1
|
Shang L, Zhao M, Hang Y, Li C, Yang D, Zhang M, Zhang S, Wang P, He Z, Gao X. Unraveling the pharmaceutical excipient-drug interactions: The effects of polyethylene glycol copolymers on drug metabolism and transport systems. Int J Pharm 2025; 680:125758. [PMID: 40436223 DOI: 10.1016/j.ijpharm.2025.125758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/10/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025]
Abstract
Polyethylene glycol (PEG), a versatile and biocompatible polymer, serves as a key pharmaceutical excipient in the development and application of novel clinical drug formulations. It not only illustrates the enhancement of drug stability and bioavailability in conventional formulations, including injections, soft capsules, and drop pills, but it also can modify biomacromolecular drugs and nanodrug delivery systems (NDDS) via PEGylation technology to form PEGylated drugs and PEG copolymer carrier materials. Using PEG copolymer carrier materials in NDDS provides a promising strategy for tumor-targeted drug delivery. However, despite the numerous advantages of PEG copolymers as pharmaceutical excipients in clinical formulations, there is limited attention to their potential to induce pharmaceutical excipient-drug interactions (EDI). In fact, accumulating evidence suggests that PEG copolymers affect the metabolic transport systems of drugs. Therefore, this review summarizes recent research on the effects of commonly used PEG copolymers, including PEG, PEG-polycaprolactone (PEG-PCL), PEG-polylactic acid (PEG-PLA), PEG-poly (lactic-co-glycolic acid) (PEG-PLGA), Pluronic, D-alpha-tocopheryl polyethylene glycol succinate (TPGS), and 1,2-distearoyl-sn-glycero-3-phosphatidyl-ethanolamine-polyethylene glycol (DSPE-PEG), on drug phase I cytochrome P450 (CYP) and phase II uridine-5'-diphospho-glucuronosyltransferase (UGT) metabolic enzymes, drug transporters, and gut microbiota. This review will provide references for drug design, development, and rational clinical use.
Collapse
Affiliation(s)
- Leyuan Shang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Mei Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Ye Hang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Chaoji Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Dan Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Min Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Shuo Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Guizhou Medical University Experimental Animal Center, Guizhou Medical University, Anshun 561113, China
| | - Pengjiao Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China
| | - Zhixu He
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China.
| | - Xiuli Gao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Anshun 561113, China; Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Anshun 561113, China.
| |
Collapse
|
2
|
Rönnpagel V, Morof F, Römer S, Meyer-Tönnies MJ, Tzvetkov MV. Substrate-specific inhibition of organic cation transporter 1 revealed using a multisubstrate drug cocktail. Drug Metab Dispos 2025; 53:100074. [PMID: 40319555 PMCID: PMC12163485 DOI: 10.1016/j.dmd.2025.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 05/07/2025] Open
Abstract
Transporters of the SLC22 family, such as organic cation transporter 1 (OCT1), possess very broad substrate specificity. It is unclear to what extent the inhibitory potencies of OCT1 depend on the substrate used. Here, we describe a multisubstrate drug cocktail that allows for the simultaneous testing of drug-drug interactions using 8 different victim drugs: fenoterol, salbutamol, sumatriptan, zolmitriptan, ipratropium, trospium, methylnaltrexone, and metformin. There were no significant differences in Michaelis constant (KM) and vmax of the OCT1-mediated uptake of the substrates alone or in the cocktail. Depending on the victim drug analyzed, we observed 6.7-fold differences in the inhibitory potency of fenoterol (IC50 of 0.75 μM for metformin and 5.1 μM for sumatriptan). Similarly, the inhibitory potency of verapamil varied 6.7-fold (IC50 of 1.3 μM for zolmitriptan and 8.7 μM for ipratropium). Two groups of inhibitors showed strong correlations in their victim-dependent inhibitory potencies. Group 1 comprised verapamil, quinidine, fenoterol, and ipratropium, and group 2 comprised metformin, sumatriptan, and trimethoprim. By comparing OCT1 paralogs and orthologs, the broadest substrate spectra were observed for OCT1 and multidrug and toxin extrusion 1, followed by OCT2, multidrug and toxin extrusion 2-K, and OCT3. In contrast, organic cation transporters novel 1 and organic cation transporters novel 2 exhibited very narrow substrate specificity, transporting only L-carnitine and L-ergothioneine, respectively. In conclusion, OCT1 demonstrates substantial differences in inhibitory potencies, depending on the victim drug used. We developed a cocktail approach that enables rapid screening for such differences, facilitating the identification of drug-drug interactions at the early stages of drug development. This approach can be extended to other transporters with broad substrate specificity. SIGNIFICANCE STATEMENT: Polyspecific transporters have a broad substrate-binding cavity with no defined single binding position. Consequently, inhibitors may exhibit different inhibitory potencies depending on the victim drug used for testing. Here, we demonstrate this for organic cation transporter 1 (OCT1, SLC22A1) and presents a drug cocktail designed to identify varying inhibitory potencies in vitro and prevent false-negative drug-drug interaction results during early drug development. This approach can be extended to other polyspecific drug transporters.
Collapse
Affiliation(s)
- Vincent Rönnpagel
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Felix Morof
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Sarah Römer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Marleen J Meyer-Tönnies
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
3
|
Okoli A, Ogbuagu O. Drug interactions in people with HIV treated with antivirals for other viral illnesses. Expert Opin Drug Metab Toxicol 2025; 21:383-397. [PMID: 39836520 PMCID: PMC12169512 DOI: 10.1080/17425255.2025.2455401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/13/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
INTRODUCTION Background: People with HIV (PWH) have benefited tremendously from effective antiretroviral(ARV) treatments. However, PWH are at increased risk for other viral infections transmitted in the same way as HIV (such as hepatitis C and MPox) or that are opportunistic (e.g. cytomegalovirus). These coinfections contribute significantly to morbidity and mortality among PWH and require effective treatments to optimize patient outcomes. However, their management is complicated by drug-drug interactions (DDIs) with ARVs. AREAS COVERED Metabolism pathways and DDIs between approved ARVs and selected antiviral agents used for the treatment of common and clinically relevant viral coinfections are discussed. Literature review included search of published papers, conference abstracts (IAS, CROI, IDWeek, EACS, Glasgow) as well as unpublished data from approved drug prescribing information and regulatory submissions sourced from PubMed, Google, and Google Scholar available between June 30 1981 through June 1, 2024. EXPERT OPINION Management of drug interactions is essential for maintaining efficacy and safety of ARV and other co-administered antiviral therapies. Longer acting agents are now available for treatment of HIV and this lengthens the period during which drug interactions may occur. Emerging novel nanoparticle-carrier targeted hepatitis C and HIV treatments may mitigate, if not eliminate, their propensity for drug-drug interactions.
Collapse
Affiliation(s)
- Adaora Okoli
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, 333 Cedar St., New Haven, CT 06510
| | - Onyema Ogbuagu
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, 333 Cedar St., New Haven, CT 06510
- Yale AIDS Program, 135 College St., Suite 323, New Haven, CT 06510
| |
Collapse
|
4
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Haynes J, Joshi A, Larue RC, Eisenmann ED, Govindarajan R. Nucleoside Reverse Transcriptase Inhibitor (NRTI)-Induced Neuropathy and Mitochondrial Toxicity: Limitations of the Poly-γ Hypothesis and the Potential Roles of Autophagy and Drug Transport. Pharmaceutics 2024; 16:1592. [PMID: 39771570 PMCID: PMC11677988 DOI: 10.3390/pharmaceutics16121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of highly active antiretroviral therapy (HAART)-the current standard of care for treating human immunodeficiency virus (HIV) infection. Despite their efficacy, NRTIs cause numerous treatment-limiting adverse effects, including a distinct peripheral neuropathy, called antiretroviral toxic neuropathy (ATN). ATN primarily affects the extremities with shock-like tingling pain, a pins-and-needles prickling sensation, and numbness. Despite its negative impact on patient quality of life, ATN remains poorly understood, which limits treatment options and potential interventions for people living with HIV (PLWH). Elucidating the underlying pathophysiology of NRTI-induced ATN will facilitate the development of effective treatment strategies and improved patient outcomes. In this article, we will comprehensively review ATN in the setting of NRTI treatment for HIV infection.
Collapse
Affiliation(s)
- John Haynes
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
| | - Arnav Joshi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
| | - Ross C. Larue
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Eric D. Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (J.H.); (A.J.); (E.D.E.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Parvez MM, Sadighi A, Ahn Y, Keller SF, Enoru JO. Uptake Transporters at the Blood-Brain Barrier and Their Role in Brain Drug Disposition. Pharmaceutics 2023; 15:2473. [PMID: 37896233 PMCID: PMC10610385 DOI: 10.3390/pharmaceutics15102473] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Uptake drug transporters play a significant role in the pharmacokinetic of drugs within the brain, facilitating their entry into the central nervous system (CNS). Understanding brain drug disposition is always challenging, especially with respect to preclinical to clinical translation. These transporters are members of the solute carrier (SLC) superfamily, which includes organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), and amino acid transporters. In this systematic review, we provide an overview of the current knowledge of uptake drug transporters in the brain and their contribution to drug disposition. Here, we also assemble currently available proteomics-based expression levels of uptake transporters in the human brain and their application in translational drug development. Proteomics data suggest that in association with efflux transporters, uptake drug transporters present at the BBB play a significant role in brain drug disposition. It is noteworthy that a significant level of species differences in uptake drug transporters activity exists, and this may contribute toward a disconnect in inter-species scaling. Taken together, uptake drug transporters at the BBB could play a significant role in pharmacokinetics (PK) and pharmacodynamics (PD). Continuous research is crucial for advancing our understanding of active uptake across the BBB.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Armin Sadighi
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, TX 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Steve F. Keller
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| | - Julius O. Enoru
- Department of Quantitative, Translational & ADME Sciences (QTAS), AbbVie Biotherapeutics, San Francisco, CA 94080, USA; (M.M.P.)
| |
Collapse
|
7
|
Redeker KEM, Jensen O, Gebauer L, Meyer-Tönnies MJ, Brockmöller J. Atypical Substrates of the Organic Cation Transporter 1. Biomolecules 2022; 12:1664. [PMID: 36359014 PMCID: PMC9687798 DOI: 10.3390/biom12111664] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
The human organic cation transporter 1 (OCT1) is expressed in the liver and mediates hepatocellular uptake of organic cations. However, some studies have indicated that OCT1 could transport neutral or even anionic substrates. This capability is interesting concerning protein-substrate interactions and the clinical relevance of OCT1. To better understand the transport of neutral, anionic, or zwitterionic substrates, we used HEK293 cells overexpressing wild-type OCT1 and a variant in which we changed the putative substrate binding site (aspartate474) to a neutral amino acid. The uncharged drugs trimethoprim, lamivudine, and emtricitabine were good substrates of hOCT1. However, the uncharged drugs zalcitabine and lamotrigine, and the anionic levofloxacin, and prostaglandins E2 and F2α, were transported with lower activity. Finally, we could detect only extremely weak transport rates of acyclovir, ganciclovir, and stachydrine. Deleting aspartate474 had a similar transport-lowering effect on anionic substrates as on cationic substrates, indicating that aspartate474 might be relevant for intra-protein, rather than substrate-protein, interactions. Cellular uptake of the atypical substrates by the naturally occurring frequent variants OCT1*2 (methionine420del) and OCT1*3 (arginine61cysteine) was similarly reduced, as it is known for typical organic cations. Thus, to comprehensively understand the substrate spectrum and transport mechanisms of OCT1, one should also look at organic anions.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Marleen Julia Meyer-Tönnies
- Department of General Pharmacology, Institute of Pharmacology, Centre of Drug Absorption and Transport (C-DAT), University Medical Centre Greifswald, 17487 Greifswald, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
8
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
9
|
Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol 2022; 18:483-505. [PMID: 35975669 PMCID: PMC9506706 DOI: 10.1080/17425255.2022.2112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Nucleoside analogs are an important class of antiviral agents. Due to the high hydrophilicity and limited membrane permeability of antiviral nucleoside/nucleotide analogs (AVNAs), transporters play critical roles in AVNA pharmacokinetics. Understanding the properties of these transporters is important to accelerate translational research for AVNAs. AREAS COVERED The roles of key transporters in the pharmacokinetics of 25 approved AVNAs were reviewed. Clinically relevant information that can be explained by the modulation of transporter functions is also highlighted. EXPERT OPINION Although the roles of transporters in the intestinal absorption and renal excretion of AVNAs have been well identified, more research is warranted to understand their roles in the distribution of AVNAs, especially to immune privileged compartments where treatment of viral infection is challenging. P-gp, MRP4, BCRP, and nucleoside transporters have shown extensive impacts in the disposition of AVNAs. It is highly recommended that the role of transporters should be investigated during the development of novel AVNAs. Clinically, co-administered inhibitors and genetic polymorphism of transporters are the two most frequently reported factors altering AVNA pharmacokinetics. Physiopathology conditions also regulate transporter activities, while their effects on pharmacokinetics need further exploration. Pharmacokinetic models could be useful for elucidating these complicated factors in clinical settings.
Collapse
Affiliation(s)
- Mengbi Yang
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
10
|
Abrahams-October Z, Lloyd S, Pearce B, Johnson R, Benjeddou M. Promoter haplotype structure of solute carrier 22 member 2 (SLC22A2) in the Xhosa population of South Africa and their differential effect on gene expression. Gene 2022; 820:146292. [PMID: 35143948 DOI: 10.1016/j.gene.2022.146292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022]
Abstract
SLC22A2 is abundantly expressed in the kidney and facilitates the transport of endogenous and exogenous cationic compounds. It plays a pivotal role in the transport of pharmacologically important compounds such as metformin, cisplatin, lamivudine and cimetidine. Polymorphisms within SLC22A2 could potentially contribute to the inter-individual variable response to drugs. The SLC22A2 gene is known to show polymorphism variability amongst populations of different ethnicities. The present study was undertaken to characterize the promoter haplotype structure of the SLC22A2 gene in the Xhosa population of South Africa. In addition to this, we also investigate the effects of the observed promoter haplotypes on gene expression levels in vitro. We identified six known single nucleotide polymorphisms in the promoter region, namely rs60249401 (G424A), rs113150889 (G289A), rs55920607 (C246T), rs59695691 (A195G), rs572296424 (G156A), rs150063153 (A95C/G) and one novel SNP at location 6:160258967 (A209T). While these polymorphisms appeared in other African and non-African populations, their minor allele frequencies differed considerably from the non-African populations and could be considered to be African specific. A total of nine promoter haplotypes were characterized and the functional significance of each haplotype on promoter activity was determined using a luciferase reporter assay system. Amongst the nine observed haplotypes, three haplotypes (i.e. haplotypes 7, 8 and 9) displayed a significant decrease in expression level when compared to the wild-type with p -values of: 0.0317, <0.0001 and 0.0013 respectively. The data presented here shows African specific promoter haplotypes to cause a decrease in SLC22A2 gene expression levels, which in turn may have an impact on the pharmacokinetic profiles of cationic drugs.
Collapse
Affiliation(s)
- Zainonesa Abrahams-October
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Sheridon Lloyd
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Brendon Pearce
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505 Cape Town, South Africa; Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Mongi Benjeddou
- Precision Medicine Unit, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
11
|
Substrate-Dependent Trans-Stimulation of Organic Cation Transporter 2 Activity. Int J Mol Sci 2021; 22:ijms222312926. [PMID: 34884730 PMCID: PMC8657912 DOI: 10.3390/ijms222312926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023] Open
Abstract
The search of substrates for solute carriers (SLCs) constitutes a major issue, owing notably to the role played by some SLCs, such as the renal electrogenic organic cation transporter (OCT) 2 (SLC22A2), in pharmacokinetics, drug-drug interactions and drug toxicity. For this purpose, substrates have been proposed to be identified by their cis-inhibition and trans-stimulation properties towards transporter activity. To get insights on the sensitivity of this approach for identifying SLC substrates, 15 various exogenous and endogenous OCT2 substrates were analysed in the present study, using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DiASP) as a fluorescent OCT2 tracer substrate. All OCT2 substrates cis-inhibited DiASP uptake in OCT2-overexpressing HEK293 cells, with IC50 values ranging from 0.24 µM (for ipratropium) to 2.39 mM (for dopamine). By contrast, only 4/15 substrates, i.e., acetylcholine, agmatine, choline and metformin, trans-stimulated DiASP uptake, with a full suppression of the trans-stimulating effect of metformin by the reference OCT2 inhibitor amitriptyline. An analysis of molecular descriptors next indicated that trans-stimulating OCT2 substrates exhibit lower molecular weight, volume, polarizability and lipophilicity than non-trans-stimulating counterparts. Overall, these data indicated a rather low sensitivity (26.7%) of the trans-stimulation assay for identifying OCT2 substrates, and caution with respect to the use of such assay may therefore be considered.
Collapse
|
12
|
Zhang Y, Sun M, Jian S, Huang J, Xiao C, Zhang X, Hu R, Si L. mPEG 2k-PCL x Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm 2021; 18:2586-2599. [PMID: 34102842 DOI: 10.1021/acs.molpharmaceut.1c00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence has shown that nanocarriers have effects on several efflux drug transporters. To date, little is known about whether influx transporters are also modulated. Herein, we investigated the impact of amphiphilic polymer micelles on the uptake function of organic cation transporters (OCTs) and the influence on the pharmacokinetics and pharmacodynamics of metformin, a well-characterized substrate of OCTs. Five types of polymeric micelles (mPEG2k-PCL2k, mPEG2k-PCL3.5k, mPEG2k-PCL5k, mPEG2k-PCL7.5k, and mPEG2k-PCL10k) were prepared to evaluate the inhibition of hOCT1-3-overexpressing Madin-Darby canine kidney cells. The mPEG2k-PCLx micelles played an inhibitory role above the critical micelle concentration. The inhibitory potency could be ranked as mPEG2k-PCL2k > mPEG2k-PCL3.5k > mPEG2k-PCL5k > mPEG2k-PCL7.5k > mPEG2k-PCL10k, which negatively declined with the increase of molecular weight of the hydrophobic segment. The inhibitory effects of polymeric micelles on the hOCT1 isoform were the most pronounced, with the lowest IC50 values ranging from 0.106 to 0.280 mg/mL. The mPEG2k-PCL2k micelles distinctly increased the plasma concentration of metformin and significantly decreased Vss by 35.6% (p < 0.05) after seven consecutive treatments in rats, which was interrelated with the restrained metformin distribution in the liver and kidney. The uptake inhibition of micelles on hepatic and renal rOcts also diminished the glucose-lowering effect of metformin and fasting insulin levels in the oral glucose tolerance test. Consistent with the inhibitory effects, the mRNA and protein levels of rOct1 and rOct2 were decreased in the liver, kidney, and small intestine. The present study demonstrated that mPEG2k-PCLx micelles could inhibit the transport function of OCTs, indicating a potential risk of drug-drug interactions during concomitant medication of nanomedicine with organic cationic drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Minghui Sun
- Department of Pharmaceutics, Affiliated Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, PR China
| | - Shuxin Jian
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Chuyao Xiao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Xiangyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Ruhao Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| |
Collapse
|
13
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
14
|
Haberkorn B, Fromm MF, König J. Transport of Drugs and Endogenous Compounds Mediated by Human OCT1: Studies in Single- and Double-Transfected Cell Models. Front Pharmacol 2021; 12:662535. [PMID: 33967805 PMCID: PMC8100673 DOI: 10.3389/fphar.2021.662535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Organic Cation Transporter 1 (OCT1, gene symbol: SLC22A1) is predominately expressed in human liver, localized in the basolateral membrane of hepatocytes and facilitates the uptake of endogenous compounds (e.g. serotonin, acetylcholine, thiamine), and widely prescribed drugs (e.g. metformin, fenoterol, morphine). Furthermore, exogenous compounds such as MPP+, ASP+ and Tetraethylammonium can be used as prototypic substrates to study the OCT1-mediated transport in vitro. Single-transfected cell lines recombinantly overexpressing OCT1 (e.g., HEK-OCT1) were established to study OCT1-mediated uptake and to evaluate transporter-mediated drug-drug interactions in vitro. Furthermore, double-transfected cell models simultaneously overexpressing basolaterally localized OCT1 together with an apically localized export protein have been established. Most of these cell models are based on polarized grown MDCK cells and can be used to analyze transcellular transport, mimicking the transport processes e.g. during the hepatobiliary elimination of drugs. Multidrug and toxin extrusion protein 1 (MATE1, gene symbol: SLC47A1) and the ATP-driven efflux pump P-glycoprotein (P-gp, gene symbol: ABCB1) are both expressed in the canalicular membrane of human hepatocytes and are described as transporters of organic cations. OCT1 and MATE1 have an overlapping substrate spectrum, indicating an important interplay of both transport proteins during the hepatobiliary elimination of drugs. Due to the important role of OCT1 for the transport of endogenous compounds and drugs, in vitro cell systems are important for the determination of the substrate spectrum of OCT1, the understanding of the molecular mechanisms of polarized transport, and the investigation of potential drug-drug interactions. Therefore, the aim of this review article is to summarize the current knowledge on cell systems recombinantly overexpressing human OCT1.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Drozdzik M, Drozdzik M, Oswald S. Membrane Carriers and Transporters in Kidney Physiology and Disease. Biomedicines 2021; 9:biomedicines9040426. [PMID: 33919957 PMCID: PMC8070919 DOI: 10.3390/biomedicines9040426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
The growing information suggests that chronic kidney disease may affect expression and function of membrane carriers and transporters in the kidney. The dysfunction of carriers and transporters entails deficient elimination of uremic solutes as well as xenobiotics (drugs and toxins) with subsequent clinical consequences. The renal carriers and transporters are also targets of drugs used in clinical practice, and intentional drug-drug interactions in the kidney are produced to increase therapeutic efficacy. The understanding of membrane carriers and transporters function in chronic kidney disease is important not only to better characterize drug pharmacokinetics, drug actions in the kidney, or drug-drug interactions but also to define the organ pathophysiology.
Collapse
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| | - Maria Drozdzik
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18051 Rostock, Germany;
| |
Collapse
|
16
|
Zhou S, Zeng S, Shu Y. Drug-Drug Interactions at Organic Cation Transporter 1. Front Pharmacol 2021; 12:628705. [PMID: 33679412 PMCID: PMC7925875 DOI: 10.3389/fphar.2021.628705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
The interaction between drugs and various transporters is one of the decisive factors that affect the pharmacokinetics and pharmacodynamics of drugs. The organic cation transporter 1 (OCT1) is a member of the Solute Carrier 22A (SLC22A) family that plays a vital role in the membrane transport of organic cations including endogenous substances and xenobiotics. This article mainly discusses the drug-drug interactions (DDIs) mediated by OCT1 and their clinical significance.
Collapse
Affiliation(s)
- Shiwei Zhou
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, United States.,Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Sujuan Zeng
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yan Shu
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, United States
| |
Collapse
|
17
|
Fard AA, Samadi M, Biabangard A. Possible Protective Effects of Curcumin via Modulating of Androgen Receptor (AR) and Oct2 Gene Alterations in Cisplatin-Induced Testicular Toxicity in Rat. Endocr Metab Immune Disord Drug Targets 2021; 21:458-463. [PMID: 32392119 DOI: 10.2174/1871530320666200511073302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cisplatin is a chemotherapeutic drug used to treat testicular cancer that induces testicular toxicity. This study aimed to investigate the possible role of androgens, androgen receptor, and organic cation transporter 2 (OCT2) in the protective effects of curcumin on cisplatininduced testicular toxicity. METHODS Thirty male Wistar rats were divided into five groups: 1- control (normal saline, 0.5 ml ip, daily for 10 consecutive days); 2- cisplatin (10 mg/kg ip, single dose at the first day); 3- cisplatin + curcumin (10 mg/kg ip, dissolved in 5% DMSO, daily for 10 consecutive days); 4- cisplatin + vehicle (DMSO 5%, 0.3 ml ip); and 5- curcumin (10 mg/kg ip). At the end of the study, a blood sample was obtained for testosterone measurement. The left testis was kept at -80. to measure androgen receptor (AR) and type 2 organic cation transporter (OCT2) gene expression and the right testis were kept in 10% formalin for histological analysis. RESULTS Cisplatin significantly decreased serum testosterone, declined testis AR gene expression, and increased OCT2 gene expression in testis (p<0.01). Curcumin treatment significantly prevented these alterations in testosterone and gene expressions (p<0.01). Moreover, curcumin significantly reversed the cisplatin-induced kidney tissue injury and increased spermatid and spermatozoa. CONCLUSION It is concluded that the ameliorative effect of curcumin in cisplatin-induced reproductive disorders was due to the modulation of testosterone and androgen receptors.
Collapse
Affiliation(s)
- Amin A Fard
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abdolrahman Biabangard
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Substrates and Inhibitors of Organic Cation Transporters (OCTs) and Plasma Membrane Monoamine Transporter (PMAT) and Therapeutic Implications. Handb Exp Pharmacol 2021; 266:119-167. [PMID: 34495395 DOI: 10.1007/164_2021_516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gene products of the SLC22A gene family (hOCT1, hOCT2, and hOCT3) and of the SLC29A4 gene (hPMAT or hENT4) are all polyspecific organic cation transporters. Human OCTs (including hPMAT) are expressed in peripheral tissues such as small intestine, liver, and kidney involved in the pharmacokinetics of drugs. In the human brain, all four transporters are expressed at the blood-brain barrier (BBB), hOCT2 is additionally expressed in neurons, and hOCT3 and hPMAT in glia. More than 40% of the presently used drugs are organic cations. This chapter lists and discusses all known drugs acting as substrates or inhibitors of these four organic cation transporters, independently of whether the transporter is expressed in the central nervous system (CNS) or in peripheral tissues. Of interest is their involvement in drug absorption, distribution, and excretion as well as potential OCT-associated drug-drug interactions (DDIs), with a focus on drugs that act in the CNS.
Collapse
|
19
|
Inhibitory Effect of AB-PINACA, Indazole Carboxamide Synthetic Cannabinoid, on Human Major Drug-Metabolizing Enzymes and Transporters. Pharmaceutics 2020; 12:pharmaceutics12111036. [PMID: 33138123 PMCID: PMC7692329 DOI: 10.3390/pharmaceutics12111036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Indazole carboxamide synthetic cannabinoid, AB-PINACA, has been placed into Schedule I of the Controlled Substances Act by the US Drug Enforcement Administration since 2015. Despite the possibility of AB-PINACA exposure in drug abusers, the interactions between AB-PINACA and drug-metabolizing enzymes and transporters that play crucial roles in the pharmacokinetics and efficacy of various substrate drugs have not been investigated. This study was performed to investigate the inhibitory effects of AB-PINACA on eight clinically important human major cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGT) in human liver microsomes and the activities of six solute carrier transporters and two efflux transporters in transporter-overexpressing cells. AB-PINACA reversibly inhibited the metabolic activities of CYP2C8 (Ki, 16.9 µM), CYP2C9 (Ki, 6.7 µM), and CYP2C19 (Ki, 16.1 µM) and the transport activity of OAT3 (Ki, 8.3 µM). It exhibited time-dependent inhibition on CYP3A4 (Ki, 17.6 µM; kinact, 0.04047 min−1). Other metabolizing enzymes and transporters such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, OAT1, OATP1B1, OATP1B3, OCT1, OCT2, P-glycoprotein, and BCRP, exhibited only weak interactions with AB-PINACA. These data suggest that AB-PINACA can cause drug-drug interactions with CYP3A4 substrates but that the significance of drug interactions between AB-PINACA and CYP2C8, CYP2C9, CYP2C19, or OAT3 substrates should be interpreted carefully.
Collapse
|
20
|
Involvement of Organic Cation Transporter 2 and a Na +-dependent active transporter in p-tyramine transport across Caco-2 intestinal cells. Life Sci 2020; 253:117696. [PMID: 32334013 DOI: 10.1016/j.lfs.2020.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
AIMS We have previously demonstrated that p-tyramine (TYR), an endogenous trace amine-associated receptor 1 agonist, passage across neuronal membranes involves a transporter exhibiting the pharmacological profile of Organic Cation Transporter 2 (OCT2). Since TYR is also a constituent of foodstuffs and produced by the intestinal microbiota, here we have investigated whether similar processes are involved in the passage of 100 nM TYR across apical and basolateral membranes of the Caco-2 human intestinal epithelial cell line. MATERIALS AND METHODS [3H]TYR transport across apical and basolateral membranes of Caco-2 cell monolayers was measured in the presence of inhibitors of TYR metabolizing enzymes. Cellular, apical, and basolateral compartments were collected at various timepoints, TYR concentrations calculated, and transport properties pharmacologically characterized. KEY FINDINGS Apical transport resulted in equimolar accumulation of TYR within cells. Pentamidine (OCT1/OCT2 inhibitor) decreased apical transport (P = 0.001) while atropine (OCT1 inhibitor) had no effect, suggesting apical transport involved OCT2. In contrast, basolateral transport resulted in 500-1000 nM cellular concentrations (P < 0.0001) indicating the presence of an active transporter. Replacement of Na+ on an equimolar basis with choline resulted in loss of TYR transport (P = 0.017). Unexpectedly, this active transport was also atropine-sensitive (P = 0.020). Kinetic analysis of the active transporter revealed Vmax = 43.0 nM/s with a Kt = 33.1 nM. SIGNIFICANCE We have demonstrated for the first time that TYR is transported across Caco-2 apical membranes via facilitated diffusion by OCT2, whereas transport across basolateral membranes is by a Na+-dependent, atropine-sensitive, active transporter.
Collapse
|
21
|
Yager JL, Anderson PL. Pharmacology and drug interactions with HIV PrEP in transgender persons receiving gender affirming hormone therapy. Expert Opin Drug Metab Toxicol 2020; 16:463-474. [DOI: 10.1080/17425255.2020.1752662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jenna L. Yager
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter L. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
22
|
De Sousa Mendes M, Chetty M. Are Standard Doses of Renally-Excreted Antiretrovirals in Older Patients Appropriate: A PBPK Study Comparing Exposures in the Elderly Population With Those in Renal Impairment. Drugs R D 2020; 19:339-350. [PMID: 31602556 PMCID: PMC6890626 DOI: 10.1007/s40268-019-00285-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The elderly population receives the majority of prescription drugs but are usually excluded from Phase 1 clinical trials. Alternative approaches to estimate increases in toxicity risk or decreases in efficacy are therefore needed. This study predicted the pharmacokinetics (PK) of three renally excreted antiretroviral drugs in the elderly population and compared them with known exposures in renal impairment, to evaluate the need for dosing adjustments. METHODS The performance of the physiologically based pharmacokinetic (PBPK) models for tenofovir, lamivudine and emtricitabine were verified using clinical data in young and older subjects. Models were then used to predict PK profiles in a virtual population aged 20 to 49 years (young) and a geriatric population aged 65 to 74 years (elderly). Predicted exposure in the elderly was then compared with exposure reported for different degrees of renal impairment, where doses have been defined. RESULTS An increase in exposure (AUC) with advancing age was predicted for all drugs. The mean ratio of the increase in exposure were 1.40 for emtricitabine, 1.42 for lamivudine and 1.48 for tenofovir. The majority of virtual patients had exposures that did not require dosage adjustments. About 22% of patients on tenofovir showed exposures similar to that in moderate renal impairment, where dosage reduction may be required. CONCLUSION Comparison of the exposure in the elderly with exposure observed in patients with different levels of renal impairment, indicated that a dosage adjustment may not be required in elderly patients on lamivudine, emtricitabine and the majority of the patients on tenofovir. Clinical trials to verify these predictions are essential.
Collapse
|
23
|
Di Pietro M, Velazquez C, Matzkin ME, Frungieri MB, Peña MG, de Zúñiga I, Pascuali N, Irusta G, Bianchi MS, Parborell F, Abramovich D. Metformin has a direct effect on ovarian cells that is dependent on organic cation transporters. Mol Cell Endocrinol 2020; 499:110591. [PMID: 31546019 DOI: 10.1016/j.mce.2019.110591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Metformin (MET) is the most widely prescribed hypoglycemic drug in type 2 diabetes and Polycystic Ovary Syndrome. Besides its effects on glucose metabolism, MET exerts beneficial effects on these patients' fertility. However, the exact mechanisms of action of MET on female fertility are still unclear. In this work, we analyzed a possible direct effect of MET on ovarian cells. We found expression of the organic cation transporters OCT1, OCT2 and OCT3, responsible for MET uptake into the cells, in rat granulosa cells and human cumulus cells. Furthermore, MET increased pAMPK and decreased VEGF levels both in vivo and in rat granulosa cells in culture. These last effects were reversed when OCTs were inhibited. Our results suggest that MET acts directly on ovarian cells regulating cell metabolism and VEGF expression. Our findings are relevant to optimize PCOS fertility treatment and to explore ovarian MET actions in other female pathologies.
Collapse
Affiliation(s)
- Mariana Di Pietro
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Candela Velazquez
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina; Cátedra de Química, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Mariana Gómez Peña
- Centro Médico Pregna Medicina Reproductiva. Ciudad Autónoma de Buenos Aires, Argentina
| | - Ignacio de Zúñiga
- Centro Médico Pregna Medicina Reproductiva. Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Pascuali
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Griselda Irusta
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Silvia Bianchi
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas (IByME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
24
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
25
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Mallayasamy S, Penzak SR. Pharmacogenomic Considerations in the Treatment of HIV Infection. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
27
|
Coelho AVC, Moura RRD, Guimarães RL, Brandão LAC, Crovella S. Antiretroviral therapy immunologic non-response in a Brazilian population: association study using pharmaco- and immunogenetic markers. Braz J Infect Dis 2018; 22:392-401. [PMID: 30392849 PMCID: PMC9427971 DOI: 10.1016/j.bjid.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Antiretroviral therapy (ART) saved millions from HIV-1 infection and AIDS, but some patients do not experience adequate CD4+ T cells gain despite achieving viral suppression. The genetic component of this condition is not yet completely elucidated. Objective To identify predictive genetic markers of immune response to ART. Methods Case–control study. Out of 176 HIV-infected patients recruited in the city of Recife, Northeast Brazil, 67 patients with no immunologic response were the cases and the remaining 109 patients who responded were the controls. A set of 94 selected single nucleotide polymorphisms (SNPs) involved in antiretroviral drugs pharmacodynamic pathways and immune system homeostasis were genotyped, while the remaining 48 were ancestry informative markers (AIMs) for controlling for eventual hidden population structure. Results Male patients were overrepresented in non-responder group (p = 0.01). Non-responders also started with lower absolute CD4+ T cell counts (p < 0.001). We found five SNPs significantly associated with the outcome, being three more frequent in non-responders than responders: rs2243250 (IL4) A allele (p = 0.04), rs1128503 (ABCB1) A allele (p = 0.03) and rs707265 (CYP2B6) A allele (p = 0.02), whereas the other two were less frequent in non-responders: rs2069762 (IL2) C allele (p = 0.004) and rs4646437 (CYP3A4) A allele (p = 0.04). Conclusion Some significant univariate associations remained independently associated at multivariate survival analysis modeling, such as pre-treatment CD4+ T cells counts, IL2 and ABCB1 genotypes, and use of protease inhibitors, yielding a predictive model for the probability for immune response. More studies are needed to unravel the genetic basis of ART immunological non-response.
Collapse
Affiliation(s)
- Antonio V C Coelho
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil.
| | - Ronald R de Moura
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil
| | - Rafael L Guimarães
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil; Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil
| | - Lucas A C Brandão
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo Asami (LIKA), Recife, PE, Brazil; Universidade Federal de Pernambuco, Departamento de Patologia, Recife, PE, Brazil
| | - Sergio Crovella
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil; Uiversità degli studi di Trieste, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
28
|
Boxberger KH, Hagenbuch B, Lampe JN. Ligand-dependent modulation of hOCT1 transport reveals discrete ligand binding sites within the substrate translocation channel. Biochem Pharmacol 2018; 156:371-384. [PMID: 30138624 PMCID: PMC6195816 DOI: 10.1016/j.bcp.2018.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Abstract
The human hepatic organic cation transporter 1 (hOCT1) is a well-known transporter of both xenobiotic and endogenous cations. The substrates and inhibitors of hOCT1 are structurally and physiochemically diverse and include some widely prescribed drugs (metformin and imatinib), vitamins (thiamine), and neurotransmitters (serotonin). It has been demonstrated that the closely related renal isoform, hOCT2, is subject to ligand-dependent modulation, wherein one ligand may enhance or inhibit transport of a second, chemically unrelated, ligand. This phenomenon has important implications for drug-drug interactions due to the ubiquity of polypharmacy and the large number of drugs that are present as cations under physiological conditions. Therefore, the objective of this study was to determine if hOCT1 is subject to the same ligand-dependent modulation as hOCT2, and to identify unique putative ligand binding sites in the translocation channel for a sub-set of ligands using computational modeling. The competitive counter flow (CCF) assay was employed to examine ligand-dependent effects by utilizing four different radiolabeled probe substrates: MPP+, serotonin, metformin, and TEA. We identified 20 ligands that modulated the transport of the four test substrates examined. One of the putative ligands identified, BSP, is an anion at physiological pH. Direct uptake studies of radiolabeled BSP suggested that it is a hOCT1 substrate with a Km of 13.6 ± 2.6 µM and Vmax of 55.1 ± 4.1 pmol/mg protein/min. Each ligand identified was computationally docked into a homology model of hOCT1 using the UCSF DOCK software package. The docking study revealed three separate ligand binding pockets within the hOCT1 translocation pathway, defined by their interactions with three prototypical substrates: MPP+, TEA, and acyclovir. Our results suggest that hOCT1 is not only subject to ligand-dependent modulation, but also that individual ligand binding occurs at discrete sites within the hOCT1 translocation pathway which may influence ligand binding at the other sites.
Collapse
Affiliation(s)
- Kelli H Boxberger
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States; The University of Kansas Cancer Center, Kansas City, KS 66160, United States; The University of Kansas Liver Center, Kansas City, KS 66160, United States
| | - Jed N Lampe
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States; The University of Kansas Liver Center, Kansas City, KS 66160, United States.
| |
Collapse
|
29
|
Ceckova M, Reznicek J, Deutsch B, Fromm MF, Staud F. Efavirenz reduces renal excretion of lamivudine in rats by inhibiting organic cation transporters (OCT, Oct) and multidrug and toxin extrusion proteins (MATE, Mate). PLoS One 2018; 13:e0202706. [PMID: 30114293 PMCID: PMC6095608 DOI: 10.1371/journal.pone.0202706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor used in first-line combination antiretroviral therapy (cART). It is usually administered with nucleoside reverse transcriptase inhibitors (NRTI), many of which are substrates of OCT uptake solute carriers (SLC22A) and MATE (SLC47A), P-gp (MDR1, ABCB1), BCRP (ABCG2), or MRP2 (ABCC2) efflux transporters. The aim of this study was to evaluate the inhibitory potential of efavirenz towards these transporters and investigate its effects on the pharmacokinetics and tissue distribution of a known Oct/Mate substrate, lamivudine, in rats. Accumulation and transport assays showed that efavirenz inhibits the uptake of metformin by OCT1-, OCT2- and MATE1-expressing MDCK cells and reduces transcellular transport of lamivudine across OCT1/OCT2- and MATE1-expressing MDCK monolayers. Only negligible inhibition of MATE2-K was observed in HEK-MATE2-K cells. Efavirenz also reduced the efflux of calcein from MDCK-MRP2 cells, but had a rather weak inhibitory effect on Hoechst 33342 accumulation in MDCK-MDR1 and MDCK-BCRP cells. An in vivo pharmacokinetic interaction study in male Wistar rats revealed that intravenous injection of efavirenz or the control Oct/Mate inhibitor cimetidine significantly reduced the recovery of lamivudine in urine and greatly increased lamivudine retention in the renal tissue. Co-administration with efavirenz or cimetidine also increased the AUC0-∞ value and reduced total body clearance of lamivudine. These data suggest that efavirenz is a potent inhibitor of OCT/Oct and MATE/Mate transporters. Consequently, it can engage in drug-drug interactions that reduce renal excretion of co-administered substrates and enhance their retention in the kidneys, potentially compromising therapeutic safety.
Collapse
Affiliation(s)
- Martina Ceckova
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Josef Reznicek
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Birgit Deutsch
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
30
|
Pearce B, Abrahams-October Z, Xhakaza L, Jacobs C, Benjeddou M. Effect of the African-specific promoter polymorphisms on the SLC22A2 gene expression levels. Drug Metab Pers Ther 2018; 33:85-89. [PMID: 29624501 DOI: 10.1515/dmpt-2017-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms in promoter regions have been shown to alter the transcription of genes. Thus, SNPs in SLC22A2 can result in inter-individual variable response to medication. METHODS The objective of the study was to investigate the effect of the African-specific promoter polymorphisms on the SLC22A2 gene expression levels in vitro. These included rs572296424 and rs150063153, which have been previously identified in the Xhosa population of South Africa. The promoter region (300 bp) for the two haplotypes was cloned into the pGLOW promoterless GFP reporter vector. The GFP expression levels of each haplotype was determined in the HEK293 cells using a GlowMax Multi-Detection E7031 luminometer in the form of light emission. RESULTS The relative promoter activity suggests that no significant variation exists between the expression levels of the WT and -95 haplotypes and the -95 and -156 haplotypes (p=0.498). However, the relative promoter activity of the WT haplotype in comparison to the -156 haplotype displayed a significant difference in expression level (p=0.016). CONCLUSIONS The data presented here show that the African-specific promoter polymorphisms can cause a decrease in the SLC22A2 gene expression levels in vitro, which in turn, may influence the pharmacokinetic profiles of cationic drugs.
Collapse
Affiliation(s)
- Brendon Pearce
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | | | - Lettilia Xhakaza
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Clifford Jacobs
- Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Mongi Benjeddou
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
31
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
32
|
The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human Organic anion/cation transporters, Organic anion transporting polypeptides and Oligopeptide transporters in in vitro models. Eur J Pharm Sci 2018; 115:132-143. [DOI: 10.1016/j.ejps.2018.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022]
|
33
|
|
34
|
Nakada T, Kudo T, Kume T, Kusuhara H, Ito K. Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model. Drug Metab Pharmacokinet 2017; 33:103-110. [PMID: 29361388 DOI: 10.1016/j.dmpk.2017.11.314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/20/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
Serum creatinine (SCr) levels rise during trimethoprim therapy for infectious diseases. This study aimed to investigate whether the elevation of SCr can be quantitatively explained using a physiologically-based pharmacokinetic (PBPK) model incorporating inhibition by trimethoprim on tubular secretion of creatinine via renal transporters such as organic cation transporter 2 (OCT2), OCT3, multidrug and toxin extrusion protein 1 (MATE1), and MATE2-K. Firstly, pharmacokinetic parameters in the PBPK model of trimethoprim were determined to reproduce the blood concentration profile after a single intravenous and oral administration of trimethoprim in healthy subjects. The model was verified with datasets of both cumulative urinary excretions after a single administration and the blood concentration profile after repeated oral administration. The pharmacokinetic model of creatinine consisted of the creatinine synthesis rate, distribution volume, and creatinine clearance (CLcre), including tubular secretion via each transporter. When combining the models for trimethoprim and creatinine, the predicted increments in SCr from baseline were 29.0%, 39.5%, and 25.8% at trimethoprim dosages of 5 mg/kg (b.i.d.), 5 mg/kg (q.i.d.), and 200 mg (b.i.d.), respectively, which were comparable with the observed values. The present model analysis enabled us to quantitatively explain increments in SCr during trimethoprim treatment by its inhibition of renal transporters.
Collapse
Affiliation(s)
- Tomohisa Nakada
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan; Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Toshiyuki Kudo
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Toshiyuki Kume
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda-shi, Saitama 335-8505, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
35
|
van der Velden M, Bilos A, van den Heuvel JJMW, Rijpma SR, Hurkmans EGE, Sauerwein RW, Russel FGM, Koenderink JB. Proguanil and cycloguanil are organic cation transporter and multidrug and toxin extrusion substrates. Malar J 2017; 16:422. [PMID: 29061131 PMCID: PMC5654082 DOI: 10.1186/s12936-017-2062-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/11/2017] [Indexed: 11/20/2022] Open
Abstract
Background Malaria, HIV/AIDS, and tuberculosis endemic areas show considerable geographical overlap, leading to incidence of co-infections. This requires treatment with multiple drugs, potentially causing adverse drug–drug interactions (DDIs). As anti-malarials are generally positively charged at physiological pH, they are likely to interact with human organic cation transporters 1 and 2 (OCT1 and OCT2). These transporters are involved in the uptake of drugs into hepatocytes and proximal tubule cells for subsequent metabolic conversion or elimination. This efflux of cationic drugs from hepatocytes and proximal tubule cells into bile and urine can be mediated by multidrug and toxin extrusion 1 and 2-K (MATE1 and MATE2-K) transporters, respectively. Methods Here, the interaction of anti-malarials with these transporters was studied in order to predict potential DDIs. Using baculovirus-transduced HEK293 cells transiently expressing human OCT1, OCT2, MATE1 and MATE2K uptake and inhibition was studied by a range of anti-malarials. Results Amodiaquine, proguanil, pyrimethamine and quinine were the most potent inhibitors of 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) transport, a known substrate of OCT1/2, resulting in half maximal inhibitory concentrations (IC50) of 11, 13, 1.6, and 3.4 µM, respectively. Only quinine had a drug–drug index higher than the cut-off value of 0.1 for OCT2, therefore, in vivo pharmacokinetic studies focusing on DDIs involving this compound and other OCT2-interacting drugs are warranted. Furthermore, proguanil appeared to be a substrate of OCT1 and OCT2 with affinities of 8.1 and 9.0 µM, respectively. Additionally, MATE1 and MATE2-K were identified as putative transport proteins for proguanil. Finally, its metabolite cycloguanil was also identified as an OCT1, OCT2, MATE1 and MATE2-K substrate. Conclusion Anti-malarials can reduce OCT1 and OCT2 transport activity in vitro. Furthermore, proguanil and cycloguanil were found to be substrates of OCT1, OCT2, MATE1 and MATE2-K, highlighting the importance of these transporters in distribution and excretion. As these compounds shares substrate overlap with metformin DDIs can be anticipated during concurrent treatment.
Collapse
Affiliation(s)
- Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Albert Bilos
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Evelien G E Hurkmans
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
37
|
Molecular properties associated with transporter-mediated drug disposition. Adv Drug Deliv Rev 2017; 116:92-99. [PMID: 28554577 DOI: 10.1016/j.addr.2017.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/20/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022]
Abstract
Membrane transporters play a key role in the absorption, distribution, clearance, elimination, and transport of drugs. Understanding the drug properties and structure activity relationships (SAR) for affinity to membrane transporters is critical to optimize clearance and pharmacokinetics during drug design. To facilitate the early identification of clearance mechanism, a framework named the extended clearance classification system (ECCS) was recently introduced. Using in vitro and physicochemical properties that are readily available in early drug discovery, ECCS has been successfully applied to identify major clearance mechanism and to implicate the role of membrane transporters in determining pharmacokinetics. While the crystal structures for most of the drug transporters are currently not available, ligand-based modeling approaches that use information obtained from the structure and molecular properties of the ligands have been applied to associate the drug-related properties and transporter-mediated disposition. The approach allows prospective prediction of transporter both substrate and/or inhibitor affinity and build quantitative structure-activity relationship (QSAR) to enable early optimization of pharmacokinetics, tissue distribution and drug-drug interaction risk. Drug design applications can be further improved through uncovering transporter protein crystal structure and generation of quality data to refine and develop viable predictive models.
Collapse
|
38
|
Wagner DJ, Sager JE, Duan H, Isoherranen N, Wang J. Interaction and Transport of Methamphetamine and its Primary Metabolites by Organic Cation and Multidrug and Toxin Extrusion Transporters. Drug Metab Dispos 2017; 45:770-778. [PMID: 28428365 PMCID: PMC5478906 DOI: 10.1124/dmd.116.074708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/17/2017] [Indexed: 01/11/2023] Open
Abstract
Methamphetamine is one of the most abused illicit drugs with roughly 1.2 million users in the United States alone. A large portion of methamphetamine and its metabolites is eliminated by the kidney with renal clearance larger than glomerular filtration clearance. Yet the mechanism of active renal secretion is poorly understood. The goals of this study were to characterize the interaction of methamphetamine and its major metabolites with organic cation transporters (OCTs) and multidrug and toxin extrusion (MATE) transporters and to identify the major transporters involved in the disposition of methamphetamine and its major metabolites, amphetamine and para-hydroxymethamphetamine (p-OHMA). We used cell lines stably expressing relevant transporters to show that methamphetamine and its metabolites inhibit human OCTs 1-3 (hOCT1-3) and hMATE1/2-K with the greatest potencies against hOCT1 and hOCT2. Methamphetamine and amphetamine are substrates of hOCT2, hMATE1, and hMATE2-K, but not hOCT1 and hOCT3. p-OHMA is transported by hOCT1-3 and hMATE1, but not hMATE2-K. In contrast, organic anion transporters 1 and 3 do not interact with or transport these compounds. Methamphetamine and its metabolites exhibited complex interactions with hOCT1 and hOCT2, suggesting the existence of multiple binding sites. Our studies suggest the involvement of the renal OCT2/MATE pathway in tubular secretion of methamphetamine and its major metabolites and the potential of drug-drug interactions with substrates or inhibitors of the OCTs. This information may be considered when prescribing medications to suspected or known abusers of methamphetamine to mitigate the risk of increased toxicity or reduced therapeutic efficacy.
Collapse
Affiliation(s)
- David J Wagner
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jennifer E Sager
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Haichuan Duan
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
39
|
Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J 2017; 473:1483-501. [PMID: 27234585 PMCID: PMC4888492 DOI: 10.1042/bcj20160124] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/03/2016] [Indexed: 12/16/2022]
Abstract
Data derived principally from peripheral tissues (fat, muscle and liver) show that insulin signals via diverse interconnecting intracellular pathways and that some of the major intersecting points (known as critical nodes) are the IRSs (insulin receptor substrates), PI3K (phosphoinositide kinase)/Akt and MAPK (mitogen-activated protein kinase). Most of these insulin pathways are probably also active in the ovary and their ability to interact with each other and also with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) signalling pathways enables insulin to exert direct modulating influences on ovarian function. The present paper reviews the intracellular actions of insulin and the uptake of glucose by ovarian tissues (granulosa, theca and oocyte) during the oestrous/menstrual cycle of some rodent, primate and ruminant species. Insulin signals through diverse pathways and these are discussed with specific reference to follicular cell types (granulosa, theca and oocyte). The signalling pathways for FSH in granulosa cells and LH in granulosa and theca cells are summarized. The roles of glucose and of insulin-mediated uptake of glucose in folliculogenesis are discussed. It is suggested that glucose in addition to its well-established role of providing energy for cellular function may also have insulin-mediated signalling functions in ovarian cells, involving AMPK (AMP-dependent protein kinase) and/or hexosamine. Potential interactions of insulin signalling with FSH or LH signalling at critical nodes are identified and the available evidence for such interactions in ovarian cells is discussed. Finally the action of the insulin-sensitizing drugs metformin and the thiazolidinedione rosiglitazone on follicular cells is reviewed.
Collapse
|
40
|
Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep 2017; 7:45657. [PMID: 28374753 PMCID: PMC5379491 DOI: 10.1038/srep45657] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
Therapeutic treatment options for central nervous system diseases are greatly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), in conjunction with circulating microbubbles, can be used to induce a targeted and transient increase in BBB permeability, providing a unique approach for the delivery of drugs from the systemic circulation into the brain. While preclinical research has demonstrated the utility of FUS, there remains a large gap in our knowledge regarding the impact of sonication on BBB gene expression. This work is focused on investigating the transcriptional changes in dorsal hippocampal rat microvessels in the acute stages following sonication. Microarray analysis of microvessels was performed at 6 and 24 hrs post-FUS. Expression changes in individual genes and bioinformatic analysis suggests that FUS may induce a transient inflammatory response in microvessels. Increased transcription of proinflammatory cytokine genes appears to be short-lived, largely returning to baseline by 24 hrs. This observation may help to explain some previously observed bioeffects of FUS and may also be a driving force for the angiogenic processes and reduced drug efflux suggested by this work. While further studies are necessary, these results open up intriguing possibilities for novel FUS applications and suggest possible routes for pharmacologically modifying the technique.
Collapse
|
41
|
Seifert SM, Castillo-Mancilla JR, Erlandson KM, Anderson PL. Inflammation and pharmacokinetics: potential implications for HIV-infection. Expert Opin Drug Metab Toxicol 2017; 13:641-650. [PMID: 28335648 DOI: 10.1080/17425255.2017.1311323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The physiological changes accompanying inflammation may alter the pharmacokinetics (PK) of certain medications. Individuals infected with HIV have chronically elevated inflammatory markers despite viral suppression following effective antiretroviral therapy (ART), as well as age-related inflammation. Understanding the potential clinical implications of inflammation on the PK of medications is important for understanding dose-response relationships and necessitates future research. Areas covered: An extensive literature search was carried out using PubMed and associated bibliographies to summarize the current state of knowledge regarding altered PK in response to inflammation and its application to the field of HIV. Expert opinion: Preclinical and clinical studies show that inflammation leads to a downregulation of certain drug metabolizing enzymes and both up and down regulation of transporters depending on the transporter and cell type. Decreased gastric acidity, fluid shifts, and plasma protein alterations also occur with inflammation, leading to potential absorption, distribution, and clearance changes. More research is needed including controlled PK studies to address the clinical relevance of these observations, especially in the aging HIV-infected population. Results from future studies will enable us to better predict drug concentrations in individuals with inflammation, in line with efforts to provide personalized pharmacotherapy in our healthcare system.
Collapse
Affiliation(s)
- Sharon M Seifert
- a Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Pharmaceutical Sciences , University of Colorado , Anschutz Medical Campus, USA
| | - Jose R Castillo-Mancilla
- b School of Medicine, Division of Infectious Diseases , University of Colorado , Anschutz Medical Campus, USA
| | - Kristine M Erlandson
- b School of Medicine, Division of Infectious Diseases , University of Colorado , Anschutz Medical Campus, USA
| | - Peter L Anderson
- a Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Pharmaceutical Sciences , University of Colorado , Anschutz Medical Campus, USA
| |
Collapse
|
42
|
Wilson NC, Choudhury A, Carstens N, Mavri-Damelin D. Organic Cation Transporter 2 (OCT2/SLC22A2) Gene Variation in the South African Bantu-Speaking Population and Functional Promoter Variants. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:169-176. [PMID: 28253084 DOI: 10.1089/omi.2016.0165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SLC22A2 facilitates the transport of endogenous and exogenous cationic compounds. Many pharmacologically significant compounds are transported by SLC22A2, including the antidiabetic drug metformin, anticancer agent cisplatin, and antiretroviral lamivudine. Genetic polymorphisms in SLC22A2 can modify the pharmacokinetic profiles of such important medicines and could therefore prove useful as precision medicine biomarkers. Since the frequency of SLC22A2 polymorphisms varies among different ethnic populations, we evaluated these in South African Bantu speakers, a majority group in the South African population, who exhibit unique genetic diversity, and we subsequently functionally characterized promoter polymorphisms. We identified 11 polymorphisms within the promoter and 9 single-nucleotide polymorphisms (SNPs) within the coding region of SLC22A2. While some polymorphisms appeared with minor allele frequencies similar to other African and non-African populations, some differed considerably; this was especially notable for three missense polymorphisms. In addition, we functionally characterized two promoter polymorphisms; rs138765638, a three base-pair deletion that bioinformatics analysis suggested could alter c-Ets-1/2, Elk1, and/or STAT4 binding, and rs59695691, an SNP that could abolish TFII-I binding. Significantly higher luciferase reporter gene expression was found for rs138765638 (increase of 37%; p = 0.001) and significantly lower expression for rs59695691 (decrease of 25%; p = 0.038), in comparison to the wild-type control. These observations highlight the importance of identifying and functionally characterizing genetic variation in genes of pharmacological significance. Finally, our data for SLC22A2 attest to the importance of considering genetic variation in different populations for drug safety, response, and global pharmacogenomics, through, for example, projects such as the Human Heredity and Health in Africa initiative.
Collapse
Affiliation(s)
- Nina C Wilson
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| | - Ananyo Choudhury
- 2 Sydney Brenner Institute for Molecular Bioscience (SBIMB), University of the Witwatersrand , Johannesburg, South Africa
| | - Nadia Carstens
- 3 Division of Human Genetics, National Health Laboratory Service , Johannesburg, South Africa
| | - Demetra Mavri-Damelin
- 1 The School of Molecular and Cell Biology, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
43
|
Minuesa G, Albert C, Pastor-Anglada M, Martinez-Picado J, Koepsell H. Response to "Tenofovir Disoproxil Fumarate Is Not an Inhibitor of Human Organic Cation Transporter 1". J Pharmacol Exp Ther 2017; 360:343-345. [PMID: 28104832 DOI: 10.1124/jpet.116.239004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Gerard Minuesa
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain (G.M., J.M.-P.); Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (C.A., H.K.); Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona (IBUB) and Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER EHD), Barcelona, Spain (M.P.-A.); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (J.M.-P.); Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (H.K.)
| | - Christopher Albert
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain (G.M., J.M.-P.); Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (C.A., H.K.); Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona (IBUB) and Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER EHD), Barcelona, Spain (M.P.-A.); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (J.M.-P.); Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (H.K.)
| | - Marçal Pastor-Anglada
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain (G.M., J.M.-P.); Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (C.A., H.K.); Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona (IBUB) and Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER EHD), Barcelona, Spain (M.P.-A.); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (J.M.-P.); Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (H.K.)
| | - Javier Martinez-Picado
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain (G.M., J.M.-P.); Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (C.A., H.K.); Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona (IBUB) and Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER EHD), Barcelona, Spain (M.P.-A.); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (J.M.-P.); Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (H.K.)
| | - Hermann Koepsell
- IrsiCaixa Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain (G.M., J.M.-P.); Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (C.A., H.K.); Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina, Universitat de Barcelona (IBUB) and Centro de Investigación Biomédica en Red-Enfermedades Hepáticas y Digestivas (CIBER EHD), Barcelona, Spain (M.P.-A.); Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain (J.M.-P.); Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany (H.K.)
| |
Collapse
|
44
|
Holec AD, Mandal S, Prathipati PK, Destache CJ. Nucleotide Reverse Transcriptase Inhibitors: A Thorough Review, Present Status and Future Perspective as HIV Therapeutics. Curr HIV Res 2017; 15:411-421. [PMID: 29165087 PMCID: PMC7219633 DOI: 10.2174/1570162x15666171120110145] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human immunodeficiency virus type-1 (HIV-1) infection leads to acquired immunodeficiency syndrome (AIDS), a severe viral infection that has claimed approximately 658,507 lives in the US between the years 2010-2014. Antiretroviral (ARV) therapy has proven to inhibit HIV-1, but unlike other viral illness, not cure the infection. OBJECTIVE Among various Food and Drug Administration (FDA)-approved ARVs, nucleoside/ nucleotide reverse transcriptase inhibitors (NRTIs) are most effective in limiting HIV-1 infection. This review focuses on NRTIs mechanism of action and metabolism. METHODS A search of PubMed (1982-2016) was performed to capture relevant articles regarding NRTI pharmacology. RESULTS The current classical NRTIs pharmacology for HIV-1 prevention and treatment are presented. Finally, various novel strategies are proposed to improve the efficacy of NRTIs, which will increase therapeutic efficiency of present-day HIV-1 prevention/treatment regimen. CONCLUSION Use of NRTIs will continue to be critical for successful treatment and prevention of HIV-1.
Collapse
Affiliation(s)
- Ashley D. Holec
- Creighton University Medical Microbiology and Immunology, Omaha, NE, USA
| | - Subhra Mandal
- Creighton University School of Pharmacy & Health Professions, Omaha, NE, USA
| | | | | |
Collapse
|
45
|
Berry MD, Hart S, Pryor AR, Hunter S, Gardiner D. Pharmacological characterization of a high-affinity p-tyramine transporter in rat brain synaptosomes. Sci Rep 2016; 6:38006. [PMID: 27901065 PMCID: PMC5128819 DOI: 10.1038/srep38006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022] Open
Abstract
p-Tyramine is an archetypal member of the endogenous family of monoamines known as trace amines, and is one of the endogenous agonists for trace amine-associated receptor (TAAR)1. While much work has focused on the function of TAAR1, very little is known about the regulation of the endogenous agonists. We have previously reported that p-tyramine readily crosses lipid bilayers and that its release from synaptosomes is non-exocytotic. Such release, however, showed characteristics of modification by one or more transporters. Here we provide the first characterization of such a transporter. Using frontal cortical and striatal synaptosomes we show that p-tyramine passage across synaptosome membranes is not modified by selective inhibition of either the dopamine, noradrenaline or 5-HT transporters. In contrast, inhibition of uptake-2 transporters significantly slowed p-tyramine re-uptake. Using inhibitors of varying selectivity, we identify Organic Cation Transporter 2 (OCT2; SLC22A2) as mediating high affinity uptake of p-tyramine at physiologically relevant concentrations. Further, we confirm the presence of OCT2 protein in synaptosomes. These results provide the first identification of a high affinity neuronal transporter for p-tyramine, and also confirm the recently described localization of OCT2 in pre-synaptic terminals.
Collapse
Affiliation(s)
- Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Shannon Hart
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Anthony R Pryor
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Samantha Hunter
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|
46
|
Role of ABC and Solute Carrier Transporters in the Placental Transport of Lamivudine. Antimicrob Agents Chemother 2016; 60:5563-72. [PMID: 27401571 DOI: 10.1128/aac.00648-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/03/2016] [Indexed: 12/26/2022] Open
Abstract
Lamivudine is one of the antiretroviral drugs of choice for the prevention of mother-to-child transmission (MTCT) in HIV-positive women. In this study, we investigated the relevance of drug efflux transporters P-glycoprotein (P-gp) (MDR1 [ABCB1]), BCRP (ABCG2), MRP2 (ABCC2), and MATE1 (SLC47A1) for the transmembrane transport and transplacental transfer of lamivudine. We employed in vitro accumulation and transport experiments on MDCK cells overexpressing drug efflux transporters, in situ-perfused rat term placenta, and vesicular uptake in microvillous plasma membrane (MVM) vesicles isolated from human term placenta. MATE1 significantly accelerated lamivudine transport in MATE1-expressing MDCK cells, whereas no transporter-driven efflux of lamivudine was observed in MDCK-MDR1, MDCK-MRP2, and MDCK-BCRP monolayers. MATE1-mediated efflux of lamivudine appeared to be a low-affinity process (apparent Km of 4.21 mM and Vmax of 5.18 nmol/mg protein/min in MDCK-MATE1 cells). Consistent with in vitro transport studies, the transplacental clearance of lamivudine was not affected by P-gp, BCRP, or MRP2. However, lamivudine transfer across dually perfused rat placenta and the uptake of lamivudine into human placental MVM vesicles revealed pH dependency, indicating possible involvement of MATE1 in the fetal-to-maternal efflux of the drug. To conclude, placental transport of lamivudine does not seem to be affected by P-gp, MRP2, or BCRP, but a pH-dependent mechanism mediates transport of lamivudine in the fetal-to-maternal direction. We suggest that MATE1 might be, at least partly, responsible for this transport.
Collapse
|
47
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
48
|
Arimany-Nardi C, Minuesa G, Keller T, Erkizia I, Koepsell H, Martinez-Picado J, Pastor-Anglada M. Role of Human Organic Cation Transporter 1 (hOCT1) Polymorphisms in Lamivudine (3TC) Uptake and Drug-Drug Interactions. Front Pharmacol 2016; 7:175. [PMID: 27445813 PMCID: PMC4919327 DOI: 10.3389/fphar.2016.00175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/06/2016] [Indexed: 01/11/2023] Open
Abstract
Lamivudine (3TC), a drug used in the treatment of HIV infection, needs to cross the plasma membrane to exert its therapeutic action. Human Organic cation transporter 1 (hOCT1), encoded by the SLC22A1 gene, is the transporter responsible for its uptake into target cells. As SLC22A1 is a highly polymorphic gene, the aim of this study was to determine how SNPs in the OCT1-encoding gene affected 3TC internalization and its interaction with other co-administered drugs. HEK293 cells stably transfected with either the wild type form or the polymorphic variants of hOCT1 were used to perform kinetic and drug-drug interaction studies. Protein co-immunoprecipitation was used to assess the impact of selected polymorphic cysteines on the oligomerization of the transporter. Results showed that 3TC transport efficiency was reduced in all polymorphic variants tested (R61C, C88R, S189L, M420del, and G465R). This was not caused by lack of oligomerization in case of variants located at the transporter extracellular loop (R61C and C88R). Drug-drug interaction measurements showed that co-administered drugs [abacavir (ABC), zidovudine (AZT), emtricitabine (FTC), tenofovir diproxil fumarate (TDF), efavirenz (EFV) and raltegravir (RAL)], differently inhibited 3TC uptake depending upon the polymorphic variant analyzed. These data highlight the need for accurate analysis of drug transporter polymorphic variants of clinical relevance, because polymorphisms can impact on substrate (3TC) translocation but even more importantly they can differentially affect drug-drug interactions at the transporter level.
Collapse
Affiliation(s)
- Cristina Arimany-Nardi
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of BarcelonaBarcelona, Spain; Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos IIIMadrid, Spain
| | - Gerard Minuesa
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Cièncias de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona Badalona, Spain
| | - Thorsten Keller
- Department of Pharmacology, School of Medicine, University of Würzburg Würzburg, Germany
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Cièncias de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona Badalona, Spain
| | - Hermann Koepsell
- Department of Pharmacology, School of Medicine, University of WürzburgWürzburg, Germany; Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Cièncias de la Salut Germans Trias i Pujol, Universitat Autònoma de BarcelonaBadalona, Spain; Universitat de Vic - Universitat Central de CatalunyaVic, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA)Barcelona, Spain
| | - Marçal Pastor-Anglada
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of BarcelonaBarcelona, Spain; Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos IIIMadrid, Spain; Institut de Recerca Pediàtrica Hospital Sant Joan de DéuBarcelona, Spain
| |
Collapse
|
49
|
Wagner DJ, Hu T, Wang J. Polyspecific organic cation transporters and their impact on drug intracellular levels and pharmacodynamics. Pharmacol Res 2016; 111:237-246. [PMID: 27317943 DOI: 10.1016/j.phrs.2016.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/02/2016] [Indexed: 01/11/2023]
Abstract
Most drugs are intended to act on molecular targets residing within a specific tissue or cell type. Therefore, the drug concentration within the target tissue or cells is most relevant to its pharmacological effect. Increasing evidences suggest that drug transporters not only play a significant role in governing systemic drug levels, but are also an important gate keeper for intra-tissue and intracellular drug concentrations. This review focuses on polyspecific organic cation transporters, which include the organic cation transporters 1-3 (OCT1-3), the multidrug and toxin extrusion proteins 1-2 (MATE1-2) and the plasma membrane monoamine transporter (PMAT). Following an overview of the tissue distribution, transport mechanisms, and functional characteristics of these transporters, we highlight the studies demonstrating the ability of locally expressed OCTs to impact intracellular drug concentrations and directly influence their pharmacological and toxicological activities. Specifically, OCT1-mediated metformin access to its site of action in the liver is impacted by genetic polymorphisms and chemical inhibition of OCT1. The impact of renal OCT2 and MATE1/2-K in cisplatin intrarenal accumulation and nephrotoxicity is reviewed. New data demonstrating the role of OCT3 in salivary drug accumulation and secretion is discussed. Whenever possible, the pharmacodynamic response and toxicological effects is presented and discussed in light of intra-tissue and intracellular drug exposure. Current challenges, knowledge gaps, and future research directions are discussed. Understanding the impact of transporters on intra-tissue and intracellular drug concentrations has important implications for rational-based optimization of drug efficacy and safety.
Collapse
Affiliation(s)
- David J Wagner
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| | - Tao Hu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States.
| |
Collapse
|
50
|
Hyrsova L, Smutny T, Trejtnar F, Pavek P. Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation. Drug Metab Rev 2016; 48:139-58. [DOI: 10.1080/03602532.2016.1188936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|