1
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
2
|
Guengerich FP. Ninety-eight semesters of cytochrome P450 enzymes and related topics-What have I taught and learned? J Biol Chem 2024; 300:105625. [PMID: 38185246 PMCID: PMC10847173 DOI: 10.1016/j.jbc.2024.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
This Reflection article begins with my family background and traces my career through elementary and high school, followed by time at the University of Illinois, Vanderbilt University, the University of Michigan, and then for 98 semesters as a Vanderbilt University faculty member. My research career has dealt with aspects of cytochrome P450 enzymes, and the basic biochemistry has had applications in fields as diverse as drug metabolism, toxicology, medicinal chemistry, pharmacogenetics, biological engineering, and bioremediation. I am grateful for the opportunity to work with the Journal of Biological Chemistry not only as an author but also for 34 years as an Editorial Board Member, Associate Editor, Deputy Editor, and interim Editor-in-Chief. Thanks are extended to my family and my mentors, particularly Profs. Harry Broquist and Minor J. Coon, and the more than 170 people who have trained with me. I have never lost the enthusiasm for research that I learned in the summer of 1968 with Harry Broquist, and I have tried to instill this in the many trainees I have worked with. A sentence I use on closing slides is "It's not just a laboratory-it's a fraternity."
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Petkova-Kirova P, Baas S, Wagenpfeil G, Hartz P, Unger MM, Bernhardt R. SNPs in cytochrome P450 genes decide on the fate of individuals with genetic predisposition to Parkinson's disease. Front Pharmacol 2023; 14:1244516. [PMID: 37601072 PMCID: PMC10436510 DOI: 10.3389/fphar.2023.1244516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Parkinson's disease (PD) is one of the most frequent neurological diseases affecting millions of people worldwide. While the majority of PD cases are of unknown origin (idiopathic), about 5%-10% are familial and linked to mutations in different known genes. However, there are also people with a genetic predisposition to PD who do not develop the disease. To elucidate factors leading to the manifestation of PD we compared the occurrence of single nucleotide polymorphisms (SNPs) in various cytochrome P450 (P450) genes in people with a genetic predisposition and suffering from PD (GPD) to that of people, who are genetically predisposed, but show no symptoms of the disease (GUN). We used the PPMI (Parkinson's Progression Markers Initiative) database and the gene sequences of all 57 P450s as well as their three redox partners. Corresponding odds ratios (OR) and confidence intervals (CI) were calculated to assess the incidence of the various SNPs in the two groups of individuals and consequently their relation to PD. We identified for the first time SNPs that are significantly (up to 10fold!) over- or under-represented in GPD patients compared to GUN. SNPs with OR > 5 were found in 10 P450s being involved in eicosanoid, vitamin A and D metabolism as well as cholesterol degradation pointing to an important role of endogenous factors for the manifestation of PD clinical symptoms. Moreover, 12 P450s belonging to all P450 substrate classes as well as POR have SNPs that are significantly under-represented (OR < 0.2) in GPD compared to GUN, indicating a protective role of those SNPs and the corresponding P450s regarding disease advancement. To the best of our knowledge our data for the first time demonstrate an association between known PD predisposition genes and SNPs in other genes, shown here for different P450 genes and for their redox partner POR, which promote the manifestation of the disease in familial PD. Our results thus shed light onto the pathogenesis of PD, especially the switch from GUN to GPD and might further help to advance novel strategies for preventing the development or progression of the disease.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| | | | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Naturwissenschaftlich-Technische Fakultät, Universität des Saarlandes, Saarbrücken, Germany
| |
Collapse
|
4
|
Wheeler AM, Orsburn BC, Bumpus NN. Biotransformation of Efavirenz and Proteomic Analysis of Cytochrome P450s and UDP-Glucuronosyltransferases in Mouse, Macaque, and Human Brain-Derived In Vitro Systems. Drug Metab Dispos 2023; 51:521-531. [PMID: 36623884 PMCID: PMC10043944 DOI: 10.1124/dmd.122.001195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Hartz P, Fehlmann T, Wagenpfeil G, Unger MM, Bernhardt R. A CYPome-wide study reveals new potential players in the pathogenesis of Parkinson's disease. Front Pharmacol 2023; 13:1094265. [PMID: 36744208 PMCID: PMC9892771 DOI: 10.3389/fphar.2022.1094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Genetic and environmental factors lead to the manifestation of Parkinson's disease (PD) but related mechanisms are only rudimentarily understood. Cytochromes P450 (P450s) are involved in the biotransformation of toxic compounds and in many physiological processes and thus predestinated to be involved in PD. However, so far only SNPs (single nucleotide polymorphisms) in CYP2D6 and CYP2E1 have been associated with the susceptibility of PD. Our aim was to evaluate the role of all 57 human P450s and their redox partners for the etiology and pathophysiology of PD and to identify novel potential players which may lead to the identification of new biomarkers and to a causative treatment of PD. The PPMI (Parkinson's Progression Markers Initiative) database was used to extract the gene sequences of all 57 P450s and their three redox partners to analyze the association of SNPs with the occurrence of PD. Applying statistical analyses of the data, corresponding odds ratios (OR) and confidence intervals (CI) were calculated. We identified SNPs significantly over-represented in patients with a genetic predisposition for PD (GPD patients) or in idiopathic PD (IPD patients) compared to HC (healthy controls). Xenobiotic-metabolizing P450s show a significant accumulation of SNPs in PD patients compared with HC supporting the role of toxic compounds in the pathogenesis of PD. Moreover, SNPs with high OR values (>5) in P450s catalyzing the degradation of cholesterol (CYP46A1, CY7B1, CYP39A1) indicate a prominent role of cholesterol metabolism in the brain for PD risk. Finally, P450s participating in the metabolism of eicosanoids show a strong over-representation of SNPs in PD patients underlining the effect of inflammation on the pathogenesis of PD. Also, the redox partners of P450 show SNPs with OR > 5 in PD patients. Taken together, we demonstrate that SNPs in 26 out of 57 P450s are at least 5-fold over-represented in PD patients suggesting these P450s as new potential players in the pathogenesis of PD. For the first time exceptionally high OR values (up to 12.9) were found. This will lead to deeper insight into the origin and development of PD and may be applied to develop novel strategies for a causative treatment of this disease.
Collapse
Affiliation(s)
- Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| | - Tobias Fehlmann
- Institut für Klinische Bioinformatik, Universität des Saarlandes, Saarbrücken, Germany
| | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Marcus Michael Unger
- KLinik für Neurologie, Fachbereich Klinische Medizin, Universität des Saarlandes, Homburg, Germany
- Klinik für Neurologie, SHG Kliniken Sonnenberg, Saarbrücken, Germany
| | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| |
Collapse
|
6
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
7
|
Brun NR, Salanga MC, Mora-Zamorano FX, Lamb DC, Goldstone JV, Stegeman JJ. Orphan cytochrome P450 20a1 CRISPR/Cas9 mutants and neurobehavioral phenotypes in zebrafish. Sci Rep 2021; 11:23892. [PMID: 34903767 PMCID: PMC8669017 DOI: 10.1038/s41598-021-03068-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
Orphan cytochrome P450 (CYP) enzymes are those for which biological substrates and function(s) are unknown. Cytochrome P450 20A1 (CYP20A1) is the last human orphan P450 enzyme, and orthologs occur as single genes in every vertebrate genome sequenced to date. The occurrence of high levels of CYP20A1 transcripts in human substantia nigra and hippocampus and abundant maternal transcripts in zebrafish eggs strongly suggest roles both in the brain and during early embryonic development. Patients with chromosome 2 microdeletions including CYP20A1 show hyperactivity and bouts of anxiety, among other conditions. Here, we created zebrafish cyp20a1 mutants using CRISPR/Cas9, providing vertebrate models with which to study the role of CYP20A1 in behavior and other neurodevelopmental functions. The homozygous cyp20a1 null mutants exhibited significant behavioral differences from wild-type zebrafish, both in larval and adult animals. Larval cyp20a1-/- mutants exhibited a strong increase in light-simulated movement (i.e., light-dark assay), which was interpreted as hyperactivity. Further, the larvae exhibited mild hypoactivity during the adaptation period of the optomotor assays. Adult cyp20a1 null fish showed a pronounced delay in adapting to new environments, which is consistent with an anxiety paradigm. Taken together with our earlier morpholino cyp20a1 knockdown results, the results described herein suggest that the orphan CYP20A1 has a neurophysiological role.
Collapse
Affiliation(s)
- Nadja R Brun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, UK
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| |
Collapse
|
8
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
9
|
Durairaj P, Fan L, Sharma SS, Jie Z, Bureik M. Identification of new probe substrates for human CYP20A1. Biol Chem 2020; 401:361-365. [DOI: 10.1515/hsz-2019-0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
AbstractCYP20A1 is a well-conserved member of the human cytochrome P450 enzyme family for which no endogenous or xenobiotic substrate is known. We have recently shown that this enzyme has moderate activity towards two proluciferin probe substrates. In order to facilitate the search for physiological substrates we have tested nine additional proluciferins in this study and identified three such probe substrates that give much higher product yields. Using one of these probes, we demonstrate inhibition of CYP20A1 activity by 1-benzylimidazole, ketoconazole and letrozole. Finally, we show that the combination of two common single nucleotide polymorphisms (SNPs) ofCYP20A1leads to an enzyme (CYP20A1Leu97Phe346) with reduced activity.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Linbing Fan
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Sangeeta Shrestha Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Zhao Jie
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Li M, Li A, He R, Dang W, Liu X, Yang T, Shi P, Bu X, Gao D, Zhang N, Du S, Jin T, Chen M. Gene polymorphism of cytochrome P450 significantly affects lung cancer susceptibility. Cancer Med 2019; 8:4892-4905. [PMID: 31264381 PMCID: PMC6712450 DOI: 10.1002/cam4.2367] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cytochrome P450 (CYPs) are heme proteins involved in the metabolism of a variety of endogenous and exogenous substances and play an important role in the carcinogenesis mechanisms of environmental and hereditary factors. The objective of this study was to investigate how polymorphisms of CYPs correlate with lung cancer (LC) susceptibility. METHODS Six single nucleotide polymorphisms (SNPs) were genotyped in this study. The chi-square test and unconditional logistic regression model were used to evaluate the correlation between SNPs and LC susceptibility. The expressions and survival data of genes in patients with LC were mined using Oncomine and Kaplan-Meier Plotter database. RESULTS Four SNPs were found to be significantly associated with the risk of LC development (P < 0.05). The most significant correlation was that the A allele and AA genotype of CYP2D6 rs1065852 were associated with increased risk of LC development (adjusted odds ratio [OR] = 1.35, 95% confidence interval [95%CI] = 1.13-1.60, P = 9.04e-4; OR = 1.83, 95%CI = 1.29-2.59, P = 0.001 respectively). Similar association of this variant was also found in the subgroups of male patients, cases in III-IV stages, positive lymph node, squamous cell carcinomas and adenocarcinomas. Whereas rs1065852 was considered as protective factor in females (adjusted OR = 0.33, 95% CI = 0.16-0.70, P = 0.004). In stratified analyses, the association of CYP24A1 rs2762934, CYP24A1 rs6068816, CYP20A1 rs2043449 polymorphism with LC risk appeared stronger in some subgroups. CYP2D6, CYP24A1 and CYP20A1 are overexpressed in some pathological types of LC (P < 0.05), and high levels of CYP2D6 and CYP20A1 indicate poor and good prognosis of LC, respectively. CONCLUSION This study revealed that rs1065852, rs2043449, rs2762s934, and rs6068816 of CYPs were associated with LC susceptibility in the Northwestern Chinese Han population; CYP2D6 and CYP20A1 were overexpressed and correlated with prognosis of LC.
Collapse
Affiliation(s)
- Meng Li
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Anqi Li
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Ruiqing He
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Wenhui Dang
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Xinyu Liu
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Tian Yang
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Puyu Shi
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Xiang Bu
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Dan Gao
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| | - Ning Zhang
- The Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuli Du
- Ministry of Education Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Ministry of Education Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Xi'an, Shaanxi, China
| | - Mingwei Chen
- The Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
12
|
Ferain A, Bonnineau C, Neefs I, Das K, Larondelle Y, Rees JF, Debier C, Lemaire B. Transcriptional effects of phospholipid fatty acid profile on rainbow trout liver cells exposed to methylmercury. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:174-187. [PMID: 29649756 DOI: 10.1016/j.aquatox.2018.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Lipids, and their constitutive fatty acids, are key nutrients for fish health as they provide energy, maintain cell structure, are precursors of signalling molecules and act as nuclear receptor ligands. These specific roles may be of crucial importance in a context of exposure to pollutants. We recently showed that the fatty acid profile of rainbow trout liver cell phospholipids modulates sensitivity to an acute methylmercury challenge. In order to investigate mechanisms of effects, we herein tested whether specific polyunsaturated fatty acids (PUFAs) may protect cells from methylmercury through decreasing intracellular mercury accumulation and/or enhancing cellular defences (e.g. via modulation of gene expression patterns). We also investigated the inverse relationship and assessed the impact of methylmercury on cellular fatty acid metabolism. To do so, the fatty acid composition of rainbow trout liver cell phospholipids was first modified by incubating them in a medium enriched in a specific PUFA from either the n-3 family (alpha-linolenic acid, ALA; eicosapentaenoic acid, EPA) or the n-6 family (linoleic acid, LA; arachidonic acid, AA). Cells were then exposed to methylmercury (0.15 or 0.50 μM) for 24 h and sampled thereafter for assessing phospholipid fatty acid profile, intracellular total mercury burden, and expression pattern of genes involved in fatty acid metabolism, synthesis of PUFA-derived signalling molecules and stress response. We observed that cells incorporated the given PUFA and some biotransformation products in their phospholipids. Methylmercury had few impacts on this cellular phospholipid composition. None of the PUFA enrichments affected the cellular mercury burden, suggesting that the previously observed cytoprotection conferred by ALA and EPA was not linked to a global decrease in cellular accumulation of mercury. Fatty acid enrichments and methylmercury exposure both modulated gene expression patterns. Genes involved in the synthesis of PUFA-derived signalling molecules, in stress response and the orphan cytochrome P450 20A1 were identified as possible sites of interaction between fatty acids and methylmercury in rainbow trout liver cells.
Collapse
Affiliation(s)
- Aline Ferain
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Chloé Bonnineau
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium; Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, 5, 69625 Villeurbanne, France
| | - Ineke Neefs
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Krishna Das
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), Laboratory of Oceanology, Université de Liège, Allée du 6 août B6C, B-4000 Liège, Belgium
| | - Yvan Larondelle
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Benjamin Lemaire
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Han J, Kim HS, Kim IC, Kim S, Hwang UK, Lee JS. Effects of water accommodated fractions (WAFs) of crude oil in two congeneric copepods Tigriopus sp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:511-517. [PMID: 28783601 DOI: 10.1016/j.ecoenv.2017.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Oil pollution has deleterious effects on marine ecosystems. However, the toxicity of crude oil towards Antarctic marine organisms has not been well studied. We compared the deleterious effects of water accommodated fractions (WAFs) of crude oil on reproduction, intracellular reactive oxygen species (ROS) levels, and antioxidant enzymatic activity in Antarctic (Tigriopus kingsejongensis) and temperate (Tigriopus japonicus) copepods. Reproductive rates of T. kingsejongensis and T. japonicus were significantly reduced (P < 0.05) in response to WAFs. Furthermore, T. kingsejongensis showed elevated levels of ROS and higher antioxidant enzyme (glutathione peroxidase [GPx]) activity than T. japonicus in response to WAFs. CYP genes from congeneric copepods were identified and annotated to better understand molecular detoxification mechanisms. We observed significant up-regulation (P < 0.05) of Tk-CYP3024A3 and Tj-CYP3024A2 in response to WAFs, suggesting that CYP genes may contribute to the detoxification mechanism in response to WAF exposure. These finding also suggest that WAFs may induce oxidative stress, leading to reproductive impairment in copepods. Furthermore, Tk-CYP3024A3 and Tj-CYP3024A2 genes can be considered as potential biomarkers of WAF toxicity in the congeneric copepods T. kingsejongensis and T. japonicus. This study will be helpful for enhancing our knowledge on the harmful effects of WAFs in Antarctic and temperate copepods and provides insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
14
|
Ioannidis P, Simao FA, Waterhouse RM, Manni M, Seppey M, Robertson HM, Misof B, Niehuis O, Zdobnov EM. Genomic Features of the Damselfly Calopteryx splendens Representing a Sister Clade to Most Insect Orders. Genome Biol Evol 2017; 9:415-430. [PMID: 28137743 PMCID: PMC5381652 DOI: 10.1093/gbe/evx006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2017] [Indexed: 12/14/2022] Open
Abstract
Insects comprise the most diverse and successful animal group with over one million described species that are found in almost every terrestrial and limnic habitat, with many being used as important models in genetics, ecology, and evolutionary research. Genome sequencing projects have greatly expanded the sampling of species from many insect orders, but genomic resources for species of certain insect lineages have remained relatively limited to date. To address this paucity, we sequenced the genome of the banded demoiselle, Calopteryx splendens, a damselfly (Odonata: Zygoptera) belonging to Palaeoptera, the clade containing the first winged insects. The 1.6 Gbp C. splendens draft genome assembly is one of the largest insect genomes sequenced to date and encodes a predicted set of 22,523 protein-coding genes. Comparative genomic analyses with other sequenced insects identified a relatively small repertoire of C. splendens detoxification genes, which could explain its previously noted sensitivity to habitat pollution. Intriguingly, this repertoire includes a cytochrome P450 gene not previously described in any insect genome. The C. splendens immune gene repertoire appears relatively complete and features several genes encoding novel multi-domain peptidoglycan recognition proteins. Analysis of chemosensory genes revealed the presence of both gustatory and ionotropic receptors, as well as the insect odorant receptor coreceptor gene (OrCo) and at least four partner odorant receptors (ORs). This represents the oldest known instance of a complete OrCo/OR system in insects, and provides the molecular underpinning for odonate olfaction. The C. splendens genome improves the sampling of insect lineages that diverged before the radiation of Holometabola and offers new opportunities for molecular-level evolutionary, ecological, and behavioral studies.
Collapse
Affiliation(s)
- Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Felipe A Simao
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Robert M Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mosè Manni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Mathieu Seppey
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Bernhard Misof
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Oliver Niehuis
- Center for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
15
|
Liu P, Zhang R, Yu W, Ye Y, Cheng Y, Han L, Dong L, Chen Y, Wei X, Yu J. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells. Biomaterials 2017; 149:63-76. [PMID: 29017078 DOI: 10.1016/j.biomaterials.2017.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer.
Collapse
Affiliation(s)
- Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanan Cheng
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yongzi Chen
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiyin Wei
- Public Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China.
| |
Collapse
|
16
|
Puthumana J, Lee MC, Park JC, Kim HS, Hwang DS, Han J, Lee JS. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:116-122. [PMID: 28131078 DOI: 10.1016/j.aquatox.2017.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m2) induced developmental delays, and higher doses (6-18kJ/m2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.
Collapse
Affiliation(s)
- Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
17
|
Han J, Kim DH, Seo JS, Kim IC, Nelson DR, Puthumana J, Lee JS. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:42-49. [PMID: 28088650 DOI: 10.1016/j.cbpc.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 01/28/2023]
Abstract
CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
18
|
Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders. Toxicol Appl Pharmacol 2016; 296:73-84. [PMID: 26853319 DOI: 10.1016/j.taap.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 (CYP) enzymes for which there is no functional information are considered "orphan" CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to "deorphanization", that is, identifying CYP20A1 functions and its roles in health and disease.
Collapse
|
19
|
Han J, Won EJ, Kim HS, Nelson DR, Lee SJ, Park HG, Lee JS. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6982-92. [PMID: 25942333 DOI: 10.1021/acs.est.5b01244] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.
Collapse
Affiliation(s)
- Jeonghoon Han
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Eun-Ji Won
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - Hui-Su Kim
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| | - David R Nelson
- ‡Department of Microbiology, Immunology, and Biochemistry, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Su-Jae Lee
- §Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Heum Gi Park
- ∥Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do 210-702, South Korea
| | - Jae-Seong Lee
- †Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea
| |
Collapse
|
20
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
21
|
Uno Y, Hosaka S, Yamazaki H. Identification and analysis of CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 in cynomolgus macaques. J Vet Med Sci 2014; 76:1647-50. [PMID: 25649950 PMCID: PMC4300383 DOI: 10.1292/jvms.14-0313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytochromes P450 (P450) are important for not only drug metabolism and toxicity, but also biosynthesis and metabolism of cholesterol and bile acids, and steroid synthesis. In cynomolgus macaques, widely used in biomedical research, we have characterized P450 cDNAs, which were isolated as expressed sequence tags of cynomolgus macaque liver. In this study, cynomolgus CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 cDNAs were characterized by sequence analysis, phylogenetic analysis and tissue expression pattern. By sequence analysis, these five cynomolgus P450s had high sequence identities (94-99%) to the human orthologs in amino acids. By phylogenetic analysis, each cynomolgus P450 was more closely related to the human ortholog as compared with the dog or rat ortholog. By quantitative polymerase chain reaction, among the 10 tissue types, CYP7A1 and CYP17A1 mRNAs were preferentially expressed in liver and adrenal gland, respectively. Cynomolgus CYP27A1 and CYP51A1 mRNAs were most abundantly expressed in liver and testis, respectively. Cynomolgus CYP20A1 mRNA was expressed in all the tissues, including brain and liver. Tissue expression patterns of each cynomolgus P450 were generally similar to that of the human ortholog. These results suggest the molecular similarities of CYP7A1, CYP17A1, CYP20A1, CYP27A1 and CYP51A1 between cynomolgus macaques and humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama 642-0017, Japan
| | | | | |
Collapse
|
22
|
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120431. [PMID: 23297354 DOI: 10.1098/rstb.2012.0431] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
23
|
Guengerich FP, Cheng Q. Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 2011; 63:684-99. [PMID: 21737533 PMCID: PMC3141877 DOI: 10.1124/pr.110.003525] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a result of technical advances in recombinant DNA technology and nucleotide sequencing, entire genome sequences have become available in the past decade and offer potential in understanding diseases. However, a central problem in the biochemical sciences is that the functions of only a fraction of the genes/proteins are known, and this is also an issue in pharmacology. This review is focused on issues related to the functions of cytochrome P450 (P450) enzymes. P450 functions can be categorized in several groups: 1) Some P450s have critical roles in the metabolism of endogenous substrates (e.g., sterols and fat-soluble vitamins). 2) Some P450s are not generally critical to normal physiology but function in relatively nonselective protection from the many xenobiotic chemicals to which mammals (including humans) are exposed in their diets [as well as more anthropomorphic chemicals (e.g., drugs, pesticides)]. 3) Some P450s have not been extensively studied and are termed "orphans" here. With regard to elucidation of any physiological functions of the orphan P450s, the major subject of this review, it is clear that simple trial-and-error approaches with individual substrate candidates will not be very productive in addressing questions about function. A series of liquid chromatography/mass spectrometry/informatics approaches are discussed, along with some successes with both human and bacterial P450s. Current information on what are still considered "orphan" P450s is presented. The potential for application of some of these approaches to other enzyme systems is also discussed.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, USA.
| | | |
Collapse
|
24
|
Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, Nelson DR, Stegeman JJ. Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 2010; 11:643. [PMID: 21087487 PMCID: PMC3012610 DOI: 10.1186/1471-2164-11-643] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/18/2010] [Indexed: 11/10/2022] Open
Abstract
Background Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Conclusions Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.
Collapse
Affiliation(s)
- Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Guengerich FP, Tang Z, Salamanca-Pinzón SG, Cheng Q. Characterizing proteins of unknown function: orphan cytochrome p450 enzymes as a paradigm. Mol Interv 2010; 10:153-63. [PMID: 20539034 PMCID: PMC2895278 DOI: 10.1124/mi.10.3.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the rapid completion of genomic sequences of organisms today, we have far more gene products than functions we can ascribe. A number of experimental strategies have been developed and applied, both in vitro and in vivo, to put functions to these orphan proteins. The "deorphanization" of human and Streptomyces cytochrome P450 enzymes is considered quite important for pharmacology, with ramifications for the use of clinical therapeutics. The myriad of possibilities is too enormous to screen one reaction at a time, thus metabolomic or proteomic screens with complex biological samples are promising current strategies.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
26
|
Guengerich FP, Tang Z, Cheng Q, Salamanca-Pinzón SG. Approaches to deorphanization of human and microbial cytochrome P450 enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:139-45. [PMID: 20493973 DOI: 10.1016/j.bbapap.2010.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 04/30/2010] [Accepted: 05/09/2010] [Indexed: 12/30/2022]
Abstract
One of the general problems in biology today is that we are characterizing genomic sequences much faster than identifying the functions of the gene products, and the same problem exists with cytochromes P450 (P450). One fourth of the human P450s are not well-characterized and therefore considered "orphans." A number of approaches to deorphanization are discussed generally. Several liquid chromatography-mass spectrometry approaches have been applied to some of the human and Streptomyces coelicolor P450s. One current limitation is that too many fatty acid oxidations have been identified and we are probably missing more relevant substrates, possibly due to limits of sensitivity.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | |
Collapse
|
27
|
Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals. Appl Environ Microbiol 2010; 76:2823-9. [PMID: 20228102 DOI: 10.1128/aem.02984-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.
Collapse
|
28
|
Wu ZL, Qiao J, Zhang ZG, Guengerich FP, Liu Y, Pei XQ. Enhanced bacterial expression of several mammalian cytochrome P450s by codon optimization and chaperone coexpression. Biotechnol Lett 2009; 31:1589-93. [PMID: 19557307 DOI: 10.1007/s10529-009-0059-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 12/16/2022]
Abstract
To elucidate the effects of codon optimization and chaperone coexpression on the heterologous expression of mammalian cytochrome P450s (P450) in Escherichia coli, the expression of P450s 2B1, 2S1, 2U1, 2W1, and 27C1 were investigated. With codon optimization for N-terminus or the entire gene, the expression levels of P450 27C1, 2U1 and 2W1 increased 22-fold, 3.6-fold and 2.1-fold, respectively, while those for P450s 2B1 and 2S1 remained unchanged. With coexpression of E. coli molecular chaperones GroEL/ES, the expression level increased up to 14-fold for P450 27C1, and 3- to 5-fold for P450s 2B1, 2S1, and 2W1. Simultaneous application of these two techniques resulted in synergetic effects.
Collapse
Affiliation(s)
- Zhong-Liu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, 610041, Chengdu, China.
| | | | | | | | | | | |
Collapse
|