However, analysis of pharmacovigilance data has uncovered a significant association between substrates of the H+/OC antiporter and neurotoxicity, particularly drug-induced seizures (DIS) and mood- and cognitive-related adverse events (MCAEs). This preclinical study aimed to elucidate the CNS regional disposition of H+/OC antiporter substrates at therapeutically relevant plasma concentrations to uncover potential pharmacokinetic mechanisms underlying DIS and MCAEs. Here, we investigated the neuropharmacokinetics of pyrilamine, diphenhydramine, bupropion, tramadol, oxycodone, and memantine. Using the Combinatory Mapping Approach for Regions of Interest (CMA-ROI), we characterized the transport of unbound drugs across the BBB in specific CNS regions, as well as the blood-spinal cord barrier (BSCB) and the blood-cerebrospinal fluid barrier (BCSFB). Our findings demonstrated active net uptake across the BBB and BSCB, with unbound ROI-to-plasma concentration ratio, Kp,uu,ROI, values consistently exceeding unity in all assessed regions. Despite minor regional differences, no significant distinctions were found when comparing the whole brain to investigated regions of interest, indicating region-independent active transport. Furthermore, we observed intracellular accumulation via lysosomal trapping for all studied drugs. These results provide new insights into the CNS regional neuropharmacokinetics of these drugs, suggesting that while the brain uptake is region-independent, the active transport mechanism enables high extracellular and intracellular drug concentrations, potentially contributing to neurotoxicity. This finding emphasizes the necessity of thorough neuropharmacokinetic evaluation and neurotoxicity profiling in the development of drugs that utilize this transport pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Irena Loryan
- Department of Pharmacy, Faculty of Pharmacy, Translational Pharmacokinetics-Pharmacodynamics Group, Translational Pharmacokinetics Pharmacodynamics (tPKPD), Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Bällgren F, Bergfast T, Ginosyan A, Mahajan J, Lipcsey M, Hammarlund-Udenaes M, Syvänen S, Loryan I. Active CNS delivery of oxycodone in healthy and endotoxemic pigs. Fluids Barriers CNS 2024; 21:86. [PMID: 39443944 PMCID: PMC11515623 DOI: 10.1186/s12987-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The primary objective of this study was to advance our understanding of active drug uptake at brain barriers in higher species than rodents, by examining oxycodone brain concentrations in pigs. METHODS This was investigated by a microdialysis study in healthy and endotoxemic conditions to increase the understanding of inter-species translation of putative proton-coupled organic cation (H+/OC) antiporter-mediated central nervous system (CNS) drug delivery in health and pathology, and facilitate the extrapolation to humans for improved CNS drug treatment in patients. Additionally, we sought to evaluate the efficacy of lumbar cerebrospinal fluid (CSF) exposure readout as a proxy for brain unbound interstitial fluid (ISF) concentrations. By simultaneously monitoring unbound concentrations in blood, the frontal cortical area, the lateral ventricle (LV), and the lumbar intrathecal space in healthy and lipopolysaccharide (LPS)-induced inflammation states within the same animal, we achieved exceptional spatiotemporal resolution in mapping oxycodone transport across CNS barriers. RESULTS Our findings provide novel evidence of higher unbound oxycodone concentrations in brain ISF compared to blood, yielding an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 2.5. This supports the hypothesis of the presence of the H+/OC antiporter system at the blood-brain barrier (BBB) in pigs. Despite significant physiological changes, reflected in pig Sequential Organ Failure Assessment, pSOFA scores, oxycodone blood concentrations and its active net uptake across the BBB remained nearly unchanged during three hours of i.v. infusion of 4 µg/kg/h LPS from Escherichia coli (O111:B4). Mean Kp,uu,LV values indicated active uptake also at the blood-CSF barrier in healthy and endotoxemic pigs. Lumbar CSF concentrations showed minimal inter-individual variability during the experiment, with a mean Kp,uu,lumbarCSF of 1.5. LPS challenge caused a slight decrease in Kp,uu,LV, while Kp,uu,lumbarCSF remained unaffected. CONCLUSIONS This study enhances our understanding of oxycodone pharmacokinetics and CNS drug delivery in both healthy and inflamed conditions, providing crucial insights for translating these findings to clinical settings.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| | - Tilda Bergfast
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Aghavni Ginosyan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Jessica Mahajan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
- School of Applied Sciences, Abertay University, Bell Street, Dundee, DD1 1HG, Scotland, UK
| | - Miklós Lipcsey
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Rudbecklaboratoriet, Dag Hammarskjölds Väg 20, 751 85, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics Group (tPKPD), Department of Pharmacy, Uppsala University, Husargatan 3, 752 37, Uppsala, Sweden.
| |
Collapse
|
7
|
Contreras KM, Buzzi B, Vaughn J, Caillaud M, Altarifi AA, Olszewski E, Walentiny DM, Beardsley PM, Damaj MI. Characterization and validation of a spontaneous acute and protracted oxycodone withdrawal model in male and female mice. Pharmacol Biochem Behav 2024; 242:173795. [PMID: 38834159 PMCID: PMC11283946 DOI: 10.1016/j.pbb.2024.173795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Opioid use disorder (OUD) is a serious health problem that may lead to physical dependence, in addition to affective disorders. Preclinical models are essential for studying the neurobiology of and developing pharmacotherapies to treat these problems. Historically, chronic morphine injections have most often been used to produce opioid-dependent animals, and withdrawal signs indicative of dependence were precipitated by administering an opioid antagonist. In the present studies, we have developed and validated a model of dependence on oxycodone (a widely prescribed opioid) during spontaneous withdrawal in male and female C57BL/6J mice. Dependence was induced by chronically administering oxycodone through osmotic minipumps at different doses for 7 days. Somatic withdrawal signs were measured after 3, 6, 24, and 48 h following minipump removal. Additionally, sensitivity to mechanical, thermal, and cold stimuli, along with anxiety-like behavior, were also measured. Our results indicated that spontaneous withdrawal following discontinuation of oxycodone produced an increase in total withdrawal signs after 60 and 120 mg/kg/day regimens of oxycodone administration. These signs were reversed by the administration of clinically approved medications for OUD. In general, both female and male mice showed similar profiles of somatic signs of spontaneous withdrawal. Spontaneous withdrawal also resulted in mechanical and cold hypersensitivity lasting for 24 and 14 days, respectively, and produced anxiety-like behaviors after 2 and 3 weeks following oxycodone removal. These results help validate a new model of oxycodone dependence, including the temporally distinct emergence of somatic, hyperalgesic, and anxiety-like behaviors, potentially useful for mechanistic and translational studies of opioid dependence.
Collapse
Affiliation(s)
- Katherine M Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julian Vaughn
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Martial Caillaud
- Nantes Université, INSERM, UMR1235-TENS, The Enteric Nervous System in Gut and Brain Diseases, Nantes, France
| | - Ahmad A Altarifi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Emily Olszewski
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Translational Research Initiative for Pain and Neuropathy at Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
8
|
Teuscher N. The history and future of population pharmacokinetic analysis in drug development. Xenobiotica 2024; 54:394-400. [PMID: 38051030 DOI: 10.1080/00498254.2023.2291792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
The analysis of pharmacokinetic data has been in a constant state of evolution since the introduction of the term pharmacokinetics. Early work focused on mechanistic understanding of the absorption, distribution, metabolism and excretion of drug products.The introduction of non-linear mixed effects models to perform population pharmacokinetic analysis initiated a paradigm shift. The application of these models represented a major shift in evaluating variability in pharmacokinetic parameters across a population of subjects.While technological advancements in computing power have fueled the growth of population pharmacokinetics in drug development efforts, there remain many challenges in reducing the time required to incorporate these learnings into a model-informed development process. These challenges exist because of expanding datasets, increased number of diagnostics, and more complex mathematical models.New machine learning tools may be potential solutions for these challenges. These new methodologies include genetic algorithms for model selection, machine learning algorithms for covariate selection, and deep learning models for pharmacokinetic and pharmacodynamic data. These new methods promise the potential for less bias, faster analysis times, and the ability to integrate more data.While questions remain regarding the ability of these models to extrapolate accurately, continued research in this area is expected to address these questions.
Collapse
|
9
|
Duffy EP, Ward JO, Hale LH, Brown KT, Kwilasz AJ, Saba LM, Ehringer MA, Bachtell RK. Genetic background and sex influence somatosensory sensitivity and oxycodone analgesia in the Hybrid Rat Diversity Panel. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12894. [PMID: 38597363 PMCID: PMC11005106 DOI: 10.1111/gbb.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Opioid use disorder (OUD) is an ongoing public health concern in the United States, and relatively little work has addressed how genetic background contributes to OUD. Understanding the genetic contributions to oxycodone-induced analgesia could provide insight into the early stages of OUD development. Here, we present findings from a behavioral phenotyping protocol using several inbred strains from the Hybrid Rat Diversity Panel. Our behavioral protocol included a modified "up-down" von Frey procedure to measure inherent strain differences in the sensitivity to a mechanical stimulus on the hindpaw. We also performed the tail immersion assay, which measures the latency to display tail withdrawal in response to a hot water bath. Initial withdrawal thresholds were taken in drug-naïve animals to record baseline thermal sensitivity across the strains. Oxycodone-induced analgesia was measured after administration of oxycodone over the course of 2 h. Both mechanical and thermal sensitivity are shaped by genetic factors and display moderate heritability (h2 = 0.23-0.40). All strains displayed oxycodone-induced analgesia that peaked at 15-30 min and returned to baseline by 2 h. There were significant differences between the strains in the magnitude and duration of their analgesic response to oxycodone, although the heritability estimates were quite modest (h2 = 0.10-0.15). These data demonstrate that genetic background confers differences in mechanical sensitivity, thermal sensitivity, and oxycodone-induced analgesia.
Collapse
Affiliation(s)
- Eamonn P. Duffy
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderColoradoUSA
| | - J. O. Ward
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - L. H. Hale
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - K. T. Brown
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - Andrew J. Kwilasz
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| | - Laura M. Saba
- Department of Pharmaceutical SciencesSkaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Marissa A. Ehringer
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderColoradoUSA
| | - Ryan K. Bachtell
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
10
|
Coates S, Lazarus P. Hydrocodone, Oxycodone, and Morphine Metabolism and Drug-Drug Interactions. J Pharmacol Exp Ther 2023; 387:150-169. [PMID: 37679047 PMCID: PMC10586512 DOI: 10.1124/jpet.123.001651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Awareness of drug interactions involving opioids is critical for patient treatment as they are common therapeutics used in numerous care settings, including both chronic and disease-related pain. Not only do opioids have narrow therapeutic indexes and are extensively used, but they have the potential to cause severe toxicity. Opioids are the classical pain treatment for patients who suffer from moderate to severe pain. More importantly, opioids are often prescribed in combination with multiple other drugs, especially in patient populations who typically are prescribed a large drug regimen. This review focuses on the current knowledge of common opioid drug-drug interactions (DDIs), focusing specifically on hydrocodone, oxycodone, and morphine DDIs. The DDIs covered in this review include pharmacokinetic DDI arising from enzyme inhibition or induction, primarily due to inhibition of cytochrome p450 enzymes (CYPs). However, opioids such as morphine are metabolized by uridine-5'-diphosphoglucuronosyltransferases (UGTs), principally UGT2B7, and glucuronidation is another important pathway for opioid-drug interactions. This review also covers several pharmacodynamic DDI studies as well as the basics of CYP and UGT metabolism, including detailed opioid metabolism and the potential involvement of metabolizing enzyme gene variation in DDI. Based upon the current literature, further studies are needed to fully investigate and describe the DDI potential with opioids in pain and related disease settings to improve clinical outcomes for patients. SIGNIFICANCE STATEMENT: A review of the literature focusing on drug-drug interactions involving opioids is important because they can be toxic and potentially lethal, occurring through pharmacodynamic interactions as well as pharmacokinetic interactions occurring through inhibition or induction of drug metabolism.
Collapse
Affiliation(s)
- Shelby Coates
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
11
|
Bällgren F, Hammarlund-Udenaes M, Loryan I. Active Uptake of Oxycodone at Both the Blood-Cerebrospinal Fluid Barrier and The Blood-Brain Barrier without Sex Differences: A Rat Microdialysis Study. Pharm Res 2023; 40:2715-2730. [PMID: 37610619 PMCID: PMC10733202 DOI: 10.1007/s11095-023-03583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Oxycodone active uptake across the blood-brain barrier (BBB) is associated with the putative proton-coupled organic cation (H+/OC) antiporter system. Yet, the activity of this system at the blood-cerebrospinal fluid barrier (BCSFB) is not fully understood. Additionally, sex differences in systemic pharmacokinetics and pharmacodynamics of oxycodone has been reported, but whether the previous observations involve sex differences in the function of the H+/OC antiporter system remain unknown. The objective of this study was, therefore, to investigate the extent of oxycodone transport across the BBB and the BCSFB in female and male Sprague-Dawley rats using microdialysis. METHODS Microdialysis probes were implanted in the blood and two of the following brain locations: striatum and lateral ventricle or cisterna magna. Oxycodone was administered as an intravenous infusion, and dialysate, blood and brain were collected. Unbound partition coefficients (Kp,uu) were calculated to understand the extent of oxycodone transport across the blood-brain barriers. Non-compartmental analysis was conducted using Phoenix 64 WinNonlin. GraphPad Prism version 9.0.0 was used to perform t-tests, one-way and two-way analysis of variance followed by Tukey's or Šídák's multiple comparison tests. Differences were considered significant at p < 0.05. RESULTS The extent of transport at the BBB measured in striatum was 4.44 ± 1.02 (Kp,uu,STR), in the lateral ventricle 3.41 ± 0.74 (Kp,uu,LV) and in cisterna magna 2.68 ± 1.01 (Kp,uu,CM). These Kp,uu values indicate that the extent of oxycodone transport is significantly lower at the BCSFB compared with that at the BBB, but still confirm the presence of active uptake at both blood-brain interfaces. No significant sex differences were observed in neither the extent of oxycodone delivery to the brain, nor in the systemic pharmacokinetics of oxycodone. CONCLUSIONS The findings clearly show that active uptake is present at both the BCSFB and the BBB. Despite some underestimation of the extent of oxycodone delivery to the brain, CSF may be an acceptable surrogate of brain ISF for oxycodone, and potentially also other drugs actively transported into the brain via the H+/OC antiporter system.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
12
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Characterization of the Stereoselective Disposition of Bupropion and Its Metabolites in Rat Plasma and Brain. Eur J Drug Metab Pharmacokinet 2023; 48:171-187. [PMID: 36823342 DOI: 10.1007/s13318-023-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND AND OBJECTIVES Bupropion is an atypical antidepressant and smoking cessation aid; its use is associated with wide intersubject variability in efficacy and safety. Knowledge of the brain pharmacokinetics of bupropion and its pharmacologically active metabolites is considered important for understanding the cause-effect relationships driving this variability. METHODS Brain concentrations from rats administered a 10 mg/kg subcutaneous dose of racemic bupropion were analyzed using a stereoselective LC/MS-MS method. A 2 mg/kg dose of (S,S)-hydroxybupropion, which has comparable pharmacologic potency to bupropion, was administered to a separate group of rats. Plasma exposure and unbound concentrations in both matrices from companion equilibrium dialysis experiments were determined to assess potential carrier-mediated transport at the blood-brain barrier. RESULTS Exposures to unbound forms of bupropion enantiomers were similar in plasma; this was also true in brain. This trend held for reductive diastereomer metabolite pairs in the two matrices. Unbound (R,R)-hydroxybupropion exposure was 1.5-fold higher than (S,S)-hydroxybupropion exposure in plasma and brain following bupropion administration. Unbound concentration ratios (Kp,uu) of a given molecular form decreased over time: between 4 and 6 h, these were < 1 for the two bupropion enantiomers, and they were ~ 1 for metabolites that formed. Administration of preformed (S,S)-hydroxybupropion also demonstrated a declining Kp,uu. CONCLUSIONS The temporal shift in Kp,uu among the different molecular forms provides evidence regarding the operation of carrier-mediated transport and/or within-brain metabolism of bupropion, and, thereby, fresh insight regarding the causes of intersubject variability in the safety and efficacy of bupropion therapy.
Collapse
|
14
|
Zhang X, Kitaichi K, Mouri A, Zhou X, Nabeshima T, Yamada K, Nagai T. An evaluation method for developing abuse-deterrent opioid formulations with agonist and antagonist combinations using conditioned place preference. Biochem Biophys Res Commun 2023; 639:100-105. [PMID: 36476949 DOI: 10.1016/j.bbrc.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Although opioids are useful narcotic analgesics in clinical settings, their misuse and addiction in the United States of America and other countries are rapidly increasing. Therefore, the development of abuse-deterrent formulations is an urgent issue. We herein investigated how to select the ratio of an opioid and the opioid receptor antagonist, naloxone in abuse-deterrent formulations for mice. The conditioned place preference (CPP) test was used to evaluate the rewarding effects of abused drugs. The opioids morphine (30 μmol/kg), oxycodone (3 μmol/kg), fentanyl (0.4 μmol/kg), and buprenorphine (0.5 μmol/kg) significantly induced place preference in mice. We also examined the optimal ratio of naloxone and opioids to inhibit the rewarding effects of the latter. Naloxone (3-5 μmol/kg) effectively inhibited place preference induced by the opioids tested. We calculated theoretical drug doses that exerted the same pharmacodynamic effects based on two parameters: μ-opioid receptor binding affinity and blood-brain barrier (BBB) permeability. Theoretical doses were very close to the drug doses at which mice showed place preference. Therefore, the CPP test is useful as a behavioral method for evaluating abuse-deterrent formulations of opioids mixed with an antagonist. The ratio of naloxone with opioids, at which mice did not show place preference, may be an effective index for developing abuse-deterrent formulations. Ratios may be calculated for other opioids based on μ-opioid receptor binding affinity and BBB permeability.
Collapse
Affiliation(s)
- Xinjian Zhang
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Aichi, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Graduate School of Health Sciences, Fujita Health University, Toyoake, 470-1192, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Aichi, Japan
| | - Xinzhu Zhou
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Aichi, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Aichi, Japan; Laboratory of Health and Medical Science Innovation, Graduate School of Health Sciences, Fujita Health University, Toyoake, 470-1192, Aichi, Japan
| | - Kiyofumi Yamada
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Aichi, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, 466-8560, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Aichi, Japan.
| |
Collapse
|
15
|
Modeling Blood–Brain Barrier Permeability to Solutes and Drugs In Vivo. Pharmaceutics 2022; 14:pharmaceutics14081696. [PMID: 36015323 PMCID: PMC9414534 DOI: 10.3390/pharmaceutics14081696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Our understanding of the pharmacokinetic principles governing the uptake of endogenous substances, xenobiotics, and biologicals across the blood–brain barrier (BBB) has advanced significantly over the past few decades. There is now a spectrum of experimental techniques available in experimental animals and humans which, together with pharmacokinetic models of low to high complexity, can be applied to describe the transport processes at the BBB of low molecular weight agents and macromolecules. This review provides an overview of the models in current use, from initial rate uptake studies over compartmental models to physiologically based models and points out the advantages and shortcomings associated with the different methods. A comprehensive pharmacokinetic profile of a compound with respect to brain exposure requires the knowledge of BBB uptake clearance, intra-brain distribution, and extent of equilibration across the BBB. The application of proper pharmacokinetic analysis and suitable models is a requirement not only in the drug development process, but in all of the studies where the brain uptake of drugs or markers is used to make statements about the function or integrity of the BBB.
Collapse
|
16
|
Kurosawa T, Tega Y, Uchida Y, Higuchi K, Tabata H, Sumiyoshi T, Kubo Y, Terasaki T, Deguchi Y. Proteomics-Based Transporter Identification by the PICK Method: Involvement of TM7SF3 and LHFPL6 in Proton-Coupled Organic Cation Antiport at the Blood-Brain Barrier. Pharmaceutics 2022; 14:pharmaceutics14081683. [PMID: 36015309 PMCID: PMC9413594 DOI: 10.3390/pharmaceutics14081683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023] Open
Abstract
A proton-coupled organic cation (H+/OC) antiporter working at the blood–brain barrier (BBB) in humans and rodents is thought to be a promising candidate for the efficient delivery of cationic drugs to the brain. Therefore, it is important to identify the molecular entity that exhibits this activity. Here, for this purpose, we established the Proteomics-based Identification of transporter by Crosslinking substrate in Keyhole (PICK) method, which combines photo-affinity labeling with comprehensive proteomics analysis using SWATH-MS. Using preselected criteria, the PICK method generated sixteen candidate proteins. From these, knockdown screening in hCMEC/D3 cells, an in vitro BBB model, identified two proteins, TM7SF3 and LHFPL6, as candidates for the H+/OC antiporter. We synthesized a novel H+/OC antiporter substrate for functional analysis of TM7SF3 and LHFPL6 in hCMEC/D3 cells and HEK293 cells. The results suggested that both TM7SF3 and LHFPL6 are components of the H+/OC antiporter.
Collapse
Affiliation(s)
- Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
- Correspondence: (Y.U.); (Y.D.); Tel.: +81-22-795-6832 (Y.U.); +81-3-3964-8246 (Y.D.)
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hidetsugu Tabata
- Laboratory of Medicinal Chemistry, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Takaaki Sumiyoshi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo 173-8605, Japan
- Correspondence: (Y.U.); (Y.D.); Tel.: +81-22-795-6832 (Y.U.); +81-3-3964-8246 (Y.D.)
| |
Collapse
|
17
|
McKendrick G, McDevitt DS, Shafeek P, Cottrill A, Graziane NM. Anterior cingulate cortex and its projections to the ventral tegmental area regulate opioid withdrawal, the formation of opioid context associations and context-induced drug seeking. Front Neurosci 2022; 16:972658. [PMID: 35992922 PMCID: PMC9388764 DOI: 10.3389/fnins.2022.972658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence suggests that there are correlations between activity within the anterior cingulate cortex (ACC) following re-exposure to drug-associated contexts and drug craving. However, there are limited data contributing to our understanding of ACC function at the cellular level during re-exposure to drug-context associations as well as whether the ACC is directly related to context-induced drug seeking. Here, we addressed this issue by employing our novel behavioral procedure capable of measuring the formation of drug-context associations as well as context-induced drug-seeking behavior in male mice (8-12 weeks of age) that orally self-administered oxycodone. We found that mice escalated oxycodone intake during the long-access training sessions and that conditioning with oxycodone was sufficient to evoke conditioned place preference (CPP) and drug-seeking behaviors. Additionally, we found that thick-tufted, but not thin-tufted pyramidal neurons (PyNs) in the ACC as well as ventral tegmental area (VTA)-projecting ACC neurons had increased intrinsic membrane excitability in mice that self-administered oxycodone compared to controls. Moreover, we found that global inhibition of the ACC or inhibition of VTA-projecting ACC neurons was sufficient to significantly reduce oxycodone-induced CPP, drug seeking, and spontaneous opioid withdrawal. These results demonstrate a direct role of ACC activity in mediating context-induced opioid seeking among other behaviors, including withdrawal, that are associated with the DSM-V criteria of opioid use disorder.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S. McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Peter Shafeek
- Medicine Program, Penn State College of Medicine, Hershey, PA, United States
| | - Adam Cottrill
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M. Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Loryan I, Reichel A, Feng B, Bundgaard C, Shaffer C, Kalvass C, Bednarczyk D, Morrison D, Lesuisse D, Hoppe E, Terstappen GC, Fischer H, Di L, Colclough N, Summerfield S, Buckley ST, Maurer TS, Fridén M. Unbound Brain-to-Plasma Partition Coefficient, K p,uu,brain-a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res 2022; 39:1321-1341. [PMID: 35411506 PMCID: PMC9246790 DOI: 10.1007/s11095-022-03246-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (Kp,uu,brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, Kp,uu,brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. METHODS To understand the importance and impact of the Kp,uu,brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. RESULTS AND CONCLUSIONS From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of Kp,uu,brain as compared to other parameters related to brain exposure. Adoption of the Kp,uu,brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of Kp,uu,brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for Kp,uu,brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
Collapse
Affiliation(s)
- Irena Loryan
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden.
| | | | - Bo Feng
- DMPK, Vertex Pharmaceuticals, Boston, Massachusetts, 02210, USA
| | | | - Christopher Shaffer
- External Innovation, Research & Development, Biogen Inc., Cambridge, Massachusetts, USA
| | - Cory Kalvass
- DMPK-BA, AbbVie, Inc., North Chicago, Illinois, USA
| | - Dallas Bednarczyk
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | | | | | - Edmund Hoppe
- DMPK, Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Holger Fischer
- Translational PK/PD and Clinical Pharmacology, Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut, USA
| | | | - Scott Summerfield
- Bioanalysis Immunogenicity and Biomarkers, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, Hertfordshire, UK
| | | | - Tristan S Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, USA
| | - Markus Fridén
- Department of Pharmacy, Uppsala University, Box 580, Uppsala, Sweden
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
19
|
Tuhin MTH, Liang D, Liu F, Aldawod H, Amin TU, Ho JS, Emara R, Patel AD, Felmlee MA, Park MS, Uchizono JA, Alhamadsheh MM. Peripherally restricted transthyretin-based delivery system for probes and therapeutics avoiding opioid-related side effects. Nat Commun 2022; 13:3590. [PMID: 35739116 PMCID: PMC9226319 DOI: 10.1038/s41467-022-31342-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Several investigations into the sites of action of opioid analgesics have utilized peripherally acting mu-opioid receptor antagonists (PAMORAs), which have been incorrectly assumed to possess limited permeability across the blood-brain barrier. Unfortunately, the poor pharmacokinetic properties of current PAMORAs have resulted in misunderstandings of the role of central nervous system and gastrointestinal tract in precipitating side effects such as opioid-induced constipation. Here, we develop a drug delivery approach for restricting the passage of small molecules across the blood-brain barrier. This allows us to develop naloxone- and oxycodone-based conjugates that display superior potency, peripheral selectivity, pharmacokinetics, and efficacy in rats compared to other clinically used PAMORAs. These probes allow us to demonstrate that the mu-opioid receptors in the central nervous system have a fundamental role in precipitating opioid-induced constipation. Therefore, our conjugates have immediate use as pharmacological probes and potential therapeutic agents for treating constipation and other opioid-related side effects.
Collapse
Affiliation(s)
- Md Tariqul Haque Tuhin
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Dengpan Liang
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Fang Liu
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Hala Aldawod
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Toufiq Ul Amin
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Joshua S Ho
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Rasha Emara
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Arjun D Patel
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Miki S Park
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - James A Uchizono
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US
| | - Mamoun M Alhamadsheh
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, 95211, US.
| |
Collapse
|
20
|
Piirainen P, Kokki H, Kokki M. Epidural Oxycodone for Acute Pain. Pharmaceuticals (Basel) 2022; 15:643. [PMID: 35631469 PMCID: PMC9144954 DOI: 10.3390/ph15050643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Epidural analgesia is commonly used in labour analgesia and in postoperative pain after major surgery. It is highly effective in severe acute pain, has minimal effects on foetus and newborn, may reduce postoperative complications, and enhance patient satisfaction. In epidural analgesia, low concentrations of local anaesthetics are combined with opioids. Two opioids, morphine and sufentanil, have been approved for epidural use, but there is an interest in evaluating other opioids as well. Oxycodone is one of the most commonly used opioids in acute pain management. However, data on its use in epidural analgesia are sparse. In this narrative review, we describe the preclinical and clinical data on epidural oxycodone. Early data from the 1990s suggested that the epidural administration of oxycodone may not offer any meaningful benefits over intravenous administration, but more recent clinical data show that oxycodone has advantageous pharmacokinetics after epidural administration and that epidural administration is more efficacious than intravenous administration. Further studies are needed on the safety and efficacy of continuous epidural oxycodone administration and its use in epidural admixture.
Collapse
Affiliation(s)
- Panu Piirainen
- Department of Anesthesiology, Surgery and Intensive Care, Oulu University Hospital, 90220 Oulu, Finland;
| | - Hannu Kokki
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, Kuopio Campus, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Merja Kokki
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
21
|
Dalla C, Pavlidi P, Sakelliadou DG, Grammatikopoulou T, Kokras N. Sex Differences in Blood–Brain Barrier Transport of Psychotropic Drugs. Front Behav Neurosci 2022; 16:844916. [PMID: 35677576 PMCID: PMC9169874 DOI: 10.3389/fnbeh.2022.844916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment of neuropsychiatric disorders relies on the effective delivery of therapeutic molecules to the target organ, the brain. The blood–brain barrier (BBB) hinders such delivery and proteins acting as transporters actively regulate the influx and importantly the efflux of both endo- and xeno-biotics (including medicines). Neuropsychiatric disorders are also characterized by important sex differences, and accumulating evidence supports sex differences in the pharmacokinetics and pharmacodynamics of many drugs that act on the brain. In this minireview we gather preclinical and clinical findings on how sex and sex hormones can influence the activity of those BBB transporter systems and affect the brain pharmacokinetics of psychotropic medicines. It emerges that it is not well understood which psychotropics are substrates for each of the many and not well-studied brain transporters. Indeed, most evidence originates from studies performed in peripheral tissues, such as the liver and the kidneys. None withstanding, accumulated evidence supports the existence of several sex differences in expression and activity of transport proteins, and a further modulating role of gonadal hormones. It is proposed that a closer study of sex differences in the active influx and efflux of psychotropics from the brain may provide a better understanding of sex-dependent brain pharmacokinetics and pharmacodynamics of psychotropic medicines.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai-Georgia Sakelliadou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tatiana Grammatikopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Nikolaos Kokras,
| |
Collapse
|
22
|
Kucharz K, Kutuzov N, Zhukov O, Mathiesen Janiurek M, Lauritzen M. Shedding Light on the Blood-Brain Barrier Transport with Two-Photon Microscopy In Vivo. Pharm Res 2022; 39:1457-1468. [PMID: 35578062 DOI: 10.1007/s11095-022-03266-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Treatment of brain disorders relies on efficient delivery of therapeutics to the brain, which is hindered by the blood-brain barrier (BBB). The work of Prof. Margareta Hammarlund-Udenaes was instrumental in understanding the principles of drug delivery to the brain and developing new tools to study it. Here, we show how some of the concepts developed in her research can be translated to in vivo 2-photon microscopy (2PM) studies of the BBB. We primarily focus on the methods developed in our laboratory to characterize the paracellular diffusion, adsorptive-mediated transcytosis, and receptor-mediated transcytosis of drug nanocarriers at the microscale, illustrating how 2PM can deepen our understanding of the mechanisms of drug delivery to the brain.
Collapse
Affiliation(s)
- Krzysztof Kucharz
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolay Kutuzov
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oleg Zhukov
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mathiesen Janiurek
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
23
|
de Lange ECM, Hammarlund Udenaes M. Understanding the Blood-Brain Barrier and Beyond: Challenges and Opportunities for Novel CNS Therapeutics. Clin Pharmacol Ther 2022; 111:758-773. [PMID: 35220577 PMCID: PMC9305478 DOI: 10.1002/cpt.2545] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
This review addresses questions on how to accomplish successful central nervous system (CNS) drug delivery (i.e., having the right concentration at the right CNS site, at the right time), by understanding the rate and extent of blood‐brain barrier (BBB) transport and intra‐CNS distribution in relation to CNS target site(s) exposure. To this end, we need to obtain and integrate quantitative and connected data on BBB using the Combinatory Mapping Approach that includes in vivo and ex vivo animal measurements, and the physiologically based comprehensive LEICNSPK3.0 mathematical model that can translate from animals to humans. For small molecules, slow diffusional BBB transport and active influx and efflux BBB transport determine the differences between plasma and CNS pharmacokinetics. Obviously, active efflux is important for limiting CNS drug delivery. Furthermore, liposomal formulations of small molecules may to a certain extent circumvent active influx and efflux at the BBB. Interestingly, for CNS pathologies, despite all reported disease associated BBB and CNS functional changes in animals and humans, integrative studies typically show a lack of changes on CNS drug delivery for the small molecules. In contrast, the understanding of the complex vesicle‐based BBB transport modes that are important for CNS delivery of large molecules is in progress, and their BBB transport seems to be significantly affected by CNS diseases. In conclusion, today, CNS drug delivery of small drugs can be well assessed and understood by integrative approaches, although there is still quite a long way to go to understand CNS drug delivery of large molecules.
Collapse
Affiliation(s)
- Elizabeth C M de Lange
- Predictive Pharmacology Group, Systems Pharmacology and Pharmacy, LACDR, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
24
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
25
|
Griffith JI, Elmquist WF. To Measure is to Know: A Perspective on the Work of Dr. Margareta Hammarlund-Udenaes. Pharm Res 2022; 39:1297-1301. [PMID: 35292913 DOI: 10.1007/s11095-022-03225-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/03/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Jessica I Griffith
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Twin Cities, 308 Harvard St SE, Minneapolis, Minnesota, 55455, USA.
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota Twin Cities, 308 Harvard St SE, Minneapolis, Minnesota, 55455, USA
| |
Collapse
|
26
|
Sex and Estrous Cycle Differences in Analgesia and Brain Oxycodone Levels. Mol Neurobiol 2021; 58:6540-6551. [PMID: 34581987 DOI: 10.1007/s12035-021-02560-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Sex differences in opioid analgesia occur in rodents and humans, and could be due to differences in drug and metabolite levels. Thus, we investigated the sex and cycle differences in analgesia (nociception) from oxycodone in rats and related these to sex and cycle differences in brain and plasma oxycodone and metabolite levels. Since numerous opioids are CYP2D enzyme substrates and variation in CYP2D alters opioid drug levels and response, we also initiated studies to see if the sex and cycle differences observed might be due to differences in brain CYP2D activity. Across oxycodone doses, females in diestrus had higher analgesia (using tail flick latency) compared to males and females in estrus; we also demonstrated a direct effect of estrous cycle on analgesia within females. Consistent with the analgesia, females in diestrus had highest brain oxycodone levels (assessed using microdialysis) compared to males and females in estrus. Analgesia correlated with brain oxycodone, but not brain oxymorphone or noroxycodone levels, or plasma drug or metabolite levels. Propranolol (a CYP2D mechanism-based inhibitor), versus vehicle pre-treatments, increased brain oxycodone, and decreased brain oxymorphone/oxycodone drug level ratios (an in vivo CYP2D activity phenotype in the brain) in males and females in estrus, but not in females in diestrus. Brain oxymorphone/oxycodone inversely correlated with analgesia. Together, both sex and estrous cycle impact oxycodone analgesia and brain oxycodone levels, likely through regulation of brain CYP2D oxycodone metabolism. As CYP2D6 is expressed in human brain, perhaps similar sex and cycle influences also occur in humans.
Collapse
|
27
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
28
|
Deodhar M, Turgeon J, Michaud V. Contribution of CYP2D6 Functional Activity to Oxycodone Efficacy in Pain Management: Genetic Polymorphisms, Phenoconversion, and Tissue-Selective Metabolism. Pharmaceutics 2021; 13:1466. [PMID: 34575542 PMCID: PMC8468517 DOI: 10.3390/pharmaceutics13091466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 02/01/2023] Open
Abstract
Oxycodone is a widely used opioid for the management of chronic pain. Analgesic effects observed following the administration of oxycodone are mediated mostly by agonistic effects on the μ-opioid receptor. Wide inter-subject variability observed in oxycodone efficacy could be explained by polymorphisms in the gene coding for the μ-opioid receptor (OPRM1). In humans, oxycodone is converted into several metabolites, particularly into oxymorphone, an active metabolite with potent μ-opioid receptor agonist activity. The CYP2D6 enzyme is principally responsible for the conversion of oxycodone to oxymorphone. The CYP2D6 gene is highly polymorphic with encoded protein activities, ranging from non-functioning to high-functioning enzymes. Several pharmacogenetic studies have shown the importance of CYP2D6-mediated conversion of oxycodone to oxymorphone for analgesic efficacy. Pharmacogenetic testing could optimize oxycodone therapy and help achieve adequate pain control, avoiding harmful side effects. However, the most recent Clinical Pharmacogenetics Implementation Consortium guidelines fell short of recommending pharmacogenomic testing for oxycodone treatment. In this review, we (1) analyze pharmacogenomic and drug-interaction studies to delineate the association between CYP2D6 activity and oxycodone efficacy, (2) review evidence from CYP3A4 drug-interaction studies to untangle the nature of oxycodone metabolism and its efficacy, (3) report on the current knowledge linking the efficacy of oxycodone to OPRM1 variants, and (4) discuss the potential role of CYP2D6 brain expression on the local formation of oxymorphone. In conclusion, we opine that pharmacogenetic testing, especially for CYP2D6 with considerations of phenoconversion due to concomitant drug administration, should be appraised to improve oxycodone efficacy.
Collapse
Affiliation(s)
- Malavika Deodhar
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
| | - Jacques Turgeon
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Veronique Michaud
- Precision Pharmacotherapy Research and Development Institute, Tabula Rasa HealthCare, Orlando, FL 32827, USA; (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
29
|
Carper M, Contreras KM, Walentiny DM, Beardsley PM, Damaj MI. Validation and characterization of oxycodone physical dependence in C57BL/6J mice. Eur J Pharmacol 2021; 903:174111. [PMID: 33901461 DOI: 10.1016/j.ejphar.2021.174111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Opioid use disorder is a growing concern in the United States. Mice were used to investigate the mechanisms involving opioid physical dependence and for evaluating medications for treating opioid use disorders. While there are many preclinical reports describing protocols for inducing physical dependence upon morphine, there are fewer preclinical reports describing more contemporary abused prescription opiates. The goal of this study was to characterize and validate a mouse model of oxycodone dependence. Male C57BL/6J mice were injected with saline or increasing doses of oxycodone (9-33 mg/kg) twice daily for 8 days. On the 9th day, mice were challenged with 1 mg/kg naloxone and observed for somatic signs. Mice were pretreated with oxycodone (17, 33, or 75 mg/kg) prior to withdrawal to determine if it could attenuate somatic withdrawal signs. Additional mouse groups were pretreated with 1 mg/kg clonidine. Lastly, we measured somatic signs for 6, 24, and 48 h post-withdrawal during spontaneous and precipitated withdrawal. Pretreating with oxycodone or clonidine dose-dependently prevented the emergence of withdrawal signs. Mice chronically treated with oxycodone exhibited more withdrawal signs than vehicle at 24 h after the final injection during spontaneous withdrawal. In contrast, mice that received repeated naloxone challenges showed peak withdrawal signs at 6 h, and withdrawal signs were significantly greater at all time points compared to vehicle. Reversal of withdrawal effects by positive controls, and establishing spontaneous and precipitated withdrawal paradigms, serve as validation of this model and provide a means to examine novel therapeutics to treat opioid withdrawal.
Collapse
Affiliation(s)
- Moriah Carper
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Katherine M Contreras
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - D Matthew Walentiny
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Biomarker Research and Precision Medicine, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Translational Research Initiative for Pain and Neuropathy at VCU, USA.
| |
Collapse
|
30
|
Sprowls SA, Saralkar P, Arsiwala T, Adkins CE, Blethen KE, Pizzuti VJ, Shah N, Fladeland R, Lockman PR. A Review of Mathematics Determining Solute Uptake at the Blood-Brain Barrier in Normal and Pathological Conditions. Pharmaceutics 2021; 13:pharmaceutics13050756. [PMID: 34069733 PMCID: PMC8160855 DOI: 10.3390/pharmaceutics13050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The blood-brain barrier (BBB) limits movement of solutes from the lumen of the brain microvascular capillary system into the parenchyma. The unidirectional transfer constant, Kin, is the rate at which transport across the BBB occurs for individual molecules. Single and multiple uptake experiments are available for the determination of Kin for new drug candidates using both intravenous and in situ protocols. Additionally, the single uptake method can be used to determine Kin in heterogeneous pathophysiological conditions such as stroke, brain cancers, and Alzheimer's disease. In this review, we briefly cover the anatomy and physiology of the BBB, discuss the impact of efflux transporters on solute uptake, and provide an overview of the single-timepoint method for determination of Kin values. Lastly, we compare preclinical Kin experimental results with human parallels.
Collapse
Affiliation(s)
- Samuel A. Sprowls
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Pushkar Saralkar
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Tasneem Arsiwala
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | | | - Kathryn E. Blethen
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Vincenzo J. Pizzuti
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Neal Shah
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Department of Dermatology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Ross Fladeland
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Paul R. Lockman
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
- Correspondence: ; Tel.: +1-304-293-0944
| |
Collapse
|
31
|
Noh K, Pietrasiewicz A, Liu X, Wei C. Use of Intravenous Infusion Study Design to Simultaneously Determine Brain Penetration and Systemic Pharmacokinetic Parameters in Rats. Drug Metab Dispos 2021; 49:142-151. [PMID: 33262223 DOI: 10.1124/dmd.120.000242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
In drug discovery, the extent of brain penetration as measured by free brain/plasma concentration ratio (Kp,uu) is normally determined from one experiment after constant intravenous infusion, and pharmacokinetics (PK) parameters, including clearance (CL), volume of distribution at steady state (Vss), and effective half-life (t 1/2 ,eff) are determined from another experiment after a single intravenous bolus injection. The objective of the present study was to develop and verify a method to simultaneously determine Kp,uu and PK parameters from a single intravenous infusion experiment. In this study, nine compounds (atenolol, loperamide, minoxidil, N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine, sulpiride, and four proprietary compounds) were intravenously infused for 4 hours at 1 mg/kg or 24 hours at 1 or 6 mg/kg or bolus injected at 1 mg/kg. Plasma samples were serially collected, and brain and cerebrospinal fluid samples were collected at the end of infusion. The PK parameters were obtained using noncompartmental analysis (NCA) and compartmental analysis. The Kp,uu,brain values of those compounds increased up to 2.86-fold from 4 to 24 hours. The CL calculated from infusion rate over steady-state concentration from the 24-hour infusion studies was more consistent with the CL from the intravenous bolus studies than that from 4-hour infusion studies (CL avg. fold of difference 1.19-1.44 vs. 2.10). The compartmental analysis using one- and two-compartment models demonstrated better performance than NCA regardless of study design. In addition, volume of distribution at steady state and t 1/2,eff could be accurately obtained by one-compartment analysis within 2-fold difference. In conclusion, both unbound brain-to-plasma ratio and PK parameters can be successfully estimated from a 24-hour intravenous infusion study design. SIGNIFICANCE STATEMENT: We demonstrated that the extent of brain penetration and pharmacokinetic parameters (such as clearance, Vss, and effective t 1/2) can be determined from a single constant intravenous infusion study in rats.
Collapse
Affiliation(s)
- Keumhan Noh
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts
| | | | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, Massachusetts
| |
Collapse
|
32
|
Fassassi C, Dove D, Davis A, Butt M, Masoudi A, Drapkin J, Gohel A, Silver M, Likourezos A, Motov S. Analgesic efficacy of morphine sulfate immediate release vs. oxycodone/acetaminophen for acute pain in the emergency department. Am J Emerg Med 2020; 46:579-584. [PMID: 33341323 DOI: 10.1016/j.ajem.2020.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Previous research demonstrated that administration of Morphine Sulfate Immediate Release (MSIR) results in similar analgesic efficacy to Oxycodone but with significantly lesser degrees of euphoria and reward. The purpose of this study sit to investigate if MSIR combined with Acetaminophen can serve as an opioid analgesic alternative to Oxycodone combined with acetaminophen (Percocet) for acute pain in the Emergency Department (ED). METHODS A prospective, randomized, double-blind trial of ED patients aged 18 to 64 years presenting with moderate to severe acute pain as defined by an 11-point numeric rating scale (NRS) with an initial score of ≥5 (0 = no pain and 10 = very severe pain). Patients were randomized to receive either 15 mg MSIR combined with 650 mg of Acetaminophen or 10 mg Oxycodone combined with 650 mg Acetaminophen. Patients were assessed at baseline, 30, 45 and 60 min. The primary outcome was reduction in pain at 60 min. Secondary outcomes include drug likeability and adverse events. RESULTS 80 patients were enrolled in the study (40 per group). Demographic characteristics were similar between the groups (P > 0.05). Mean NRS pain scores at baseline were 8.44 for the MSIR group and 8.53 for the Percocet group (P = 0.788). Mean pain scores decreased over time but remained similar between the groups: 30 min (6.03 vs. 6.43; P = 0.453), 45 min (5.31 vs. 5.48; P = 0.779), and 60 min (4.22 vs. 4.87; P = 0.346). Reduction in mean NRS pain scores were statistically significant from baseline to 30, 45 and 60 min within each group (P < 0.0001 at each time point for both groups). The largest NRS mean difference was from baseline to 60 min: 4.2 (95% CI: 3.43 to 5.01) for MSIR group and 3.61 (95% CI: 2.79 to 4.43) for Percocet group. No clinically significant changes or any serious adverse events were observed in either group. CONCLUSION MSIR provides similar analgesic efficacy as Percocet for short-term pain relief in the ED, similar rates of nausea/vomiting, and lower rates of likeability of the drug.
Collapse
Affiliation(s)
- Catsim Fassassi
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Daniel Dove
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Ashley Davis
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Mahlaqa Butt
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Aidin Masoudi
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Jefferson Drapkin
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA.
| | - Ankit Gohel
- Department of Pharmacy, Maimonides Medical Center, Brooklyn, NY, USA
| | - Michael Silver
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Antonios Likourezos
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| | - Sergey Motov
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY, USA
| |
Collapse
|
33
|
Connors NJ, Mazer-Amirshahi M, Motov S, Kim HK. Relative addictive potential of opioid analgesic agents. Pain Manag 2020; 11:201-215. [PMID: 33300384 DOI: 10.2217/pmt-2020-0048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Opioid overdoses and deaths continue to be a problem in the USA with a significant portion related to prescribed opioid analgesic agents. The role of pharmacogentic factors in opioid addiction is an active area of research. While all opioid analgesic agents have some addictive potential, it is clear that there are some with greater addictive potential. Oxycodone is the most widely abused opioid analgesic and it appears to predispose to chronic use with high likability by users. Fentanyl and hydromorphone are both very lipophilic allowing rapid penetration into the CNS, but are not rated as highly as other agents. Providers should consider the risk of addiction with the opioids they prescribe and give those with a lower addictive potential.
Collapse
Affiliation(s)
- Nicholas J Connors
- HCA Healthcare, Trident Medical Center, Charleston, SC 29406, USA.,Palmetto Poison Center, Columbia, SC 29201, USA
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Sergey Motov
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA
| | - Hong K Kim
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
μ-Opioid Receptors on Distinct Neuronal Populations Mediate Different Aspects of Opioid Reward-Related Behaviors. eNeuro 2020; 7:ENEURO.0146-20.2020. [PMID: 32859725 PMCID: PMC7508564 DOI: 10.1523/eneuro.0146-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
μ-Opioid receptors (MORs) are densely expressed in different brain regions known to mediate reward. One such region is the striatum where MORs are densely expressed, yet the role of these MOR populations in modulating reward is relatively unknown. We have begun to address this question by using a series of genetically engineered mice based on the Cre recombinase/loxP system to selectively delete MORs from specific neurons enriched in the striatum: dopamine 1 (D1) receptors, D2 receptors, adenosine 2a (A2a) receptors, and choline acetyltransferase (ChAT). We first determined the effects of each deletion on opioid-induced locomotion, a striatal and dopamine-dependent behavior. We show that MOR deletion from D1 neurons reduced opioid (morphine and oxycodone)-induced hyperlocomotion, whereas deleting MORs from A2a neurons resulted in enhanced opioid-induced locomotion, and deleting MORs from D2 or ChAT neurons had no effect. We also present the effect of each deletion on opioid intravenous self-administration. We first assessed the acquisition of this behavior using remifentanil as the reinforcing opioid and found no effect of genotype. Mice were then transitioned to oxycodone as the reinforcer and maintained here for 9 d. Again, no genotype effect was found. However, when mice underwent 3 d of extinction training, during which the drug was not delivered, but all cues remained as during the maintenance phase, drug-seeking behavior was enhanced when MORs were deleted from A2a or ChAT neurons. These findings show that these selective MOR populations play specific roles in reward-associated behaviors.
Collapse
|
35
|
Raleigh MD, Accetturo C, Pravetoni M. Combining a Candidate Vaccine for Opioid Use Disorders with Extended-Release Naltrexone Increases Protection against Oxycodone-Induced Behavioral Effects and Toxicity. J Pharmacol Exp Ther 2020; 374:392-403. [PMID: 32586850 PMCID: PMC7430456 DOI: 10.1124/jpet.120.000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Opioid use disorders (OUDs) and opioid-related fatal overdoses are a significant public health concern in the United States and worldwide. To offer more effective medical interventions to treat or prevent OUD, antiopioid vaccines are in development that reduce the distribution of the targeted opioids to brain and subsequently reduce the associated behavioral and toxic effects. It is of critical importance that antiopioid vaccines do not interfere with medications that treat OUD. Hence, this study tested the preclinical proof of concept of combining a candidate oxycodone vaccine [oxycodone-keyhole limpet hemocyanin (OXY-KLH)] with an FDA-approved extended-release naltrexone (XR-NTX) depot formulation in rats. The effects of XR-NTX on oxycodone-induced motor activity and antinociception were first assessed in nonvaccinated naïve rats to establish a baseline for subsequent studies. Next, OXY-KLH and XR-NTX were coadministered to determine whether the combination would affect the efficacy of each individual treatment, and it was found that the combination of OXY-KLH and XR-NTX offered greater efficacy in reducing oxycodone-induced motor activity, thigmotaxis, antinociception, and respiratory depression over a range of repeated or escalating oxycodone doses in rats. These data support the feasibility of combining antibody-based therapies with opioid receptor antagonists to provide greater or prolonged protection against opioid-related toxicity or overdose. Combining antiopioid vaccines with XR-NTX may provide prophylactic measures to subjects at risk of relapse and accidental or deliberate exposure. Combination therapy may extend to other biologics (e.g., monoclonal antibodies) and medications against substance use disorders. SIGNIFICANCE STATEMENT: Opioid use disorders (OUDs) remain a major problem worldwide, and new therapies are needed. This study reports on the combination of an oxycodone vaccine [oxycodone-keyhole limpet hemocyanin (OXY-KLH)] with a currently approved OUD therapy, extended-release naltrexone (XR-NTX). Results demonstrated that XR-NTX did not interfere with OXY-KLH efficacy, and combination of low doses of XR-NTX with vaccine was more effective than each individual treatment alone to reduce behavioral and toxic effects of oxycodone, suggesting that combining OXY-KLH with XR-NTX may improve OUD outcomes.
Collapse
Affiliation(s)
- Michael D Raleigh
- Departments of Pharmacology (M.D.R., M.P.) and Medicine (M.P.), Center for Immunology (M.P.), Medical School, University of Minnesota, Minneapolis, Minnesota; Universita' degli Studi di Milano, Socrates Program, Milano, Italy (C.A.); and Hennepin Healthcare Research Institute, Minneapolis, Minnesota (M.P.)
| | - Claudia Accetturo
- Departments of Pharmacology (M.D.R., M.P.) and Medicine (M.P.), Center for Immunology (M.P.), Medical School, University of Minnesota, Minneapolis, Minnesota; Universita' degli Studi di Milano, Socrates Program, Milano, Italy (C.A.); and Hennepin Healthcare Research Institute, Minneapolis, Minnesota (M.P.)
| | - Marco Pravetoni
- Departments of Pharmacology (M.D.R., M.P.) and Medicine (M.P.), Center for Immunology (M.P.), Medical School, University of Minnesota, Minneapolis, Minnesota; Universita' degli Studi di Milano, Socrates Program, Milano, Italy (C.A.); and Hennepin Healthcare Research Institute, Minneapolis, Minnesota (M.P.)
| |
Collapse
|
36
|
Viscusi ER, Viscusi AR. Blood-brain barrier: mechanisms governing permeability and interaction with peripherally acting μ-opioid receptor antagonists. Reg Anesth Pain Med 2020; 45:688-695. [PMID: 32723840 PMCID: PMC7476292 DOI: 10.1136/rapm-2020-101403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) describes the unique properties of endothelial cells (ECs) that line the central nervous system (CNS) microvasculature. The BBB supports CNS homeostasis via EC-associated transport of ions, nutrients, proteins and waste products between the brain and blood. These transport mechanisms also serve as physiological barriers to pathogens, toxins and xenobiotics to prevent them from contacting neural tissue. The mechanisms that govern BBB permeability pose a challenge to drug design for CNS disorders, including pain, but can be exploited to limit the effects of a drug to the periphery, as in the design of the peripherally acting μ-opioid receptor antagonists (PAMORAs) used to treat opioid-induced constipation. Here, we describe BBB physiology, drug properties that affect BBB penetrance and how data from randomized clinical trials of PAMORAs improve our understanding of BBB permeability.
Collapse
Affiliation(s)
- Eugene R Viscusi
- Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew R Viscusi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Advances in blood-brain barrier modeling in microphysiological systems highlight critical differences in opioid transport due to cortisol exposure. Fluids Barriers CNS 2020; 17:38. [PMID: 32493346 PMCID: PMC7269003 DOI: 10.1186/s12987-020-00200-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/27/2020] [Indexed: 01/16/2023] Open
Abstract
Background The United States faces a national crisis involving opioid medications, where currently more than 130 people die every day. To combat this epidemic, a better understanding is needed of how opioids penetrate into the central nervous system (CNS) to facilitate pain relief and, potentially, result in addiction and/or misuse. Animal models, however, are a poor predictor of blood–brain barrier (BBB) transport and CNS drug penetration in humans, and many traditional 2D cell culture models of the BBB and neurovascular unit have inadequate barrier function and weak or inappropriate efflux transporter expression. Here, we sought to better understand opioid transport mechanisms using a simplified microfluidic neurovascular unit (NVU) model consisting of human brain microvascular endothelial cells (BMECs) co-cultured with astrocytes. Methods Human primary and induced pluripotent stem cell (iPSC)-derived BMECs were incorporated into a microfluidic NVU model with several technical improvements over our previous design. Passive barrier function was assessed by permeability of fluorescent dextrans with varying sizes, and P-glycoprotein function was assessed by rhodamine permeability in the presence or absence of inhibitors; quantification was performed with a fluorescent plate reader. Loperamide, morphine, and oxycodone permeability was assessed in the presence or absence of P-glycoprotein inhibitors and cortisol; quantification was performed with mass spectrometry. Results We first report technical and methodological optimizations to our previously described microfluidic model using primary human BMECs, which results in accelerated barrier formation, decreased variability, and reduced passive permeability relative to Transwell models. We then demonstrate proper transport and efflux of loperamide, morphine, and oxycodone in the microfluidic NVU containing BMECs derived from human iPSCs. We further demonstrate that cortisol can alter permeability of loperamide and morphine in a divergent manner. Conclusions We reveal a novel role for the stress hormone cortisol in modulating the transport of opioids across the BBB, which could contribute to their abuse or overdose. Our updated BBB model represents a powerful tool available to researchers, clinicians, and drug manufacturers for understanding the mechanisms by which opioids access the CNS.
Collapse
|
38
|
Wang Q, Ren T, Zhao J, Wong CH, Chan HYE, Zuo Z. Exclusion of unsuitable CNS drug candidates based on their physicochemical properties and unbound fractions in biomatrices for brain microdialysis investigations. J Pharm Biomed Anal 2020; 178:112946. [PMID: 31727358 DOI: 10.1016/j.jpba.2019.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Microdialysis has been the only direct method of continuously measuring the unbound drug concentrations in extracellular fluid at a specific brain region with respect to time in the same animal. However, not every compound is suitable for microdialysis system as demonstrated by their inconsistent "by gain" and "by loss" in-vitro microdialysis probe recoveries leading to over- or under- estimated in-vivo concentrations. Therefore, our current study was proposed aiming to develop simple exclusion criteria for drug candidates that are not suitable for microdialysis system investigation. Through literature research, the properties ((LogP, pKa, water solubility and unbound fraction in plasma and brain) of drugs that have been reported for microdialysis studies were summarized. The exclusion criteria were developed by evaluating the impact of such properties on the consistency of in-vitro "by gain" and "by loss" recoveries of microdialysis probe. As a result, forty-five compounds were identified from literatures, among which doxorubicin, docetaxel, omeprazole, donepezil and phenytoin were found to have inconsistent in-vitro "by gain" and "by loss" microdialysis probe recoveries and subsequently selected for the exclusion criteria analysis. It was found that compounds with limited water solubility (less than 1 g/L) and unbound fraction in plasma (fu,plasma less than 30%) and brain homogenate (fu,brain less than 10%) were more likely to have inconsistent "by gain" and "by loss" microdialysis probe recoveries. Our proposed exclusion criteria were further validated using carbamazepine (limited water solubility only), DB213 (limited fu,brain only) and piperine (both limited water solubility and limited fu,plasma, fu,brain). Our current proposed exclusion criteria will help excluding the CNS drug candidates that are highly unlikely suitable for brain microdialysis approach leading to a better success rate in brain microdialysis approach development.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Tianjing Ren
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Jiajia Zhao
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
39
|
Gupta M, Bogdanowicz T, Reed MA, Barden CJ, Weaver DF. The Brain Exposure Efficiency (BEE) Score. ACS Chem Neurosci 2020; 11:205-224. [PMID: 31815431 DOI: 10.1021/acschemneuro.9b00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB), composed of microvascular tight junctions and glial cell sheathing, selectively controls drug permeation into the central nervous system (CNS) by either passive diffusion or active transport. Computational techniques capable of predicting molecular brain penetration are important to neurological drug design. A novel prediction algorithm, termed the Brain Exposure Efficiency Score (BEE), is presented. BEE addresses the need to incorporate the role of trans-BBB influx and efflux active transporters by considering key brain penetrance parameters, namely, steady state unbound brain to plasma ratio of drug (Kp,uu) and dose normalized unbound concentration of drug in brain (Cu,b). BEE was devised using quantitative structure-activity relationships (QSARs) and molecular modeling studies on known transporter proteins and their ligands. The developed algorithms are provided as a user-friendly open source calculator to assist in optimizing a brain penetrance strategy during the early phases of small molecule molecular therapeutic design.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Thomas Bogdanowicz
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Mark A. Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Christopher J. Barden
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, Ontario M5T 2S8, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 Canada
| |
Collapse
|
40
|
Rytkönen J, Ranta VP, Kokki M, Kokki H, Hautajärvi H, Rinne V, Heikkinen AT. Physiologically based pharmacokinetic modelling of oxycodone drug-drug interactions. Biopharm Drug Dispos 2020; 41:72-88. [PMID: 31925778 DOI: 10.1002/bdd.2215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 02/01/2023]
Abstract
Oxycodone is an opioid analgesic with several pharmacologically active metabolites and relatively narrow therapeutic index. Cytochrome P450 (CYP) 3A4 and CYP2D6 play major roles in the metabolism of oxycodone and its metabolites. Thus, inhibition and induction of these enzymes may result in substantial changes in the exposure of both oxycodone and its metabolites. In this study, a physiologically based pharmacokinetic (PBPK) model was built using GastroPlus™ software for oxycodone, two primary metabolites (noroxycodone, oxymorphone) and one secondary metabolite (noroxymorphone). The model was built based on literature and in house in vitro and in silico data. The model was refined and verified against literature clinical data after oxycodone administration in the absence of drug-drug interactions (DDI). The model was further challenged with simulations of oxycodone DDI with CYP3A4 inhibitors ketoconazole and itraconazole, CYP3A4 inducer rifampicin and CYP2D6 inhibitor quinidine. The magnitude of DDI (AUC ratio) was predicted within 1.5-fold error for oxycodone, within 1.8-fold and 1.3-4.5-fold error for the primary metabolites noroxycodone and oxymorphone, respectively, and within 1.4-4.5-fold error for the secondary metabolite noroxymorphone, when compared to the mean observed AUC ratios. This work demonstrated the capability of PBPK model to simulate DDI of the administered compounds and the formed metabolites of both DDI victim and perpetrator. However, the predictions for the formed metabolites tend to be associated with higher uncertainty than the predictions for the administered compound. The oxycodone model provides a tool for forecasting oxycodone DDI with other CYP3A4 and CYP2D6 DDI perpetrators that may be co-administered with oxycodone.
Collapse
Affiliation(s)
- Jaana Rytkönen
- Admescope Ltd, Oulu, Finland.,School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Veli-Pekka Ranta
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Merja Kokki
- Anesthesia and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| | - Hannu Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | |
Collapse
|
41
|
Loryan I, Hammarlund-Udenaes M, Syvänen S. Brain Distribution of Drugs: Pharmacokinetic Considerations. Handb Exp Pharmacol 2020; 273:121-150. [PMID: 33258066 DOI: 10.1007/164_2020_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is crucial to understand the basic principles of drug transport, from the site of delivery to the site of action within the CNS, in order to evaluate the possible utility of a new drug candidate for CNS action, or possible CNS side effects of non-CNS targeting drugs. This includes pharmacokinetic aspects of drug concentration-time profiles in plasma and brain, blood-brain barrier transport and drug distribution within the brain parenchyma as well as elimination processes from the brain. Knowledge of anatomical and physiological aspects connected with drug delivery is crucial in this context. The chapter is intended for professionals working in the field of CNS drug development and summarizes key pharmacokinetic principles and state-of-the-art experimental methodologies to assess brain drug disposition. Key parameters, describing the extent of unbound (free) drug across brain barriers, in particular blood-brain and blood-cerebrospinal fluid barriers, are presented along with their application in drug development. Special emphasis is given to brain intracellular pharmacokinetics and its role in evaluating target engagement. Fundamental neuropharmacokinetic differences between small molecular drugs and biologicals are discussed and critical knowledge gaps are outlined.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
42
|
Helms HCC, Kristensen M, Saaby L, Fricker G, Brodin B. Drug Delivery Strategies to Overcome the Blood-Brain Barrier (BBB). Handb Exp Pharmacol 2020; 273:151-183. [PMID: 33367937 DOI: 10.1007/164_2020_403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain capillary endothelium serves both as an exchange site for gases and solutes between blood and brain and as a protective fence against neurotoxic compounds from the blood. While this "blood-brain barrier" (BBB) function protects the fragile environment in the brain, it also poses a tremendous challenge for the delivery of drug compounds to the brain parenchyma. Paracellular brain uptake of drug compounds is limited by the physical tightness of the endothelium, which is tightly sealed with junction complexes. Transcellular uptake of lipophilic drug compounds is limited by the activity of active efflux pumps in the luminal membrane. As a result, the majority of registered CNS drug compounds are small lipophilic compounds which are not efflux transporter substrates. Small molecule CNS drug development therefore focuses on identifying compounds with CNS target affinity and modifies these in order to optimize lipophilicity and decrease efflux pump interactions. Since efflux pump activity is limiting drug uptake, it has been investigated whether coadministration of drug compounds with efflux pump inhibitors could increase drug uptake. While the concept works to some extent, a lot of challenges have been encountered in terms of obtaining efficient inhibition while avoiding adverse effects.Some CNS drug compounds enter the brain via nutrient transport proteins, an example is the levodopa, a prodrug of Dopamine, which crosses the BBB via the large neutral amino acid transporter LAT1. While carrier-mediated transport of drug compounds may seem attractive, the development of drugs targeting transporters is very challenging, since the compounds should have a good fit to the binding site, while still maintaining their CNS target affinity.Receptor-mediated transport of drug compounds, especially biotherapeutics, conjugated to a receptor-binding ligand has shown some promise, although the amounts transported are rather low. This also holds true for drug-conjugation to cell-penetrating peptides. Due to the low uptake of biotherapeutics, barrier-breaching approaches such as mannitol injections and focused ultrasound have been employed with some success to patient groups with no other treatment options.
Collapse
Affiliation(s)
| | - Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bioneer-Farma, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Luo Z, Miao J, Shu S, Wang Y, Zhu X, Hu C, Shen Y. Pharmacokinetics and Bioequivalence Evaluation of a New Oxycodone Tamper-Resistant Tablet Administered with an Opioid Antagonist in Patients with Chronic Pain. Clin Drug Investig 2019; 40:139-148. [PMID: 31679120 DOI: 10.1007/s40261-019-00870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Oxycodone tamper resistant (OTR) is a new extended-release abuse-deterrent formulation providing improvements in the tamper resistant characteristics. This study aimed to investigate the pharmacokinetic properties of the new OTR tablets and evaluate the bioequivalence of oxycodone from OTR and the original extended release (ER) formulation tablets administered with an opioid antagonist in patients with chronic pain. METHODS In this open-label, randomized, cross-over study, the enrolled patients were randomised to receive a single dose of 40 mg OTR or 40 mg OXYCONTIN® (OXY) tablet administered with naltrexone blockade under fasting conditions. Serial blood samples for pharmacokinetic analysis were collected. Plasma oxycodone was quantified by a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. Tolerability was evaluated by monitoring adverse events, physical examinations, 12-lead ECG and laboratory tests. RESULTS A total of 38 patients were enrolled and 33 subjects completed the study. After a single dose of 40 mg tablets, pharmacokinetic results of the new OTR tablet were found to be similar to those of original extended-release oxycodone tablet. OTR 40 mg was bioequivalent to OXY 40 mg and was well tolerated in patients with chronic pain. CONCLUSIONS The new OTR formulation could provide a new choice in the treatment of chronic pain and reduce the potential for oxycodone abuse. Chictr.org identifier: ChiCTR1800017253.
Collapse
Affiliation(s)
- Zhu Luo
- GCP Center/Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jia Miao
- GCP Center/Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shiqing Shu
- GCP Center/Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying Wang
- GCP Center/Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohong Zhu
- GCP Center/Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Chao Hu
- GCP Center/Institute of Drug Clinical Trials, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yali Shen
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
44
|
Kinnunen M, Kokki H, Hautajärvi H, Lantto J, Räsänen J, Voipio HM, Kokki M. Oxycodone concentrations in the central nervous system and cerebrospinal fluid after epidural administration to the pregnant ewe. Basic Clin Pharmacol Toxicol 2019; 125:430-438. [PMID: 31222944 DOI: 10.1111/bcpt.13276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
Abstract
The main sites of the analgesic action of oxycodone are the brain and spinal cord. The present study describes the concentrations of oxycodone and its metabolites in the brain and spinal cord after epidural administration to the ewe. Twenty pregnant ewes undergoing laparotomy were randomized into two groups to receive epidural oxycodone: infusion group (n = 10, 0.1 mg·kg-1 bolus followed by continuous infusion of 0.05 mg·kg-1 ·h-1 for five days) or repeated boluses group (n = 10, 0.2 + 2x0.1 mg·kg-1 bolus followed by a 0.2 mg·kg-1 bolus every 12 hours for five days). After five days of oxycodone administration, arterial blood samples were collected, the sheep were killed, and a CSF sample and tissue samples from the cortex, thalamus, cerebellum and spinal cord were obtained for the quantification of oxycodone and its main metabolites. The median plasma and CSF concentrations of oxycodone were 9.0 and 14.2 ng·mL-1 after infusion and 0.4 and 1.1 ng·mL-1 after repeated boluses. In the infusion group, the cortex, thalamus and cerebellum oxycodone concentrations were 4-8 times higher and in the spinal cord 1310 times higher than in plasma. In the repeated boluses group, brain tissue concentrations were similar in the three areas, and in the spinal cord were 720 times higher than in plasma. Oxymorphone was the main metabolite detected, which accumulated in the brain and spinal cord tissue. In conclusion, first, accumulation of oxycodone and oxymorphone in the CNS was observed, and second, high spinal cord concentrations suggest that epidural oxycodone may provide segmental analgesia.
Collapse
Affiliation(s)
- Mari Kinnunen
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hannu Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Juulia Lantto
- Department of Obstetrics and Gynaecology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Räsänen
- Department of Obstetrics and Gynaecology, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Obstetrics and Gynaecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna-Marja Voipio
- Laboratory Animal Centre, Department of Experimental Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Merja Kokki
- Department of Anaesthesia and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
45
|
Lamminsalo M, Piirainen P, Kokki H, Knibbe CAJ, Ranta VP, Välitalo P, Kokki M. Population pharmacokinetics of oxycodone in plasma and cerebrospinal fluid after epidural and intravenous administration. Expert Opin Drug Deliv 2019; 16:649-656. [PMID: 31092024 DOI: 10.1080/17425247.2019.1618267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives: To establish the first plasma and cerebrospinal fluid (CSF) oxycodone population pharmacokinetic (PopPK) model after epidural (EPI) and intravenous (IV) oxycodone administration. Methods: The study was conducted with 30 female subjects undergoing elective gynecological surgery with epidural analgesia. A parallel single dose of EPI oxycodone with IV placebo (EPI group; n = 18) or IV oxycodone with EPI placebo (IV group; n = 12) was administered. An epidural catheter for drug administration was placed at T12/L1 and a spinal catheter for CSF sampling at L3/4. Plasma and CSF for oxycodone analysis were frequently collected. A PopPK model was built using the NONMEM software package. Results: Plasma and CSF oxycodone concentrations were evaluated using separate central plasma and CSF compartments and separate peripheral plasma and CSF compartments. Epidural space served as a depot compartment with transfer to both the plasma and CSF central compartments. The population parameters for plasma clearance and apparent distribution volumes for central and peripheral compartments for plasma and CSF were 37.4 L/h, 90.2 L, 68.9 L, 0.035 L (fixed based on literature), and 0.039 L, respectively. Conclusion: A PopPK model was developed and found to precisely and accurately describe oxycodone time-concentration data in plasma and CSF.
Collapse
Affiliation(s)
- M Lamminsalo
- a School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - P Piirainen
- b School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - H Kokki
- b School of Medicine , University of Eastern Finland , Kuopio , Finland
| | - C A J Knibbe
- c Division of Pharmacology , Leiden University , Leiden , The Netherlands
| | - V-P Ranta
- a School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - P Välitalo
- a School of Pharmacy , University of Eastern Finland , Kuopio , Finland.,d Finnish Medicines Agency, Assessment of Medicinal Products Department, Pharmacobiological Unit , Kuopio , Finland
| | - Merja Kokki
- b School of Medicine , University of Eastern Finland , Kuopio , Finland.,e Department of Anesthesiology and Intensive Care , Kuopio University Hospital , Kuopio , Finland
| |
Collapse
|
46
|
Gyawali A, Krol S, Kang YS. Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier. Biomol Ther (Seoul) 2019; 27:290-301. [PMID: 30971062 PMCID: PMC6513184 DOI: 10.4062/biomolther.2019.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [3H]paeonol in rat brain was about 6-fold higher than that of [14C]sucrose, the vascular space marker of BBB. The uptake of [3H]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [3H]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sokhoeurn Krol
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Young-Sook Kang
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
47
|
Raff M, Belbachir A, El-Tallawy S, Ho KY, Nagtalon E, Salti A, Seo JH, Tantri AR, Wang H, Wang T, Buemio KC, Gutierrez C, Hadjiat Y. Intravenous Oxycodone Versus Other Intravenous Strong Opioids for Acute Postoperative Pain Control: A Systematic Review of Randomized Controlled Trials. Pain Ther 2019; 8:19-39. [PMID: 31004317 PMCID: PMC6514019 DOI: 10.1007/s40122-019-0122-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/29/2022] Open
Abstract
Introduction Optimal pain management is crucial to the postoperative recovery process. We aimed to evaluate the efficacy and safety of intravenous oxycodone with intravenous fentanyl, morphine, sufentanil, pethidine, and hydromorphone for acute postoperative pain. Methods A systematic literature search of PubMed, Cochrane Library, and EMBASE databases was performed for randomized controlled trials published from 2008 through 2017 (inclusive) that evaluated the acute postoperative analgesic efficacy of intravenous oxycodone against fentanyl, morphine, sufentanil, pethidine, and hydromorphone in adult patients (age ≥ 18 years). Outcomes examined included analgesic consumption, pain intensity levels, side effects, and patient satisfaction. Results Eleven studies were included in the review; six compared oxycodone with fentanyl, two compared oxycodone with morphine, and three compared oxycodone with sufentanil. There were no eligible studies comparing oxycodone with pethidine or hydromorphone. Overall, analgesic consumption was lower with oxycodone than with fentanyl or sufentanil. Oxycodone exhibited better analgesic efficacy than fentanyl and sufentanil, and comparable analgesic efficacy to morphine. In terms of safety, there was a tendency towards more side effects with oxycodone than with fentanyl, but the incidence of side effects with oxycodone was comparable to morphine and sufentanil. Where patient satisfaction was evaluated, higher satisfaction levels were observed with oxycodone than with sufentanil and comparable satisfaction was noted when comparing oxycodone with fentanyl. Patient satisfaction was not evaluated in the studies comparing oxycodone with morphine. Conclusions Our findings suggest that intravenous oxycodone provides better analgesic efficacy than fentanyl and sufentanil, and comparable efficacy to morphine with less adverse events such as sedation. No studies comparing intravenous oxycodone with pethidine or hydromorphone were identified in this review. Better alignment of study methodologies for future research in this area is recommended to provide the best evidence base for a meta-analysis. Funding Mundipharma Singapore Holding Pte Ltd, Singapore. Electronic supplementary material The online version of this article (10.1007/s40122-019-0122-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milton Raff
- Pain Clinic, Christiaan Barnard Memorial Hospital, Cape Town, South Africa.
| | - Anissa Belbachir
- Faculté de médecine, Université Paris-Descartes, Pôle d'anesthésie-réanimation, Hôpital Cochin, Paris, France
| | - Salah El-Tallawy
- Department of Anesthesia and Pain Management, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Kok Yuen Ho
- The Pain Clinic, Mount Alvernia Medical Centre, Singapore, Singapore
| | - Eric Nagtalon
- Department of Anesthesia, University of the East Ramon Magsaysay Memorial Medical Center, Quezon City, Philippines
| | - Amar Salti
- Anesthesiology Institute, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Jeong-Hwa Seo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Aida Rosita Tantri
- Department of Anesthesiology and Intensive Care, Universitas Indonesia, Dr. Ciptomangunkusumo National General Hospital, Jakarta, Indonesia
| | - Hongwei Wang
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | | | | | - Yacine Hadjiat
- Mundipharma Singapore Holding Pte. Ltd., Singapore, Singapore
| |
Collapse
|
48
|
McMillan DM, Miksys S, Tyndale RF. Rat brain CYP2D activity alters in vivo central oxycodone metabolism, levels and resulting analgesia. Addict Biol 2019; 24:228-238. [PMID: 29266563 DOI: 10.1111/adb.12590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023]
Abstract
Oxycodone is metabolized by CYP2D to oxymorphone. Despite oxymorphone being a more potent opioid-receptor agonist, its contribution to oxycodone analgesia may be minor because of low peripheral production, low blood-brain barrier permeability and central nervous system efflux. CYP2D metabolism within the brain may contribute to variation in central oxycodone and oxymorphone levels, thereby affecting analgesia. Brain CYP2D expression and activity are subject to exogenous regulation; nicotine induces rat brain, but not liver, CYP2D consistent with higher brain CYP2D in smokers. We assessed the role of rat brain CYP2D in orally administered oxycodone metabolism (in vivo brain microdialysis) and analgesia (tail-flick test) by inhibiting brain CYP2D selectively with intracerebroventricular propranolol (mechanism-based inhibitor) and inducing brain CYP2D with nicotine. Inhibiting brain CYP2D increased brain oxycodone levels (1.8-fold; P < 0.03) and analgesia (1.5-fold AUC0-60 ; P < 0.001) after oxycodone, while inducing brain CYP2D increased brain oxymorphone levels (4.6-fold; P < 0.001) and decreased analgesia (0.8-fold; P < 0.02). Inhibiting the induced brain CYP2D reversed the change in oxycodone levels (1.2-fold; P > 0.1) and analgesia (1.1-fold; P > 0.3). Brain, but not plasma, metabolic ratios were affected by pre-treatments. Peak analgesia was inversely correlated with ex vivo brain (P < 0.003), but not hepatic (P > 0.9), CYP2D activity. Altering brain CYP2D did not affect analgesia from oral oxymorphone (P > 0.9 for AUC0-60 across all groups), which is not a CYP2D substrate. Thus, brain CYP2D metabolism alters local oxycodone levels and response, suggesting that people with increased brain CYP2D activity may have reduced oxycodone response. Factors that alter individual oxycodone response may be useful for optimizing treatment and minimizing abuse liability.
Collapse
Affiliation(s)
- Douglas M McMillan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) and Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Sharon Miksys
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) and Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH) and Department of Pharmacology and Toxicology, University of Toronto, Canada
- Department of Psychiatry, University of Toronto, Canada
| |
Collapse
|
49
|
Remillard D, Kaye AD, McAnally H. Oxycodone’s Unparalleled Addictive Potential: Is it Time for a Moratorium? Curr Pain Headache Rep 2019; 23:15. [DOI: 10.1007/s11916-019-0751-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
|