1
|
Brown DW, Wee P, Bhandari P, Bukhari A, Grin L, Vega H, Hejazi M, Sosnowski D, Ablack J, Clancy EK, Pink D, Kumar J, Solis Ares MP, Lamb S, Quevedo R, Rawal B, Elian F, Rana N, Morales L, Govindasamy N, Todd B, Delmage A, Gupta S, McMullen N, MacKenzie D, Beatty PH, Garcia H, Parmar M, Gyoba J, McAllister C, Scholz M, Duncan R, Raturi A, Lewis JD. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 2024; 187:5357-5375.e24. [PMID: 39260374 DOI: 10.1016/j.cell.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024]
Abstract
Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.
Collapse
Affiliation(s)
- Douglas W Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Ping Wee
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Prakash Bhandari
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Amirali Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Liliya Grin
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Hector Vega
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Maryam Hejazi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Deborah Sosnowski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jailal Ablack
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Eileen K Clancy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jitendra Kumar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | | | - Suellen Lamb
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Rodrigo Quevedo
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Bijal Rawal
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Fahed Elian
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Rana
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Luis Morales
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Govindasamy
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Brendan Todd
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Angela Delmage
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Somnath Gupta
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Nichole McMullen
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Duncan MacKenzie
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Perrin H Beatty
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Henry Garcia
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Manoj Parmar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Jennifer Gyoba
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Chandra McAllister
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Matthew Scholz
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Roy Duncan
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Arun Raturi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada.
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA; Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA.
| |
Collapse
|
2
|
Balamayooran G, Tooze JA, Gardin JF, Long MC, Caudell DL, Cline JM, Kock ND, Paitsel M, Moore S, Jorgensen MJ. Age and sex associated organ weight differences in vervets/African green monkeys (Chlorocebus aethiops sabaeus). J Med Primatol 2024; 53:e12721. [PMID: 39048121 PMCID: PMC11378953 DOI: 10.1111/jmp.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
AbstractBackgroundAfrican green monkeys (AGMs, also known as vervets, Cholorocebus aethiops sabaeus) have been used in a variety of biomedical research studies. The aim of this study was to generate a reference for normal organ weights and percentage organ weights in AGMs of different age categories and sex.MethodsThe organ weights were compiled from 479 AGMs (285 females and 194 males) from 2004 to 2021. Age and sex differences of absolute and relative organ weights were analyzed using analysis of variance.ResultsThe findings demonstrate that males had higher body and organ weights than age‐matched females, but relative organ weights did not differ between males and females. At maturity, adrenal gland, brain, kidney, liver, thymus, and thyroid gland weights as a percentage of body weight declined, but relative weights of prostate gland, testes, and uterus were higher.ConclusionThese data should be beneficial to biomedical researchers and pathologists working with AGMs.
Collapse
Affiliation(s)
- Gayathriy Balamayooran
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Janet A Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Jean F Gardin
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Margaret C Long
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David L Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Monica Paitsel
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Stacy Moore
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew J Jorgensen
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
3
|
Pletcher JS, Zimmer JL, Liu CC, Beierschmitt A, Lewin AC. Ocular examination findings and selected ophthalmic diagnostic tests in African green monkeys (Chlorocebus aethiops sabaeus). Vet Ophthalmol 2024; 27:158-169. [PMID: 37442802 DOI: 10.1111/vop.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE To document ocular lesions and establish ophthalmic diagnostic test reference values in a colony of African green monkeys (Chlorocebus aethiops sabaeus). ANIMALS STUDIED Fifty one geriatric (GAGM, 19-30 years old), 10 adult (AAGM, 5-9 years old) and 10 juvenile (JAGM, <2 years old) African green monkeys housed in a single Caribbean research colony. PROCEDURES Ocular biomicroscopy, indirect fundoscopy, Schirmer tear test (STT), rebound tonometry (TonoVet®) and corneal fluorescein staining were performed. Mixed ANCOVA tests were performed to compare STT and IOP between groups. RESULTS Common ocular lesions in GAGM included vitreal degeneration (27/51, 51/102 eyes) and cataracts (21/51, 32/102 eyes). Vitreal degeneration was also common in AAGM (8/10, 16/20 eyes) and infrequent in JAGM (3/10, 6/20 eyes). Cataracts were not present in any JAGM or AAGM. All eyes in all three groups had perilimbal corneal pigmentation and faint lace-like anterior corneal stromal opacification. Median (range) STT values were 16.0 (18) mm/min in GAGM. Mean (SD) STT values were 14.2 (4.6) mm/min in AAGM, and 8.9 (3.4) mm/min in JAGM. Median (range) IOP values were 16.5 (27) mmHg in GAGM. Mean (SD) IOP values were 18.0 (2.8) mmHg in AAGM, and 14.1 (2.2) mmHg in JAGM. JAGM had significantly lower STT and IOP values compared to AAGM (p = .0449, .0057, respectively) and GAGM (p = .0002, .0130, respectively). CONCLUSIONS Spontaneous ocular lesions were common in geriatric monkeys in this research colony. IOP and STT values were lower in juvenile African green monkeys relative to adult or geriatric animals.
Collapse
Affiliation(s)
- Jacklin S Pletcher
- Matthew J. Ryan Veterinary Hospital, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Zimmer
- Oakland Veterinary Referral Services, Bloomfield Township, Michigan, USA
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Amy Beierschmitt
- Behavioural Science Foundation, Estridge Estate, Saint Kitts and Nevis
| | - Andrew C Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Mrożek K, Marchewka J, Leszczyński B. A morphological study and the variability in the number of infraorbital foramina in the African green monkey (Grivet) (Chlorocebus aethiops) using microcomputed tomography. J Morphol 2023; 284:e21607. [PMID: 37458084 DOI: 10.1002/jmor.21607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/18/2023]
Abstract
Knowledge of the nonhuman primate morphology and anatomy related to craniofacial mechanoreception is essential for a fundamental understanding of the incidents that have occurred during the evolution of craniofacial features. The present study focuses on the variability in the number of infraorbital foramina and associated anatomical structures such as the infraorbital canal (IOC) and the infraorbital groove (IOG), as they are considered to play an important role in the behavioral ecology of these animals. A total of 19 skulls of Chlorocebus aethiops were analyzed. The number of infraorbital foramina was assessed macroscopically using a magnifying glass and a small diameter probe. Three dimensional (3D) projections and morphometric analysis of the infraorbital foramina, IOCs, and IOGs were performed using microcomputed tomography (micro-CT) for two skulls that represent one of the most common morphological types. Regardless of sex and body side, the most common morphological type observed in the studied species is the presence of three infraorbital foramina. The IOC takes a funnel or pinched shape. 3D projections were made to assess the course of the infraorbital vascular and nerve bundles in selected individuals. The results indicate a high morphological diversity within the species, although there appears to be a consistent distribution pattern of infraorbital neurovascular bundles in species of the Cercopithecidae family. The use of X-ray micro-CT allowed 3D visualization of the maxillary region to determine the variability of the infraorbital foramina and to track the division of the infraorbital neurovascular bundle in the case of the most common macroscopic expression of the number of the infraorbital foramen in C. aethiops, as well as the morphometric of the IOCs and IOGs which are related to mechanoreception of the primate's snout.
Collapse
Affiliation(s)
- Kamil Mrożek
- Nature Education Center, Jagiellonian University, Krakow, Poland
- Laboratory of Anthropology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Justyna Marchewka
- Department of Human Biology, Institute of Biological Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland
| | - Bartosz Leszczyński
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Li W, Qiang X, Qin S, Huang Y, Hu Y, Bai B, Hou J, Gao R, Zhang X, Mi Z, Fan H, Ye H, Tong Y, Mao P. Virome diversity analysis reveals novel enteroviruses and a human picobirnavirus in stool samples from African green monkeys with diarrhea. INFECTION GENETICS AND EVOLUTION 2020; 82:104279. [PMID: 32165243 PMCID: PMC7102571 DOI: 10.1016/j.meegid.2020.104279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
It is important to identify viruses in animals because most infectious diseases in humans are caused by viruses of zoonotic origin. African green monkey is a widely used non-human primate model in biomedical investigations. In this study, total RNAs were extracted from stool samples of 10 African green monkeys with diarrhea. High-throughput sequencing was used to characterize viromes. PCR and Sanger sequencing were used to determine the full genome sequences. Great viral diversity was observed. The dominant viruses were enteroviruses and picobirnaviruses. Six enterovirus genomes and a picobirnavirus RNA-dependent RNA polymerase sequence were characterized. Five enteroviruses belonged to two putative new genotypes of species Enterovirus J. One enterovirus belonged to EV-A92. The picobirnavirus RNA-dependent RNA polymerase sequence had the highest nucleotide similarity (93.48%) with human picobirnavirus isolate GPBV6C2. The present study helped to identify the potential zoonotic viruses in African green monkeys. Further investigations are required to elucidate their pathogenic roles in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Li
- Chinese PLA Medical School, Beijing 100853, China; Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xin Qiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Hu
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Bingke Bai
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Jun Hou
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Rong Gao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Huahu Ye
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China.
| | - Yigang Tong
- BAIC-SM, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Panyong Mao
- Chinese PLA Medical School, Beijing 100853, China; Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
6
|
Identification of beagle food taking patterns and protocol for food effects evaluation on bioavailability. Sci Rep 2018; 8:12765. [PMID: 30143653 PMCID: PMC6109188 DOI: 10.1038/s41598-018-30937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/17/2018] [Indexed: 12/30/2022] Open
Abstract
Food is a known primary role to the exposure of the drugs orally administered. Since each animal may have unique food taking pattern and it is difficult to manipulate the food taking to animals, there lacks rationalized protocol for the food effects in pre-clinic study. The objective of this study was to identify the beagle food taking patterns and demonstrate their effects on bioavailability in valsartan. Herein, four types of food taking patterns of beagle were identified via inter-day and intra-day analysis, and named as Persisting, Pulsing, Postponing, Pushing (“4P Modes”), respectively, which were also validated by principal component analysis (PCA). Interestingly, food intake resulted in a reduced area under the concentration-time curve (AUC0–12h), maximum concentration (Cmax) and absorption rate, whilst the reduction varied in “4P Modes” of food taking. General considerations in the design of experiment for food effect to the bioavailability in beagles have been established as: to recognize the food taking patterns in each animal, to confirm the inter-day stability of the food taking behaviors, to trace the food taking patterns in parallel with plasma sampling. In conclusion, the right animals with proper food taking patterns should be assessed and selected for pre-clinic bioavailability evaluations.
Collapse
|
7
|
Scallan EM, Sample SH, Beierschmitt AM, Palmour RM. Hematologic and biochemical RIs for an aged population of captive African Green monkeys (Chlorocebus aethiops sabaeus). Vet Clin Pathol 2017; 46:430-435. [PMID: 28543372 DOI: 10.1111/vcp.12505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Established RIs for geriatric African Green monkeys (Chlorocebus aethiops sabaeus) are critical for clinical differentiation of normal aging from disease-related changes in this population. OBJECTIVE The aim of this study was to establish hematologic and serum biochemical RIs for a Caribbean captive population of geriatric (≥ 15 years of age) African Green monkeys, or Vervets. METHODS Inclusion and exclusion criteria were defined for a cohort of 109 healthy, aged (15- to 30-year-old, median 19-year-old) Vervets. Both male (34) and female (75) monkeys were included in RI generation. Complete manual and analyzer-generated blood counts and serum biochemistry profiles were performed at Ross University School of Veterinary Medicine, West Farm, St. Kitts, West Indies. All results were evaluated using Reference Value Advisor. Isolated outliers were identified using Dixon's outlier range statistic and not included in determination of RIs for individual analytes. Reference intervals were determined using parametric and nonparametric methods depending on the distribution. Data, including mean, median, maximum, and minimum values, were tabulated. RESULTS Of the 109 animals, 12 monkeys were excluded due to abnormal physical examination results (2 monkeys), and ≥ 2 confirmed outliers (9 monkeys), or evidence of disease based on laboratory data (one monkey). CONCLUSIONS This study provides useful RIs for assessment of hematology and serum biochemical variables in a geriatric population of African Green monkeys in the Caribbean.
Collapse
Affiliation(s)
- Elizabeth M Scallan
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts, Eastern Caribbean
| | - Saundra H Sample
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, Eastern Caribbean
| | - Amy M Beierschmitt
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, Eastern Caribbean.,Behavioural Science Foundation, St. Kitts, Eastern Caribbean
| | - Roberta M Palmour
- Behavioural Science Foundation, St. Kitts, Eastern Caribbean.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Interspecies Pharmacokinetics. 1. Allometric Scaling of Pharmacokinetic Parameters (a Review). Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1124-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Cao Y, Li A, Li L, Yan X, Fa Y, Zeng L, Fan J, Liu B, Sun Z. Identification of 32 major histocompatibility complex class I alleles in African green monkeys. ACTA ACUST UNITED AC 2014; 84:304-7. [PMID: 24899078 DOI: 10.1111/tan.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 05/08/2014] [Indexed: 11/30/2022]
Abstract
The African green monkey may be an ideal replacement for the rhesus monkey in biomedical research, but relatively little is known about the genetic background of major histocompatibility complex (MHC) class I molecules. In analysis of 12 African green monkeys, 13 Chae-A and 19 Chae-B alleles were identified. Among these alleles, 12 Chae-A and 9 Chae-B were new lineages. The full amino acid length deduced for Chae-A genes is 365 amino acids, but for Chae-B genes, the lengths are 365, 362, 361, and 359 amino acids, respectively. There were 1-3 Chae-A alleles and 2-5 Chae-B alleles in each animal. In African green monkeys, rhesus monkeys, and cynomolgus monkeys, the MHC-A and MHC-B alleles display trans-species polymorphism, rather than being clustered in a species-specific fashion.
Collapse
Affiliation(s)
- Y Cao
- Laboratory Animal Center, The Academy of Military Medical Science, Beijing, China; College of Life Sciences, Tarim University, Alaer, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Expression sequence tag library derived from peripheral blood mononuclear cells of the chlorocebus sabaeus. BMC Genomics 2012; 13:279. [PMID: 22726727 PMCID: PMC3539953 DOI: 10.1186/1471-2164-13-279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/11/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND African Green Monkeys (AGM) are amongst the most frequently used nonhuman primate models in clinical and biomedical research, nevertheless only few genomic resources exist for this species. Such information would be essential for the development of dedicated new generation technologies in fundamental and pre-clinical research using this model, and would deliver new insights into primate evolution. RESULTS We have exhaustively sequenced an Expression Sequence Tag (EST) library made from a pool of Peripheral Blood Mononuclear Cells from sixteen Chlorocebus sabaeus monkeys. Twelve of them were infected with the Simian Immunodeficiency Virus. The mononuclear cells were or not stimulated in vitro with Concanavalin A, with lipopolysacharrides, or through mixed lymphocyte reaction in order to generate a representative and broad library of expressed sequences in immune cells. We report here 37,787 sequences, which were assembled into 14,410 contigs representing an estimated 12% of the C. sabaeus transcriptome. Using data from primate genome databases, 9,029 assembled sequences from C. sabaeus could be annotated. Sequences have been systematically aligned with ten cDNA references of primate species including Homo sapiens, Pan troglodytes, and Macaca mulatta to identify ortholog transcripts. For 506 transcripts, sequences were quasi-complete. In addition, 6,576 transcript fragments are potentially specific to the C. sabaeus or corresponding to not yet described primate genes. CONCLUSIONS The EST library we provide here will prove useful in gene annotation efforts for future sequencing of the African Green Monkey genomes. Furthermore, this library, which particularly well represents immunological and hematological gene expression, will be an important resource for the comparative analysis of gene expression in clinically relevant nonhuman primate and human research.
Collapse
|
11
|
Glogowski S, Ward KW, Lawrence MS, Goody RJ, Proksch JW. The use of the African green monkey as a preclinical model for ocular pharmacokinetic studies. J Ocul Pharmacol Ther 2012; 28:290-8. [PMID: 22235843 DOI: 10.1089/jop.2011.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This investigation evaluated the ocular and systemic pharmacokinetics of besifloxacin in African green monkeys compared with cynomolgus monkeys following topical ocular dosing. METHODS A suspension formulation containing 0.6% besifloxacin was administered to African green and cynomolgus monkeys. Animals were euthanized at predetermined time intervals, and ocular tissue and systemic blood samples were collected and analyzed by LC/MS/MS. RESULTS In both African green and cynomolgus monkeys, high concentrations of besifloxacin were detected in anterior segment tissues, while levels in posterior segment tissues and plasma were low. Mean concentration versus time profiles of besifloxacin were generally similar between species, with rapid absorption into ocular tissues after a single dose. In anterior segment tissues, concentrations of besifloxacin were measurable throughout the 24-h sampling period in both species. Quantitatively, concentrations were consistently higher in the conjunctiva of African green monkeys compared with cynomolgus monkeys. Besifloxacin levels were also higher during the first 3 h following dosing in the tear fluid of African green monkeys, but lower in the iris/ciliary body during this timeframe. However after the 3-h time point, concentrations in the tear fluid and iris/ciliary body were similar between species. Exposure in cornea tended to be higher in African green monkeys, but the difference was less pronounced than for conjunctiva. Exposure in aqueous humor was comparable between species. In posterior segment tissues, exposure to besifloxacin tended to be higher in cynomolgus monkeys. Systemic exposure also tended to be higher in cynomolgus monkeys, but measurable levels were present in the plasma of both species throughout the 24-h sampling period. With the exception of iris/ciliary body and vitreous humor, mean ocular tissue weights were generally similar between species although a small, but statistically significant, difference was also observed in the choroid. CONCLUSIONS African green monkeys may be a suitable model for preclinical ocular pharmacokinetic studies. Additional studies using a variety of compounds would be useful in determining whether the quantitative differences in ocular exposures and ocular tissue weights observed in the present investigation reflect slight variations in the procedures used in these separate experiments, or true physiological and anatomical differences between species.
Collapse
Affiliation(s)
- Shellise Glogowski
- Global Pharmaceutical Research & Development, Bausch & Lomb, Rochester, New York 14609, USA.
| | | | | | | | | |
Collapse
|
12
|
Beaumont K, Gardner I, Chapman K, Hall M, Rowland M. Toward an integrated human clearance prediction strategy that minimizes animal use. J Pharm Sci 2011; 100:4518-35. [DOI: 10.1002/jps.22635] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/25/2011] [Accepted: 05/05/2011] [Indexed: 12/11/2022]
|
13
|
Bailey D, Jahagirdar R, Gordon A, Hafiane A, Campbell S, Chatur S, Wagner GS, Hansen HC, Chiacchia FS, Johansson J, Krimbou L, Wong NCW, Genest J. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J Am Coll Cardiol 2010; 55:2580-9. [PMID: 20513599 DOI: 10.1016/j.jacc.2010.02.035] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/08/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to determine whether a novel small molecule RVX-208 affects apolipoprotein (apo)A-I and high-density lipoprotein cholesterol (HDL-C) levels in vitro and in vivo. BACKGROUND Increased apoA-I and HDL-C levels are potential therapeutic targets for reducing atherosclerotic disease. METHODS HepG2 cells were treated with 0 to 60 mumol/l RVX-208 followed by assays for apoA-I and HDL-C production. For in vivo studies, African green monkeys (AGMs) received 15 to 60 mg/kg/day RVX-208, and the serum was analyzed for lipoprotein levels, HDL-subparticle distribution, cholesterol efflux, and activity of lipid-modifying enzymes. A phase I clinical trial was conducted in healthy volunteers (given 1 to 20 mg/kg/day of RVX-208) to assess safety, tolerability, and pharmacokinetics. RESULTS The RVX-208 induced apoA-I messenger ribonucleic acid and protein synthesis in HepG2 cells, leading to increased levels of pre-beta-migrating and alpha-lipoprotein particles containing apoA-I (LpA-I) in spent media. Similarly, in AGMs, RVX-208 treatment for 63 days increased serum apoA-I and HDL-C levels (60% and 97%, respectively). In addition, the levels of pre-beta(1)-LpA-I and alpha1-LpA-I HDL-subparticles were increased as well as adenosine triphosphate binding cassette AI, adenosine triphosphate binding cassette G1, and scavenger receptor class B type I-dependent cholesterol efflux. These changes were not mediated by cholesteryl-ester-transfer protein. Treatment of humans for 1 week with oral RVX-208 increased apoA-I, pre-beta-HDL, and HDL functionality. CONCLUSIONS RVX-208 increases apoA-I and HDL-C in vitro and in vivo. In AGMs, RVX-208 raises serum pre-beta(1)-LpA-I and alpha-LpA-I levels and enhances cholesterol efflux. Data in humans point to beneficial features of RVX-208 that might be useful for treating atherosclerosis.
Collapse
Affiliation(s)
- Dana Bailey
- Division of Cardiology, McGill University Health Center/Royal Victoria Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ward KW, Coon DJ, Magiera D, Bhadresa S, Struharik M, Lawrence MS. Exploration of the African green monkey as a preclinical pharmacokinetic model: oral pharmacokinetic parameters and drug–drug interactions. Xenobiotica 2009; 39:266-72. [DOI: 10.1080/00498250802657718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|