1
|
Rekka EA, Kourounakis PN, Pantelidou M. Xenobiotic Metabolising Enzymes: Impact on Pathologic Conditions, Drug Interactions and Drug Design. Curr Top Med Chem 2019; 19:276-291. [DOI: 10.2174/1568026619666190129122727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Background:
The biotransformation of xenobiotics is a homeostatic defensive response of the
body against bioactive invaders. Xenobiotic metabolizing enzymes, important for the metabolism,
elimination and detoxification of exogenous agents, are found in most tissues and organs and are distinguished
into phase I and phase II enzymes, as well as phase III transporters. The cytochrome P450 superfamily
of enzymes plays a major role in the biotransformation of most xenobiotics as well as in the
metabolism of important endogenous substrates such as steroids and fatty acids. The activity and the
potential toxicity of numerous drugs are strongly influenced by their biotransformation, mainly accomplished
by the cytochrome P450 enzymes, one of the most versatile enzyme systems.
Objective:
In this review, considering the importance of drug metabolising enzymes in health and disease,
some of our previous research results are presented, which, combined with newer findings, may
assist in the elucidation of xenobiotic metabolism and in the development of more efficient drugs.
Conclusion:
Study of drug metabolism is of major importance for the development of drugs and provides
insight into the control of human health. This review is an effort towards this direction and may
find useful applications in related medical interventions or help in the development of more efficient
drugs.
Collapse
Affiliation(s)
- Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki- 54124, Greece
| | - Panos N. Kourounakis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki- 54124, Greece
| | - Maria Pantelidou
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
| |
Collapse
|
2
|
Hough LB, Nalwalk JW, Ding X, Scheer N. Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms. Drug Metab Dispos 2015; 43:1326-30. [PMID: 26109562 PMCID: PMC4538858 DOI: 10.1124/dmd.115.065490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s), which are well-known drug-metabolizing enzymes, are thought to play a signal transduction role in µ opioid analgesia and may serve as high-affinity (3)H-cimetidine ((3)HCIM) binding sites in the brain. (3)HCIM binding sites may also be related to opioid or nonopioid analgesia. However, of the more than 100 murine P450 enzymes, the specific isoform(s) responsible for either function have not been identified. Presently, three lines of constitutive P450 gene cluster knockout (KO) mice with full-length deletions of 14 Cyp2c, 9 Cyp2d, and 7 Cyp3a genes were studied for deficiencies in (3)HCIM binding and for opioid analgesia. Liver and brain homogenates from all three genotypes showed normal (3)HCIM binding values, indicating that gene products of Cyp2d, Cyp3a, and Cyp2c are not (3)HCIM-binding proteins. Cyp2d KO and Cyp3a KO mice showed normal antinociceptive responses to a moderate systemic dose of morphine (20 mg/kg, s.c.), thereby excluding 16 P450 isoforms as mediators of opioid analgesia. In contrast, Cyp2c KO mice showed a 41% reduction in analgesic responses following systemically (s.c.) administered morphine. However, the significance of brain Cyp2c gene products in opioid analgesia is uncertain because little or no analgesic deficits were noted in Cyp2c KO mice following intracerebroventricular or intrathecalmorphine administration, respectively. These results show that the gene products of Cyp2d and Cyp3a do not contribute to µ opioid analgesia in the central nervous system. A possible role for Cyp2c gene products in opioid analgesia requires further consideration.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Xinxin Ding
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| | - Nico Scheer
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York (L.B.H., J.W.N.); College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York (X.D.); and Taconic Biosciences GmbH, Cologne, Germany (N.S.)
| |
Collapse
|
3
|
Hough LB, Nalwalk JW, Cleary RA, Phillips JG, Fang C, Yang W, Ding X. Deficits in neuronal cytochrome P450 activity attenuate opioid analgesia but not opioid side effects. Eur J Pharmacol 2014; 740:255-62. [PMID: 25062792 DOI: 10.1016/j.ejphar.2014.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/20/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
Morphine-like analgesics act on µ opioid receptors in the CNS to produce highly effective pain relief, but the same class of receptors also mediates non-therapeutic side effects. The analgesic properties of morphine were recently shown to require the activity of a brain neuronal cytochrome P450 epoxygenase, but the significance of this pathway for opioid side effects is unknown. Here we show that brain P450 activity is not required for three of morphine׳s major side effects (respiratory depression, constipation, and locomotor stimulation). Following systemic or intracerebroventricular administration of morphine, transgenic mice with brain neuron - specific reductions in P450 activity showed highly attenuated analgesic responses as compared with wild-type (control) mice. However, brain P450-deficient mice showed normal morphine-induced side effects (respiratory depression, locomotor stimulation, and inhibition of intestinal motility). Pretreatment of control mice with the P450 inhibitor CC12 similarly reduced the analgesia, but not these side effects of morphine. Because activation of brain µ opioid receptors produces both opioid analgesia and opioid side effects, dissociation of the mechanisms for the therapeutic and therapy-limiting effects of opioids has important consequences for the development of analgesics with reduced side effects and/or limited addiction liability.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA.
| | - Julia W Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Rachel A Cleary
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | | | - Cheng Fang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Weizhu Yang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY, USA
| |
Collapse
|
4
|
Conroy JL, Nalwalk JW, Phillips JG, Hough LB. CC12, a P450/epoxygenase inhibitor, acts in the rat rostral, ventromedial medulla to attenuate morphine antinociception. Brain Res 2013; 1499:1-11. [PMID: 23298831 DOI: 10.1016/j.brainres.2012.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 02/05/2023]
Abstract
Brain cytochrome P450 epoxygenases were recently shown to play an essential role in mediating the pain-relieving properties of morphine. To identify the CNS sites containing the morphine-relevant P450s, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space. In addition, intra-RVM CC12 pretreatment nearly completely blocked the effects of morphine following intracerebroventricular (icv) administration. Although morphine is thought to act in both the PAG and RVM by pre-synaptic inhibition of inhibitory GABAergic transmission, the present findings show that 1) the mechanism of morphine action differs between these two brainstem areas, and 2) P450 activity within the RVM is important for supraspinal morphine antinociception. Characterization of morphine-P450 interactions within RVM circuits will further enhance the understanding of the biochemistry of pain relief.
Collapse
Affiliation(s)
- Jennie L Conroy
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
5
|
Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, Yadav S, Khanna VK, Das V, Jain SK, Pant AB. Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34(+) stem cell-derived differentiating neuronal cells. Toxicol Sci 2012; 129:392-410. [PMID: 22733800 DOI: 10.1093/toxsci/kfs213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The status of xenobiotic metabolism in developing human brain cells is not known. The reason is nonavailability of developing human fetal brain. We investigate the applicability of the plasticity potential of human umbilical cord blood stem cells for the purpose. Characterized hematopoietic stem cells are converted into neuronal subtypes in eight days. The expression and substrate-specific catalytic activity of the cytochrome P450s (CYPs) CYP1A1 and 3A4 increased gradually till day 8 of differentiation, whereas CYP2B6 and CYP2E1 showed highest expression and activity at day 4. There was no significant increase in the expression of CYP regulators, namely, aryl hydrocarbon receptor (AHR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and glutathione-S-transferase (GSTP1-1) during differentiation. Differentiating cells showed significant induction in the expression of CYP1A1, 2B6, 2E1, 3A4, AHR, CAR, PXR, and GSTP1-1 when exposed to rifampin, a known universal inducer of CYPs. The xenobiotic-metabolizing capabilities of these differentiating cells were confirmed by exposing them to the organophosphate pesticide monocrotophos (MCP), a known developmental neurotoxicant, in the presence and absence of a universal inhibitor of CYPs-cimetidine. Early-differentiating cells (day 2) were found to be more vulnerable to xenobiotics than mature well-differentiated cells. For the first time, we report significant expression and catalytic activity of selected CYPs in human cord blood hematopoietic stem cell-derived neuronal cells at various stages of maturity. We also confirm significant induction in the expression and catalytic activity of selected CYPs in human cord blood stem cell-derived differentiating neuronal cells exposed to known CYP inducers and MCP.
Collapse
Affiliation(s)
- Abhishek K Singh
- In Vitro Toxicology Laboratory, Indian Institute of Toxicology Research, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang J, VanAlstine MA, Phillips JG, Wentland MP, Hough LB. Cytochrome P450 2C24: Expression, Tissue Distribution, High-Throughput Assay, and Pharmacological Inhibition. Acta Pharm Sin B 2012; 2:137-145. [PMID: 25068100 DOI: 10.1016/j.apsb.2012.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cytochrome P450 (CYP)-mediated epoxidation of arachidonic acid (AA) contributes to important biological functions, including the pain-relieving responses produced by analgesic drugs. However, the relevant epoxygenase(s) remain unidentified. Presently, we describe the tissue distribution, high-throughput assay, and pharmacological characteristics of the rat epoxygenase CYP2C24. Following cloning from male rat liver, recombinant baculovirus containing the C-terminal His-tagged cDNA was constructed and used to express the protein in Spodoptera frugiperda (Sf9) cells. Enzymatic activity was detected with membranes, NADPH regenerating system and CYP reductase, and optimized for high throughput screening by use of the Vivid Blue© BOMCC fluorescence substrate. Quantitative real-time PCR identified CYP2C24 m-RNA in liver, kidney, heart, lung, gonad and brain. Screening of CYP2C24 activity against a panel of inhibitors showed a very strong correlation with activity against the human homologue CYP2C19. In agreement with recent findings on CYP2C19, the epoxygenase blockers PPOH and MS-PPOH inhibited CYP2C24 only weakly, confirming that these drugs are not universal epoxygenase inhibitors. Finally, comparisons of the CYP2C24 inhibitor profile with anti-analgesic activity suggests that this isoform does not contribute to brain analgesic drug action. The present methods and pharmacological data will aid in study of the biological significance of this CYP isoform.
Collapse
Affiliation(s)
- Jun Yang
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Melissa A VanAlstine
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | - Mark P Wentland
- Dept. of Chemistry, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
7
|
Hough LB, Nalwalk JW, Yang J, Conroy JL, VanAlstine MA, Yang W, Gargano J, Shan Z, Zhang SZ, Wentland MP, Phillips JG, Knapp BI, Bidlack JM, Zuiderveld OP, Leurs R, Ding X. Brain P450 epoxygenase activity is required for the antinociceptive effects of improgan, a nonopioid analgesic. Pain 2011; 152:878-887. [PMID: 21316152 PMCID: PMC3065546 DOI: 10.1016/j.pain.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 12/01/2010] [Accepted: 01/04/2011] [Indexed: 01/16/2023]
Abstract
The search for the mechanism of action of improgan (a nonopioid analgesic) led to the recent discovery of CC12, a compound that blocks improgan antinociception. Because CC12 is a cytochrome P450 inhibitor, and brain P450 mechanisms were recently shown to be required in opioid analgesic signaling, pharmacological and transgenic studies were performed in rodents to test the hypothesis that improgan antinociception requires brain P450 epoxygenase activity. Intracerebroventricular (i.c.v.) administration of the P450 inhibitors miconazole and fluconazole, and the arachidonic acid (AA) epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH) potently inhibited improgan antinociception in rats at doses that were inactive alone. MW06-25, a new P450 inhibitor that combines chemical features of CC12 and miconazole, also potently blocked improgan antinociception. Although miconazole and CC12 were weakly active at opioid and histamine H(3) receptors, MW06-25 showed no activity at these sites, yet retained potent P450-inhibiting properties. The P450 hypothesis was also tested in Cpr(low) mice, a viable knock-in model with dramatically reduced brain P450 activity. Improgan (145 nmol, i.c.v.) antinociception was reduced by 37% to 59% in Cpr(low) mice, as compared with control mice. Moreover, CC12 pretreatment (200 nmol, i.c.v.) abolished improgan action (70% to 91%) in control mice, but had no significant effect in Cpr(low) mice. Thus, improgan's activation of bulbospinal nonopioid analgesic circuits requires brain P450 epoxygenase activity. A model is proposed in which (1) improgan activates an unknown receptor to trigger downstream P450 activity, and (2) brainstem epoxygenase activity is a point of convergence for opioid and nonopioid analgesic signaling.
Collapse
MESH Headings
- 14-alpha Demethylase Inhibitors/pharmacology
- Amides/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacokinetics
- Animals
- Brain/drug effects
- Brain/metabolism
- Cell Line, Transformed
- Cimetidine/analogs & derivatives
- Cimetidine/pharmacology
- Cytochrome P-450 Enzyme System/metabolism
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Imidazoles/pharmacology
- Injections, Intraventricular/methods
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Miconazole/pharmacology
- NADPH-Ferrihemoprotein Reductase/deficiency
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacokinetics
- Narcotic Antagonists/pharmacokinetics
- Pain Measurement/drug effects
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Receptors, Histamine H3/metabolism
- Sulfides/pharmacology
- Time Factors
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- Lindsay B. Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Julia W. Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Jun Yang
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Jennie L. Conroy
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Melissa A. VanAlstine
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Weizhu Yang
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY 12201 USA
| | - Joseph Gargano
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Zhixing Shan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Shao-Zhong Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | - Mark P Wentland
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180 USA
| | | | - Brian I. Knapp
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Jean M. Bidlack
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Obbe P. Zuiderveld
- Leiden/Amsterdam Center for Drug Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rob Leurs
- Leiden/Amsterdam Center for Drug Research, VU University Amsterdam, Amsterdam, The Netherlands
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY 12201 USA
| |
Collapse
|
8
|
Heinricher MM, Maire JJ, Lee D, Nalwalk JW, Hough LB. Physiological basis for inhibition of morphine and improgan antinociception by CC12, a P450 epoxygenase inhibitor. J Neurophysiol 2010; 104:3222-30. [PMID: 20926616 PMCID: PMC3007650 DOI: 10.1152/jn.00681.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/06/2010] [Indexed: 12/29/2022] Open
Abstract
Many analgesic drugs, including μ-opioids, cannabinoids, and the novel nonopioid analgesic improgan, produce antinociception by actions in the rostral ventromedial medulla (RVM). There they activate pain-inhibiting neurons, termed "OFF-cells," defined by a nociceptive reflex-related pause in activity. Based on recent functional evidence that neuronal P450 epoxygenases are important for the central antinociceptive actions of morphine and improgan, we explored the convergence of opioid and nonopioid analgesic drug actions in RVM by studying the effects of the P450 epoxygenase inhibitor CC12 on the analgesic drug-induced activation of these OFF-cells and on behavioral antinociception. In rats lightly anesthetized with isoflurane, we recorded the effects of intraventricular morphine and improgan, with and without CC12 pretreatment, on tail flick latency and activity of identified RVM neurons: OFF-cells, ON-cells (pronociceptive neurons), and neutral cells (unresponsive to analgesic drugs). CC12 pretreatment preserved reflex-related changes in OFF-cell firing and blocked the analgesic actions of both drugs, without interfering with the increase in spontaneous firing induced by improgan or morphine. CC12 blocked suppression of evoked ON-cell firing by improgan, but not morphine. CC12 pretreatment had no effect by itself on RVM neurons or behavior. These data show that the epoxygenase inhibitor CC12 works downstream from receptors for both μ-opioid and improgan, at the inhibitory input mediating the OFF-cell pause. This circuit-level analysis thus provides a cellular basis for the convergence of opioid and nonopioid analgesic actions in the RVM. A presynaptic P450 epoxygenase may therefore be an important target for development of clinically useful nonopioid analgesic drugs.
Collapse
MESH Headings
- Action Potentials/drug effects
- Analgesics/antagonists & inhibitors
- Animals
- Cimetidine/analogs & derivatives
- Cimetidine/antagonists & inhibitors
- Cytochrome P-450 CYP2J2
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System
- Imidazoles/pharmacology
- Male
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/physiology
- Models, Neurological
- Morphine/antagonists & inhibitors
- Pain Perception/drug effects
- Pain Perception/physiology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Signal Transduction/drug effects
- Sulfides/pharmacology
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Mary M Heinricher
- Department of Neurological Surgery, CR-137, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
9
|
Stadel R, Carpenter AB, Nalwalk JW, de Esch IJ, Janssen E, Hough LB. Inhibition of brain [(3)H]cimetidine binding by improgan-like antinociceptive drugs. Eur J Pharmacol 2010; 632:33-8. [PMID: 20138862 PMCID: PMC2836490 DOI: 10.1016/j.ejphar.2010.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/07/2009] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
[(3)H]cimetidine, a radiolabeled histamine H(2) receptor antagonist, binds with high affinity to an unknown hemoprotein in the brain which is not the histamine H(2) receptor. Improgan, a close chemical congener of cimetidine, is a highly effective pain-relieving drug following CNS administration, yet its mechanism of action remains unknown. To test the hypothesis that the [(3)H]cimetidine-binding site is the improgan antinociceptive target, improgan, cimetidine, and 8 other chemical congeners were studied as potential inhibitors of [(3)H]cimetidine binding in membrane fractions from the rat brain. All compounds produced a concentration-dependent inhibition of [(3)H]cimetidine binding over a 500-fold range of potencies (K(i) values were 14.5 to >8000nM). However, antinociceptive potencies in rats did not significantly correlate with [(3)H]cimetidine-binding affinities (r=0.018, p=0.97, n=10). These results suggest that the [(3)H]cimetidine-binding site is not the analgesic target for improgan-like drugs.
Collapse
Affiliation(s)
- Rebecca Stadel
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Amanda B. Carpenter
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Julia W. Nalwalk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| | - Iwan J.P. de Esch
- Leiden/Amsterdam Center for Drug Research, Vrije University, Amsterdam, The Netherlands
| | - Elwin Janssen
- Leiden/Amsterdam Center for Drug Research, Vrije University, Amsterdam, The Netherlands
| | - Lindsay B. Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, USA
| |
Collapse
|
10
|
Hamid Q, Hamid S, Minhas LA, Gul A. Influence of cimetidine and bromocriptine on prolactin levels in rat fertility. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2008; 1:33-40. [PMID: 21383876 PMCID: PMC3040935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 10/22/2008] [Indexed: 05/30/2023]
Abstract
The present study was designed to see the effects of parenterally administered drugs cimetidine and bromocriptine affecting serum prolactin upon the fertility of adult male albino rats. Ninety adult young male albino rats between the ages of 60 to 120 days were selected. The animals were divided into three groups. Cimetidine was administered in a dose of 200 mg/kg body weight to group B intramuscularly and in addition to cimetidine, bromocriptine in a dose of 2.5 mg/day intramuscularly was given to group C. Normal saline was administered intramuscularly to control group A. Plasma prolactin was measured by Enzyme Immunoassays. Spermatogonia, spermatocytes, and spermatids were studied under oil immersion. The final plasma prolactin level instead of being elevated was found slightly depressed though insignificant in case of group B while remained slightly elevated instead of being suppressed/depressed though insignificant in group C. In group B spermatogenesis was normal in almost all of the tubules but a few of them were seen lined with only Sertoli cells and all the other germ cells like spermatogonia, primary spermatocytes, spermatids early and late, and spermatozoa were absent indicating total atrophy with both Sertoli cells and Leydig cells hyperplasia. While in the moderately affected tubules different types of spermatogonia A/B or intermediate were seen near the basement membrane. In group C both normal and abnormal germinal epithelium was seen in same/different tubules but a few of them were seen lined with only Sertoli cells and all the other germ cells like spermatogonia, primary spermatocytes, spermatids early and late, and spermatozoa were absent. The process of spermatogenesis was variable and appeared to be normal in most but in some it was found to be suppressed. This study revealed that the toxic effect of the drugs contributes to the infertility. It has not shown to be mediated through hormones in present study for which further research work is needed using low dose and longer duration to see the role of prolactin in causing infertility.
Collapse
Affiliation(s)
- Qamar Hamid
- Department of Anatomy, Dow university of health sciencesKarachi
| | - Sadaf Hamid
- Department of Anatomy, Ziauddin University4/B Shahra-e- Ghalib, Clifton, Karachi-75600, Pakistan
| | | | - Anjuman Gul
- Department of Biochemistry, Ziauddin UniversityClifton, Karachi-75600, Pakistan
| |
Collapse
|