1
|
Chowdhury K, Das D, Huang M. Advancing the Metabolic Dysfunction-Associated Steatotic Liver Disease Proteome: A Post-Translational Outlook. Genes (Basel) 2025; 16:334. [PMID: 40149485 PMCID: PMC11941888 DOI: 10.3390/genes16030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder with limited treatment options. This review explores the role of post-translational modifications (PTMs) in MASLD pathogenesis, highlighting their potential as therapeutic targets. We discuss the impact of PTMs, including their phosphorylation, ubiquitylation, acetylation, and glycosylation, on key proteins involved in MASLD, drawing on studies that use both human subjects and animal models. These modifications influence various cellular processes, such as lipid metabolism, inflammation, and fibrosis, contributing to disease progression. Understanding the intricate PTM network in MASLD offers the potential for developing novel therapeutic strategies that target specific PTMs to modulate protein function and alleviate disease pathology. Further research is needed to fully elucidate the complexity of PTMs in MASLD and translate these findings into effective clinical applications.
Collapse
Affiliation(s)
- Kushan Chowdhury
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (K.C.); (D.D.)
| | - Debajyoti Das
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (K.C.); (D.D.)
| | - Menghao Huang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin & Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Farrera DO, Alaaldin MM, Lindberg P, Sample PA, Lenzen-Hammerel P, LaMadrid CS, Haymore R, Wright SH, Cherrington NJ. Alterations of valsartan pharmacokinetics in a rodent model of metabolic dysfunction-associated steatohepatitis. Drug Metab Dispos 2025; 53:100043. [PMID: 40054126 DOI: 10.1016/j.dmd.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 03/30/2025] Open
Abstract
Valsartan (VAL) is commonly prescribed for patients with cardiovascular disease (CVD) to lower blood pressure, reduce heart failure risk, and prevent heart attacks or strokes by blocking the effects of angiotensin II. Many patients with CVD also suffer from metabolic dysfunction-associated steatohepatitis (MASH), which disrupts several xenobiotic transporters, affecting the pharmacokinetics of numerous drugs. Medications used in patients to treat comorbidities associated with MASH may be subject to this altered disposition and potential toxicity. This study aimed to assess how MASH alters the pharmacokinetics of VAL using a rodent model that mimics human MASH. MASH was induced in rats via a methionine- and choline-deficient (MCD) diet. Rats received VAL-a substrate of organic anion-transporting polypeptide (OATP) 1B1/1B3 and reported for multidrug resistance-associated protein-2-(2 mg/kg) through intravenous injection to isolate hepatic transport processes, and bile, serum, and liver concentrations measured using liquid chromatography-tandem mass spectrometry. Consistent with MASH progression, MCD rats presented with more gross pathology, including increased liver-to-body weight ratios, along with macrosteatosis, hepatocyte ballooning, and lobular inflammation. In MCD rats, the expression of Oatp1b2 was significantly reduced, and Mrp2 was internalized, resulting in higher systemic exposure to VAL compared with controls. Additionally, cumulative biliary excretion of VAL was lower in MCD rats. To further assess VAL disposition in MASH, transport kinetics were evaluated in human embryonic kidney 293 cells overexpressing OATP1B1 or OATP1B3, revealing similar affinity for VAL between both transporters. These findings suggest that changes in OATP function in MASH may alter VAL pharmacokinetics, which may have implications for personalized treatments. SIGNIFICANCE STATEMENT: Although expression of drug transporters in metabolic dysfunction-associated steatohepatitis (MASH) has been explored, the combined effect between MASH and genetic loss of transporters on the disposition of sartan drugs has not been determined. This study applied liquid chromatography-tandem mass spectrometry analyses and immunohistological staining to assess drug disposition and identify alterations to drug transporters in rodents on a methionine- and choline-deficient diet. The observations made in this study have significant implications regarding its disposition in the context of hepatic dysfunction associated with MASH.
Collapse
Affiliation(s)
- Dominique O Farrera
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Mina M Alaaldin
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Paige Lindberg
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Paxton A Sample
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Paige Lenzen-Hammerel
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Christopher S LaMadrid
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Ryan Haymore
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Medicine, Department of Physiology, The University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, The University of Arizona, Tucson, Arizona.
| |
Collapse
|
3
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Pastor CM, Vilgrain V. New understanding of hepatobiliary MRI. Nat Rev Gastroenterol Hepatol 2024; 21:459-460. [PMID: 38565648 DOI: 10.1038/s41575-024-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Affiliation(s)
- Catherine M Pastor
- Université Paris-Cité, Paris, France.
- Centre de Recherche sur l'Inflammation, INSERM 1149, Paris, France.
| | - Valérie Vilgrain
- Université Paris-Cité, Paris, France
- Centre de Recherche sur l'Inflammation, INSERM 1149, Paris, France
| |
Collapse
|
5
|
Zertuche-Martínez C, Velázquez-Enríquez JM, González-García K, Baltiérrez-Hoyos R, Carrasco-Torres G, García-Román R, Romero-Díaz RI, Pérez-Hernández JL, Muriel P, Villa-Treviño S, Arellanes-Robledo J, Vásquez-Garzón VR. Identification of ABCC3 and its isoforms as potential biomarker in hepatocellular carcinoma. Toxicol Mech Methods 2024; 34:398-407. [PMID: 38083799 DOI: 10.1080/15376516.2023.2294475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Cecilia Zertuche-Martínez
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Juan Manuel Velázquez-Enríquez
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Karina González-García
- Faculty of Medicine and Surgery, Laboratory of Fibrosis and Cancer, 'Benito Juarez' Autonomous University of Oaxaca-UABJO, Oaxaca, Mexico
| | - Rafael Baltiérrez-Hoyos
- CONACYT-Faculty of Medicine and Surgery, Autonomous University "Benito Juarez" of Oaxaca-UABJO, Oaxaca, Mexico
| | - Gabriela Carrasco-Torres
- Centre for Research in Applied Science and Advanced Technology, Morelos Unit, National Polytechnic Institute, Atlacholoaya, Mexico
| | | | | | | | - Pablo Muriel
- Department of Pharmacology, Laboratory of Experimental Hepatology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Saúl Villa-Treviño
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, Mexico City, Mexico
| | - Jaime Arellanes-Robledo
- CONACYT-Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, Mexico City, Mexico
| | | |
Collapse
|
6
|
Laddha AP, Dzielak L, Lewis C, Xue R, Manautou JE. Impact of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) on the expression and function of hepatobiliary transporters: A comprehensive mechanistic review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167037. [PMID: 38295624 DOI: 10.1016/j.bbadis.2024.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes. Other drug transporters translocate molecules from hepatocytes into bile canaliculi for biliary excretion. The formers are known as basolateral, while the latter are known as canalicular transporters. Also, these transporters are classified into two super-families, the solute carrier transporter (SLC) and the adenosine triphosphate (ATP)-binding cassette (ABC) transporter. The expression and function of transporters involve complex regulatory mechanisms, which are contributing factors to interindividual variability in drug pharmacokinetics and disposition. A considerable number of liver diseases are known to alter the expression and function of drug transporters. Among them, non-alcoholic fatty liver disease (NAFLD) is a chronic condition with a rapidly increasing incidence worldwide. NAFLD, recently reclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), is a disease continuum that includes steatosis with or without mild inflammation (NASH), and potentially neuroinflammatory pathology. NASH is additionally characterized by the presence of hepatocellular injury. During NAFLD and NASH, drug transporters exhibit altered expression and function, leading to altered drug pharmacokinetics and pharmacodynamics, thus increasing the risk of adverse drug reactions. The purpose of the present review is to provide comprehensive mechanistic information on the expression and function of hepatic transporters under fatty liver conditions and hence, the impact on the pharmacokinetic profiles of certain drugs from the available pre-clinical and clinical literature.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lindsey Dzielak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA; Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Cedric Lewis
- Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Raymond Xue
- Charles River Laboratories, Inc., Shrewsbury, MA, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Murphy WA, Diehl AM, Loop MS, Fu D, Guy CD, Abdelmalek MF, Karachaliou GS, Sjöstedt N, Neuhoff S, Honkakoski P, Brouwer KLR. Alterations in zonal distribution and plasma membrane localization of hepatocyte bile acid transporters in patients with NAFLD. Hepatol Commun 2024; 8:e0377. [PMID: 38381537 PMCID: PMC10871794 DOI: 10.1097/hc9.0000000000000377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/16/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND NAFLD is highly prevalent with limited treatment options. Bile acids (BAs) increase in the systemic circulation and liver during NAFLD progression. Changes in plasma membrane localization and zonal distribution of BA transporters can influence transport function and BA homeostasis. However, a thorough characterization of how NAFLD influences these factors is currently lacking. This study aimed to evaluate the impact of NAFLD and the accompanying histologic features on the functional capacity of key hepatocyte BA transporters across zonal regions in human liver biopsies. METHODS A novel machine learning image classification approach was used to quantify relative zonal abundance and plasma membrane localization of BA transporters (bile salt export pump [BSEP], sodium-taurocholate cotransporting polypeptide, organic anion transporting polypeptide [OATP] 1B1 and OATP1B3) in non-diseased (n = 10), NAFL (n = 9), and NASH (n = 11) liver biopsies. Based on these data, membrane-localized zonal abundance (MZA) measures were developed to estimate transporter functional capacity. RESULTS NAFLD diagnosis and histologic scoring were associated with changes in transporter membrane localization and zonation. Increased periportal BSEPMZA (mean proportional difference compared to non-diseased liver of 0.090) and decreased pericentral BSEPMZA (-0.065) were observed with NASH and also in biopsies with higher histologic scores. Compared to Non-diseased Liver, periportal OATP1B3MZA was increased in NAFL (0.041) and NASH (0.047). Grade 2 steatosis (mean proportional difference of 0.043 when compared to grade 0) and grade 1 lobular inflammation (0.043) were associated with increased periportal OATP1B3MZA. CONCLUSIONS These findings provide novel mechanistic insight into specific transporter alterations that impact BA homeostasis in NAFLD. Changes in BSEPMZA likely contribute to altered BA disposition and pericentral microcholestasis previously reported in some patients with NAFLD. BSEPMZA assessment could inform future development and optimization of NASH-related pharmacotherapies.
Collapse
Affiliation(s)
- William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew Shane Loop
- Department of Health Outcomes Research and Policy, Harrison College of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia D. Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Georgia Sofia Karachaliou
- Division of Gastroenterology and Hepatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Adiwidjaja J, Spires J, Brouwer KLR. Physiologically Based Pharmacokinetic (PBPK) Model Predictions of Disease Mediated Changes in Drug Disposition in Patients with Nonalcoholic Fatty Liver Disease (NAFLD). Pharm Res 2024; 41:441-462. [PMID: 38351228 DOI: 10.1007/s11095-024-03664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE This study was designed to verify a virtual population representing patients with nonalcoholic fatty liver disease (NAFLD) to support the implementation of a physiologically based pharmacokinetic (PBPK) modeling approach for prediction of disease-related changes in drug pharmacokinetics. METHODS A virtual NAFLD patient population was developed in GastroPlus (v.9.8.2) by accounting for pathophysiological changes associated with the disease and proteomics-informed alterations in the abundance of metabolizing enzymes and transporters pertinent to drug disposition. The NAFLD population model was verified using exemplar drugs where elimination is influenced predominantly by cytochrome P450 (CYP) enzymes (chlorzoxazone, caffeine, midazolam, pioglitazone) or by transporters (rosuvastatin, 11C-metformin, morphine and the glucuronide metabolite of morphine). RESULTS PBPK model predictions of plasma concentrations of all the selected drugs and hepatic radioactivity levels of 11C-metformin were consistent with the clinically-observed data. Importantly, the PBPK simulations using the virtual NAFLD population model provided reliable estimates of the extent of changes in key pharmacokinetic parameters for the exemplar drugs, with mean predicted ratios (NAFLD patients divided by healthy individuals) within 0.80- to 1.25-fold of the clinically-reported values, except for midazolam (prediction-fold difference of 0.72). CONCLUSION A virtual NAFLD population model within the PBPK framework was successfully developed with good predictive capability of estimating disease-related changes in drug pharmacokinetics. This supports the use of a PBPK modeling approach for prediction of the pharmacokinetics of new investigational or repurposed drugs in patients with NAFLD and may help inform dose adjustments for drugs commonly used to treat comorbidities in this patient population.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Simulations Plus, Inc, Lancaster, CA, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Yousof TR, Bouchard CC, Alb M, Lynn EG, Lhoták S, Jiang H, MacDonald M, Li H, Byun JH, Makda Y, Athanasopoulos M, Maclean KN, Cherrington NJ, Naqvi A, Igdoura SA, Krepinsky JC, Steinberg GR, Austin RC. Restoration of the ER stress response protein TDAG51 in hepatocytes mitigates NAFLD in mice. J Biol Chem 2024; 300:105655. [PMID: 38237682 PMCID: PMC10875272 DOI: 10.1016/j.jbc.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Endoplasmic reticulum stress is associated with insulin resistance and the development of nonalcoholic fatty liver disease. Deficiency of the endoplasmic reticulum stress response T-cell death-associated gene 51 (TDAG51) (TDAG51-/-) in mice promotes the development of high-fat diet (HFD)-induced obesity, fatty liver, and hepatic insulin resistance. However, whether this effect is due specifically to hepatic TDAG51 deficiency is unknown. Here, we report that hepatic TDAG51 protein levels are consistently reduced in multiple mouse models of liver steatosis and injury as well as in liver biopsies from patients with liver disease compared to normal controls. Delivery of a liver-specific adeno-associated virus (AAV) increased hepatic expression of a TDAG51-GFP fusion protein in WT, TDAG51-/-, and leptin-deficient (ob/ob) mice. Restoration of hepatic TDAG51 protein was sufficient to increase insulin sensitivity while reducing body weight and fatty liver in HFD fed TDAG51-/- mice and in ob/ob mice. TDAG51-/- mice expressing ectopic TDAG51 display improved Akt (Ser473) phosphorylation, post-insulin stimulation. HFD-fed TDAG51-/- mice treated with AAV-TDAG51-GFP displayed reduced lipogenic gene expression, increased beta-oxidation and lowered hepatic and serum triglycerides, findings consistent with reduced liver weight. Further, AAV-TDAG51-GFP-treated TDAG51-/- mice exhibited reduced hepatic precursor and cleaved sterol regulatory-element binding proteins (SREBP-1 and SREBP-2). In vitro studies confirmed the lipid-lowering effect of TDAG51 overexpression in oleic acid-treated Huh7 cells. These studies suggest that maintaining hepatic TDAG51 protein levels represents a viable therapeutic approach for the treatment of obesity and insulin resistance associated with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Tamana R Yousof
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Celeste C Bouchard
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Mihnea Alb
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Edward G Lynn
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Sárka Lhoták
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hua Jiang
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Jae H Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Yumna Makda
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Kenneth N Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Asghar Naqvi
- Department of Pathology and Molecular Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Ontario, Canada
| | - Suleiman A Igdoura
- Department of Biology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Division of Endocrinology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada; Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Kvitne KE, Hovd M, Johnson LK, Wegler C, Karlsson C, Artursson P, Andersson S, Sandbu R, Hjelmesæth J, Skovlund E, Jansson-Löfmark R, Christensen H, Åsberg A, Robertsen I. Digoxin Pharmacokinetics in Patients with Obesity Before and After a Gastric Bypass or a Strict Diet Compared with Normal Weight Individuals. Clin Pharmacokinet 2024; 63:109-120. [PMID: 37993699 PMCID: PMC10786955 DOI: 10.1007/s40262-023-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Several drugs on the market are substrates for P-glycoprotein (P-gp), an efflux transporter highly expressed in barrier tissues such as the intestine. Body weight, weight loss, and a Roux-en-Y gastric bypass (RYGB) may influence P-gp expression and activity, leading to variability in the drug response. The objective of this study was therefore to investigate digoxin pharmacokinetics as a measure of the P-gp phenotype in patients with obesity before and after weight loss induced by an RYGB or a strict diet and in normal weight individuals. METHODS This study included patients with severe obesity preparing for an RYGB (n = 40) or diet-induced weight loss (n = 40) and mainly normal weight individuals scheduled for a cholecystectomy (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day) followed by an additional 6 weeks of <800 kcal/day induced by an RYGB (performed at week 3) or a very-low-energy diet. Follow-up time was 2 years, with four digoxin pharmacokinetic investigations at weeks 0, 3, and 9, and year 2. Hepatic and jejunal P-gp levels were determined in biopsies obtained from the patients undergoing surgery. RESULTS The RYGB group and the diet group had a comparable weight loss in the first 9 weeks (13 ± 2.3% and 11 ± 3.6%, respectively). During this period, we observed a minor increase (16%) in the digoxin area under the concentration-time curve from zero to infinity in both groups: RYGB: 2.7 µg h/L [95% confidence interval (CI) 0.67, 4.7], diet: 2.5 µg h/L [95% CI 0.49, 4.4]. In the RYGB group, we also observed that the time to reach maximum concentration decreased after surgery: from 1.0 ± 0.33 hours at week 3 to 0.77 ± 0.08 hours at week 9 (-0.26 hours [95% CI -0.47, -0.05]), corresponding to a 25% reduction. Area under the concentration-time curve from zero to infinity did not change long term (week 0 to year 2) in either the RYGB (1.1 µg h/L [-0.94, 3.2]) or the diet group (0.94 µg h/L [-1.2, 3.0]), despite a considerable difference in weight loss from baseline (RYGB: 30 ± 7%, diet: 3 ± 6%). At baseline, the area under the concentration-time curve from zero to infinity was -5.5 µg h/L [95% CI -8.5, -2.5] (-26%) lower in patients with obesity (RYGB plus diet) than in normal weight individuals scheduled for a cholecystectomy. Further, patients undergoing an RYGB had a 0.05 fmol/µg [95% CI 0.00, 0.10] (29%) higher hepatic P-gp level than the normal weight individuals. CONCLUSIONS Changes in digoxin pharmacokinetics following weight loss induced by a pre-operative low-energy diet and an RYGB or a strict diet (a low-energy diet plus a very-low-energy diet) were minor and unlikely to be clinically relevant. The lower systemic exposure of digoxin in patients with obesity suggests that these patients may have increased biliary excretion of digoxin possibly owing to a higher expression of P-gp in the liver.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Markus Hovd
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Karlsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hege Christensen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
11
|
Nazari E, Khalili-Tanha G, Asadnia A, Pourali G, Maftooh M, Khazaei M, Nasiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Kiani MA, Avan A. Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease. Sci Rep 2023; 13:20489. [PMID: 37993474 PMCID: PMC10665370 DOI: 10.1038/s41598-023-46711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a range of chronic liver diseases that result from the accumulation of excess triglycerides in the liver, and which, in its early phases, is categorized NAFLD, or hepato-steatosis with pure fatty liver. The mortality rate of non-alcoholic steatohepatitis (NASH) is more than NAFLD; therefore, diagnosing the disease in its early stages may decrease liver damage and increase the survival rate. In the current study, we screened the gene expression data of NAFLD patients and control samples from the public dataset GEO to detect DEGs. Then, the correlation betweenbetween the top selected DEGs and clinical data was evaluated. In the present study, two GEO datasets (GSE48452, GSE126848) were downloaded. The dysregulated expressed genes (DEGs) were identified by machine learning methods (Penalize regression models). Then, the shared DEGs between the two training datasets were validated using validation datasets. ROC-curve analysis was used to identify diagnostic markers. R software analyzed the interactions between DEGs, clinical data, and fatty liver. Ten novel genes, including ABCF1, SART3, APC5, NONO, KAT7, ZPR1, RABGAP1, SLC7A8, SPAG9, and KAT6A were found to have a differential expression between NAFLD and healthy individuals. Based on validation results and ROC analysis, NR4A2 and IGFBP1b were identified as diagnostic markers. These key genes may be predictive markers for the development of fatty liver. It is recommended that these key genes are assessed further as possible predictive markers during the development of fatty liver.
Collapse
Affiliation(s)
- Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Asadnia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Mohammad Ali Kiani
- Department of Pediatrics, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4000, Australia.
| |
Collapse
|
12
|
Murray M. Mechanisms and Clinical Significance of Pharmacokinetic Drug Interactions Mediated by FDA and EMA-approved Hepatitis C Direct-Acting Antiviral Agents. Clin Pharmacokinet 2023; 62:1365-1392. [PMID: 37731164 DOI: 10.1007/s40262-023-01302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
The treatment of patients infected with the hepatitis C virus (HCV) has been revolutionised by the development of direct-acting antiviral agents (DAAs) that target specific HCV proteins involved in viral replication. The first DAAs were associated with clinical problems such as adverse drug reactions and pharmacokinetic drug-drug interactions (DDIs). Current FDA/EMA-approved treatments are combinations of DAAs that simultaneously target the HCV N5A-protein, the HCV N5B-polymerase and the HCV NS3/4A-protease. Adverse events and DDIs are less likely with these DAA combinations but several DDIs of potential clinical significance remain. Much of the available information on the interaction of DAAs with CYP drug-metabolising enzymes and influx and efflux transporters is contained in regulatory summaries and is focused on DDIs of likely clinical importance. Important DDIs perpetrated by current DAAs include increases in the pharmacokinetic exposure to statins and dabigatran. Some mechanistic information can be deduced. Although the free concentrations of DAAs in serum are very low, a number of these DDIs are likely mediated by the inhibition of systemic influx transporters, especially OATP1B1/1B3. Other DDIs may arise by DAA-mediated inhibition of intestinal efflux transporters, which increases the systemic concentrations of some coadministered drugs. Conversely, DAAs are victims of DDIs mediated by cyclosporin, ketoconazole, omeprazole and HIV antiretroviral drug combinations, especially when boosted by ritonavir and, to a lesser extent, cobicistat. In addition, concurrent administration of inducers, such as rifampicin, carbamazepine and efavirenz, decreases exposure to some DAAs. Drug-drug interactions that increase the accumulation of HCV N3/4A-protease inhibitors like grazoprevir may exacerbate hepatic injury in HCV patients.
Collapse
Affiliation(s)
- Michael Murray
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
13
|
Frost KL, Jilek JL, Toth EL, Goedken MJ, Wright SH, Cherrington NJ. Representative Rodent Models for Renal Transporter Alterations in Human Nonalcoholic Steatohepatitis. Drug Metab Dispos 2023; 51:970-981. [PMID: 37137719 PMCID: PMC10353148 DOI: 10.1124/dmd.122.001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
Alterations in renal elimination processes of glomerular filtration and active tubular secretion by renal transporters can result in adverse drug reactions. Nonalcoholic steatohepatitis (NASH) alters hepatic transporter expression and xenobiotic elimination, but until recently, renal transporter alterations in NASH were unknown. This study investigates renal transporter changes in rodent models of NASH to identify a model that recapitulates human alterations. Quantitative protein expression by surrogate peptide liquid chromatography-coupled mass spectrometry (LC-MS/MS) on renal biopsies from NASH patients was used for concordance analysis with rodent models, including methionine/choline deficient (MCD), atherogenic (Athero), or control rats and Leprdb/db MCD (db/db), C57BL/6J fast-food thioacetamide (FFDTH), American lifestyle-induced obesity syndrome (ALIOS), or control mice. Demonstrating clinical similarity to NASH patients, db/db, FFDTH, and ALIOS showed decreases in glomerular filtration rate (GFR) by 76%, 28%, and 24%. Organic anion transporter 3 (OAT3) showed an upward trend in all models except the FFDTH (from 3.20 to 2.39 pmol/mg protein), making the latter the only model to represent human OAT3 changes. OAT5, a functional ortholog of human OAT4, significantly decreased in db/db, FFDTH, and ALIOS (from 4.59 to 0.45, 1.59, and 2.83 pmol/mg protein, respectively) but significantly increased for MCD (1.67 to 4.17 pmol/mg protein), suggesting that the mouse models are comparable to human for these specific transport processes. These data suggest that variations in rodent renal transporter expression are elicited by NASH, and the concordance analysis enables appropriate model selection for future pharmacokinetic studies based on transporter specificity. These models provide a valuable resource to extrapolate the consequences of human variability in renal drug elimination. SIGNIFICANCE STATEMENT: Rodent models of nonalcoholic steatohepatitis that recapitulate human renal transporter alterations are identified for future transporter-specific pharmacokinetic studies to facilitate the prevention of adverse drug reactions due to human variability.
Collapse
Affiliation(s)
- Kayla L Frost
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Joseph L Jilek
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Erica L Toth
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Michael J Goedken
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (K.L.F., J.L.J., E.L.T., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona and Department of Pharmacology & Toxicology, Rutgers University, Piscataway, New Jersey (M.J.G.)
| |
Collapse
|
14
|
Powell NR, Liang T, Ipe J, Cao S, Skaar TC, Desta Z, Qian HR, Ebert PJ, Chen Y, Thomas MK, Chalasani N. Clinically important alterations in pharmacogene expression in histologically severe nonalcoholic fatty liver disease. Nat Commun 2023; 14:1474. [PMID: 36927865 PMCID: PMC10020163 DOI: 10.1038/s41467-023-37209-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Polypharmacy is common in patients with nonalcoholic fatty liver disease (NAFLD) and previous reports suggest that NAFLD is associated with altered drug disposition. This study aims to determine if patients with NAFLD are at risk for altered drug response by characterizing changes in hepatic mRNA expression of genes mediating drug disposition (pharmacogenes) across the histological NAFLD severity spectrum. We utilize RNA-seq for 93 liver biopsies with histologically staged NAFLD Activity Score (NAS), fibrosis stage, and steatohepatitis (NASH). We identify 37 significant pharmacogene-NAFLD severity associations including CYP2C19 downregulation. We chose to validate CYP2C19 due to its actionability in drug prescribing. Meta-analysis of 16 independent studies demonstrate that CYP2C19 is significantly downregulated to 46% in NASH, to 58% in high NAS, and to 43% in severe fibrosis. Our data demonstrate the downregulation of CYP2C19 in NAFLD which supports developing personalized medicine approaches for drugs sensitive to metabolism by the CYP2C19 enzyme.
Collapse
Affiliation(s)
- Nicholas R Powell
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Joseph Ipe
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Sha Cao
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA
| | - Todd C Skaar
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Indiana University School of Medicine, Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | | | - Yu Chen
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Naga Chalasani
- Indiana University School of Medicine, Department of Medicine, Division of Gastroenterology Hepatology, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Murphy WA, Adiwidjaja J, Sjöstedt N, Yang K, Beaudoin JJ, Spires J, Siler SQ, Neuhoff S, Brouwer KLR. Considerations for Physiologically Based Modeling in Liver Disease: From Nonalcoholic Fatty Liver (NAFL) to Nonalcoholic Steatohepatitis (NASH). Clin Pharmacol Ther 2023; 113:275-297. [PMID: 35429164 PMCID: PMC10083989 DOI: 10.1002/cpt.2614] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), representing a clinical spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), is rapidly evolving into a global pandemic. Patients with NAFLD are burdened with high rates of metabolic syndrome-related comorbidities resulting in polypharmacy. Therefore, it is crucial to gain a better understanding of NAFLD-mediated changes in drug disposition and efficacy/toxicity. Despite extensive clinical pharmacokinetic data in cirrhosis, current knowledge concerning pharmacokinetic alterations in NAFLD, particularly at different stages of disease progression, is relatively limited. In vitro-to-in vivo extrapolation coupled with physiologically based pharmacokinetic and pharmacodynamic (IVIVE-PBPK/PD) modeling offers a promising approach for optimizing pharmacologic predictions while refining and reducing clinical studies in this population. Use of IVIVE-PBPK to predict intra-organ drug concentrations at pharmacologically relevant sites of action is particularly advantageous when it can be linked to pharmacodynamic effects. Quantitative systems pharmacology/toxicology (QSP/QST) modeling can be used to translate pharmacokinetic and pharmacodynamic data from PBPK/PD models into clinically relevant predictions of drug response and toxicity. In this review, a detailed summary of NAFLD-mediated alterations in human physiology relevant to drug absorption, distribution, metabolism, and excretion (ADME) is provided. The application of literature-derived physiologic parameters and ADME-associated protein abundance data to inform virtual NAFLD population development and facilitate PBPK/PD, QSP, and QST predictions is discussed along with current limitations of these methodologies and knowledge gaps. The proposed methodologic framework offers great potential for meaningful prediction of pharmacological outcomes in patients with NAFLD and can inform both drug development and clinical practice for this population.
Collapse
Affiliation(s)
- William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffry Adiwidjaja
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Simulations Plus, Inc., Lancaster, California, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | - James J Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Scott Q Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Hepatic Transporters Alternations Associated with Non-alcoholic Fatty Liver Disease (NAFLD): A Systematic Review. Eur J Drug Metab Pharmacokinet 2023; 48:1-10. [PMID: 36319903 DOI: 10.1007/s13318-022-00802-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disorder and is usually accompanied by obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to impaired functions of hepatocytes such as alternations in expression and function of hepatic transporters. The present study aimed to summarize and discuss the results of clinical and preclinical human studies that investigate the effect of NAFLD on hepatic transporters. METHODS The databases of PubMed, Scopus, Embase, and Web of Science were searched systematically up to 1 March 2022. The risk of bias was assessed for cross-sectional studies through the Newcastle-Ottawa Scale score. RESULTS Our review included ten cross-sectional studies consisting of 485 participants. Substantial alternations in hepatic transporters were seen during NAFLD progression to non-alcoholic steatohepatitis (NASH) in comparison with control groups. A significant reduction in expression and function of several hepatic uptake transporters, upregulation of many efflux transporters, downregulation of cholesterol efflux transporters, and mislocalization of canalicular transporter ABCC2 are associated with NAFLD progression. CONCLUSION Since extensive changes in hepatic transporters could alter the pharmacokinetics of the drugs and potentially affect the safety and efficacy of drugs, close monitoring of drug administration is highly suggested in patients with NASH.
Collapse
|
17
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
18
|
Jilek JL, Frost KL, Marie S, Myers CM, Goedken M, Wright SH, Cherrington NJ. Attenuated Ochratoxin A Transporter Expression in a Mouse Model of Nonalcoholic Steatohepatitis Protects against Proximal Convoluted Tubule Toxicity. Drug Metab Dispos 2022; 50:1389-1395. [PMID: 34921099 PMCID: PMC9513848 DOI: 10.1124/dmd.121.000451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 µg in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.
Collapse
Affiliation(s)
- Joseph L Jilek
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Kayla L Frost
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Solène Marie
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Cassandra M Myers
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Michael Goedken
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| |
Collapse
|
19
|
Comparative Proteomic Analysis of Liver Tissues and Serum in db/db Mice. Int J Mol Sci 2022; 23:ijms23179687. [PMID: 36077090 PMCID: PMC9455973 DOI: 10.3390/ijms23179687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: Non-alcoholic fatty liver disease (NAFLD) affects one-quarter of individuals worldwide. Liver biopsy, as the current reliable method for NAFLD evaluation, causes low patient acceptance because of the nature of invasive sampling. Therefore, sensitive non-invasive serum biomarkers are urgently needed. Results: The serum gene ontology (GO) classification and Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed the DEPs enriched in pathways including JAK-STAT and FoxO. GO analysis indicated that serum DEPs were mainly involved in the cellular process, metabolic process, response to stimulus, and biological regulation. Hepatic proteomic KEGG analysis revealed the DEPs were mainly enriched in the PPAR signaling pathway, retinol metabolism, glycine, serine, and threonine metabolism, fatty acid elongation, biosynthesis of unsaturated fatty acids, glutathione metabolism, and steroid hormone biosynthesis. GO analysis revealed that DEPs predominantly participated in cellular, biological regulation, multicellular organismal, localization, signaling, multi-organism, and immune system processes. Protein-protein interaction (PPI) implied diverse clusters of the DEPs. Besides, the paralleled changes of the common upregulated and downregulated DEPs existed in both the liver and serum were validated in the mRNA expression of NRP1, MUP3, SERPINA1E, ALPL, and ALDOB as observed in our proteomic screening. Methods: We conducted hepatic and serum proteomic analysis based on the leptin-receptor-deficient mouse (db/db), a well-established diabetic mouse model with overt obesity and NAFLD. The results show differentially expressed proteins (DEPs) in hepatic and serum proteomic analysis. A parallel reaction monitor (PRM) confirmed the authenticity of the selected DEPs. Conclusion: These results are supposed to offer sensitive non-invasive serum biomarkers for diabetes and NAFLD.
Collapse
|
20
|
Chen T, Zhang S, Zhou D, Lu P, Mo X, Tamrakar R, Yang X. Screening of co-pathogenic genes of non-alcoholic fatty liver disease and hepatocellular carcinoma. Front Oncol 2022; 12:911808. [PMID: 36033523 PMCID: PMC9410624 DOI: 10.3389/fonc.2022.911808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a risk factor for hepatocellular carcinoma (HCC). However, its carcinogenic mechanism is still unclear, looking for both diseases’ transcriptome levels, the same changes as we are looking for NAFLD may provide a potential mechanism of action of HCC. Thus, our study aimed to discover the coexisting pathogenic genes of NAFLD and HCC. Methods We performed a variance analysis with public data for both diseases. At the same time, weighted gene correlation network analysis (WGCNA) was used to find highly correlated gene modules in both diseases. The darkturquoise gene module was found to be highly correlated with both diseases. Based on the diagnosis related module genes and the differential genes of the two diseases, we constructed diagnostic and prognostic models by logistic regression, univariate Cox regression, and LASSO regression. Public datasets verified the results. Meanwhile, we built a competing endogenous RNA (ceRNA) network based on the model genes and explored the related pathways and immune correlation involved in the two diseases by using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and gene set enrichment analyses. Immunohistochemistry was used to verify the different expression of ABCC5 and TUBG1 among the normal liver, NAFLD, and HCC tissues. Sodium palmitate/sodium oleate was used to establish high-fat cell models, and Real Time Quantitative Polymerase Chain Reaction (RT-qPCR) was used to verify the messenger RNA (mRNA) expression of ABCC5 in lipidization cells. Results A total of 26 upregulated genes and 87 downregulated genes were found using limma package identification analysis. According to WGCNA, the darkturquoise gene module was highly correlated with the prognosis of both diseases. The coexisting genes acquired by the two groups were only three central genes, that is, ABCC5, DHODH and TUBG1. The results indicated that the diagnostic and prognostic models constructed by ABCC5 and TUBG1 genes had high accuracy in both diseases. The results of immunohistochemistry showed that ABCC5 and TUBG1 were significantly overexpressed in NAFLD and HCC tissues compared with normal liver tissues. The Oil Red O staining and triglyceride identified the successful construction of HepG2 and LO2 high-fat models using PA/OA. The results of RT-qPCR showed that the lipidization of LO2 and HepG2 increased the mRNA expression of ABCC5. Conclusions The gene model constructed by ABCC5 and TUBG1 has high sensibility and veracity in the diagnosis of NAFLD as well as the diagnosis and prognosis of HCC. ABCC5 and TUBG1 may play an important role in the development of NAFLD to HCC. In addition, lipidization could upregulate the mRNA expression of ABCC5 in HCC.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Siwen Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| | - Dongmei Zhou
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Peipei Lu
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xianglai Mo
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rashi Tamrakar
- Department of Endocrinology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xi Yang
- Department of Geriatric Endocrinology and Metabolism, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
- *Correspondence: Xi Yang, ; Siwen Zhang,
| |
Collapse
|
21
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
22
|
Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, Taskar K, Varma MVS, Zhang X, Yang X, Galetin A. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther 2022; 112:501-526. [PMID: 35561140 DOI: 10.1002/cpt.2643] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
The role of membrane transporters on pharmacokinetics (PKs), drug-drug interactions (DDIs), pharmacodynamics (PDs), and toxicity of drugs has been broadly recognized. However, our knowledge of modulation of transporter expression and/or function in the diseased patient population or specific populations, such as pediatrics or pregnancy, is still emerging. This white paper highlights recent advances in studying the changes in transporter expression and activity in various diseases (i.e., renal and hepatic impairment and cancer) and some specific populations (i.e., pediatrics and pregnancy) with the focus on clinical implications. Proposed alterations in transporter abundance and/or activity in diseased and specific populations are based on (i) quantitative transporter proteomic data and relative abundance in specific populations vs. healthy adults, (ii) clinical PKs, and emerging transporter biomarker and/or pharmacogenomic data, and (iii) physiologically-based pharmacokinetic modeling and simulation. The potential for altered PK, PD, and toxicity in these populations needs to be considered for drugs and their active metabolites in which transporter-mediated uptake/efflux is a major contributor to their absorption, distribution, and elimination pathways and/or associated DDI risk. In addition to best practices, this white paper discusses current challenges and knowledge gaps to study and quantitatively predict the effects of modulation in transporter activity in these populations, together with the perspectives from the International Transporter Consortium (ITC) on future directions.
Collapse
Affiliation(s)
- Xiaoyan Chu
- Department of ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - James Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Dwaipayan Mukherjee
- Clinical Pharmacology & Pharmacometrics, Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Worldwide R&D, Pfizer Inc, Groton, Connecticut, USA
| | - Xinyuan Zhang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Frost KL, Marie S, Cherrington NJ. Mechanistic Basis of Increased Susceptibility to Nephrotoxicants in Chronic Liver Disease. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
25
|
Marie S, Tripp DKK, Cherrington NJ. Strategies to Diagnose Nonalcoholic Steatohepatitis: A Novel Approach to Take Advantage of Pharmacokinetic Alterations. Drug Metab Dispos 2022; 50:492-499. [PMID: 34531312 PMCID: PMC9014462 DOI: 10.1124/dmd.121.000413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD) and is diagnosed by a liver biopsy. Because of the invasiveness of a biopsy, the majority of patients with NASH are undiagnosed. Additionally, the prevalence of NAFLD and NASH creates the need for a simple screening method to differentiate patients with NAFLD versus NASH. Noninvasive strategies for diagnosing NAFLD versus NASH have been developed, typically relying on imaging techniques and endogenous biomarker panels. However, each technique has limitations, and none can accurately predict the associated functional impairment of drug metabolism and disposition. The function of several drug-metabolizing enzymes and drug transporters has been described in NASH that impacts drug pharmacokinetics. The aim of this review is to give an overview of the existing noninvasive strategies to diagnose NASH and to propose a novel strategy based on altered pharmacokinetics using an exogenous biomarker whose disposition and elimination pathways are directly impacted by disease progression. Altered disposition of safe and relatively inert exogenous compounds may provide the sensitivity and specificity needed to differentiate patients with NAFLD and NASH to facilitate a direct indication of hepatic impairment on drug metabolism and prevent subsequent adverse drug reactions. SIGNIFICANCE STATEMENT: This review provides an overview of the main noninvasive techniques (imaging and panels of biomarkers) used to diagnose NAFLD and NASH along with a biopsy. Pharmacokinetic changes have been identified in NASH, and this review proposes a new approach to predict NASH and the related risk of adverse drug reactions based on the assessment of drug elimination disruption using exogenous biomarkers.
Collapse
Affiliation(s)
- Solène Marie
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - David K K Tripp
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| |
Collapse
|
26
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Basiglio CL, Crocenzi FA, Sánchez Pozzi EJ, Roma MG. Oxidative Stress and Localization Status of Hepatocellular Transporters: Impact on Bile Secretion and Role of Signaling Pathways. Antioxid Redox Signal 2021; 35:808-831. [PMID: 34293961 DOI: 10.1089/ars.2021.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Most hepatopathies are primarily or secondarily cholestatic in nature. Oxidative stress (OS) is a frequent trait among them, and impairs the machinery to generate bile by triggering endocytic internalization of hepatocellular transporters, thus causing cholestasis. This is critical, since it leads to accelerated transporter degradation, which could explain the common post-transcriptional downregulation of transporter expression in human cholestatic diseases. Recent Advances: The mechanisms involved in OS-induced hepatocellular transporter internalization are being revealed. Filamentous actin (F-actin) cytoskeleton disorganization and/or detachment of crosslinking actin proteins that afford transporter stability have been characterized as causal factors. Activation of redox-sensitive signaling pathways leading to changes in phosphorylation status of these structures is involved, including Ca2+-mediated activation of "classical" and "novel" protein kinase C (PKC) isoforms or redox-signaling cascades downstream of NADPH oxidase. Critical Issues: Despite the well-known occurrence of hepatocellular transporter internalization in human hepatopathies, the cholestatic implications of this phenomenon have been overlooked. Accordingly, no specific treatment has been established in the clinical practice for its prevention/reversion. Future Directions: We need to improve our knowledge on the pro-oxidant triggering factors and the multiple signaling pathways that mediate this oxidative injury in each cholestatic hepatopathy, so as to envisage tailor-made therapeutic strategies for each case. Meanwhile, administration of antioxidants or heme oxygenase-1 induction to elevate the hepatocellular levels of the endogenous scavenger bilirubin are promising alternatives that need to be re-evaluated and implemented. They may complement current treatments in cholestasis aimed to enhance transcriptional carrier expression, by providing membrane stability to the newly synthesized carriers. Antioxid. Redox Signal. 35, 808-831.
Collapse
Affiliation(s)
- Cecilia L Basiglio
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Fernando A Crocenzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Enrique J Sánchez Pozzi
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, U.N.R., Rosario, Argentina
| |
Collapse
|
28
|
Ramírez-Cosmes A, Reyes-Jiménez E, Zertuche-Martínez C, Hernández-Hernández CA, García-Román R, Romero-Díaz RI, Manuel-Martínez AE, Elizarrarás-Rivas J, Vásquez-Garzón VR. The implications of ABCC3 in cancer drug resistance: can we use it as a therapeutic target? Am J Cancer Res 2021; 11:4127-4140. [PMID: 34659880 PMCID: PMC8493376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Drug resistance is one of the main causes of chemotherapy failure. Although several factors are involved in cancer drug resistant, the exporter pumps overexpression that mediates the drugs flow to outside the cells and reduces both the drugs intracellular concentration and effectiveness, has been one of the most important challenges. Overexpression of ABCC3, a member of the ABCC subfamily, has been strongly associated to the resistance to multiple drugs. ABCC3 has been found highly expressed in different types of cancers and is associated with poor prognosis and resistance to treatments. In this review, we summarize the molecular mechanisms involved in cancer drug resistance and discuss the current knowledge about the structure, function and role of ABCC3 in drug resistance, as well as, the expression status of ABCC3 in different types of cancer. We also provide evidences that place ABCC3 as a potential therapeutic target for improving the cancer treatment by focusing on the need of developing more effective cancer therapies to target ABCC3 in translational researches.
Collapse
Affiliation(s)
- Adriana Ramírez-Cosmes
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| | - Edilburga Reyes-Jiménez
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| | - Cecilia Zertuche-Martínez
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| | | | | | | | | | | | - Verónica R Vásquez-Garzón
- Laboratorio Fibrosis y Cáncer, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de OaxacaOaxaca, Oax, México
| |
Collapse
|
29
|
Marie S, Hernández-Lozano I, Langer O, Tournier N. Repurposing 99mTc-Mebrofenin as a Probe for Molecular Imaging of Hepatocyte Transporters. J Nucl Med 2021; 62:1043-1047. [PMID: 33674399 DOI: 10.2967/jnumed.120.261321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte transporters control the hepatobiliary elimination of many drugs, metabolites, and endogenous substances. Hepatocyte transporter function is altered in several pathophysiologic situations and can be modulated by certain drugs, with a potential impact for pharmacokinetics and drug-induced liver injury. The development of substrate probes with optimal properties for selective and quantitative imaging of hepatic transporters remains a challenge. 99mTc-mebrofenin has been used for decades for hepatobiliary scintigraphy, but the specific transporters controlling its liver kinetics have not been characterized until recently. These include sinusoidal influx transporters (organic anion-transporting polypeptides) responsible for hepatic uptake of 99mTc-mebrofenin, and efflux transporters (multidrug resistance-associated proteins) mediating its canalicular (liver-to-bile) and sinusoidal (liver-to-blood) excretion. Pharmacokinetic modeling enables molecular interpretation of 99mTc-mebrofenin scintigraphy data, thus offering a widely available translational method to investigate transporter-mediated drug-drug interactions in vivo. 99mTc-mebrofenin allows for phenotyping transporter function at the different poles of hepatocytes as a biomarker of liver function.
Collapse
Affiliation(s)
| | | | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale, BioMaps, Université Paris-Saclay, CEA, CNRS, INSERM, Service Hospitalier Frédéric Joliot, Orsay, France
| |
Collapse
|
30
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Hepatic drug-metabolizing enzymes and drug transporters in Wilson's disease patients with liver failure. Pharmacol Rep 2021; 73:1427-1438. [PMID: 34117631 PMCID: PMC8460590 DOI: 10.1007/s43440-021-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Background Wilson’s disease is a genetic disorder inherited in a recessive manner, caused by mutations in the copper-transporter ATP7B. Although it is a well-known disease, currently available treatments are far from satisfactory and their efficacy varies in individual patients. Due to the lack of information about drug-metabolizing enzymes and drug transporters profile in Wilson’s disease livers, we aimed to evaluate the mRNA expression and protein abundance of selected enzymes and drug transporters in this liver disorder. Methods We analyzed gene expression (qPCR) and protein abundance (LC–MS/MS) of 14 drug-metabolizing enzymes and 16 drug transporters in hepatic tissue from Wilson’s disease patients with liver failure (n = 7, Child–Pugh class B and C) and metastatic control livers (n = 20). Results In presented work, we demonstrated a downregulation of majority of CYP450 and UGT enzymes. Gene expression of analyzed enzymes ranged between 18 and 65% compared to control group and significantly lower protein content of CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP3A4 and CYP3A5 enzymes was observed in Wilson’s disease. Moreover, a general decrease in hepatocellular uptake carriers from SLC superfamily (significant at protein level for NTCP and OATP2B1) was observed. As for ABC transporters, the protein abundance of BSEP and MRP2 was significantly lower, while levels of P-gp and MRP4 transporters were significantly higher in Wilson’s disease. Conclusions Altered hepatic expression of drug‐metabolizing enzymes and drug transporters in Wilson’s disease patients with liver failure may result in changes of drug pharmacokinetics in that group of patients. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00290-8.
Collapse
|
32
|
Jeong HJ, Lee SH, Kang HE. Changes in digoxin pharmacokinetics associated with hepatic P-glycoprotein upregulation in rats with non-alcoholic fatty liver disease. Fundam Clin Pharmacol 2021; 35:1100-1108. [PMID: 33914974 DOI: 10.1111/fcp.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND & OBJECTIVES Upregulation of hepatic P-glycoprotein (P-gp) expression has been reported in patients with non-alcoholic fatty liver disease (NAFLD) and rodent models thereof. Here, we explored the changes hepatic P-gp expression and activity in a NAFLD rat model and the effects thereof on the pharmacokinetics of digoxin (a probe substrate of P-gp). METHODS Rats were fed a 1% (w/w) orotic acid-containing diet for 20 days to induce NAFLD; control rats received a normal diet. P-gp expression and biliary digoxin excretion were examined. The pharmacokinetics of digoxin were evaluated after it had been administered intravenously (10 μg·kg-1 ) and orally (200 μg·kg-1 ) to control and NAFLD rats. RESULTS The total areas under the plasma concentration-time curves (AUCs) of digoxin after intravenous and oral administration were significantly smaller (by 39.1% and 73.0%, respectively) in NAFLD rats because of faster biliary digoxin excretion, reflecting elevations of hepatic P-gp expression and activity. Notably, the steady-state volume of distribution rose by 98.2%, while extent of oral bioavailability fell by 55.5% in NAFLD rats. CONCLUSION This is the first study to report digoxin pharmacokinetic changes caused by hepatic P-gp upregulation in NAFLD. Further studies are needed to explore the clinical impact of enhanced P-gp-mediated biliary excretion on pharmacotherapies using P-gp substrates in patients with NAFLD.
Collapse
Affiliation(s)
- Hee Jin Jeong
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Song Hee Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
33
|
Sjöstedt N, Neuhoff S, Brouwer KL. Physiologically-Based Pharmacokinetic Model of Morphine and Morphine-3-Glucuronide in Nonalcoholic Steatohepatitis. Clin Pharmacol Ther 2021; 109:676-687. [PMID: 32897538 PMCID: PMC7902445 DOI: 10.1002/cpt.2037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023]
Abstract
Nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease, is increasing in prevalence. NASH-related alterations in hepatic protein expression (e.g., transporters) and in overall physiology may affect drug exposure by altering drug disposition and elimination. The aim of this study was to build a physiologically-based pharmacokinetic (PBPK) model to predict drug exposure in NASH by incorporating NASH-related changes in hepatic transporters. Morphine and morphine-3-glucuronide (M3G) were used as model compounds. A PBPK model of morphine with permeability-limited hepatic disposition was extended to include M3G disposition and enterohepatic recycling (EHR). The model captured the area under the plasma concentration-time curve (AUC) of morphine and M3G after intravenous morphine administration within 0.82-fold and 1.94-fold of observed values from 3 independent clinical studies for healthy adult subjects (6, 10, and 14 individuals). When NASH-related changes in multidrug resistance-associated protein 2 (MRP2) and MRP3 were incorporated into the model, the predicted M3G mean AUC in NASH was 1.34-fold higher compared to healthy subjects, which is slightly lower than the observed value (1.63-fold). Exploratory simulations on other physiological changes occurring in NASH (e.g., moderate decreases in glomerular filtration rate and portal vein blood flow) revealed that the effect of transporter changes was most prominent. Additionally, NASH-related transporter changes resulted in decreased morphine EHR, which could be important for drugs with extensive EHR. This study is an important first step to predict drug disposition in complex diseases such as NASH using PBPK modeling.
Collapse
Affiliation(s)
- Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.S., K.L.R.B.); Certara UK Ltd, Simcyp-Division, Sheffield, UK (S.N.)
| | - Sibylle Neuhoff
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.S., K.L.R.B.); Certara UK Ltd, Simcyp-Division, Sheffield, UK (S.N.)
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.S., K.L.R.B.); Certara UK Ltd, Simcyp-Division, Sheffield, UK (S.N.)
| |
Collapse
|
34
|
Bechtold B, Clarke J. Multi-factorial pharmacokinetic interactions: unraveling complexities in precision drug therapy. Expert Opin Drug Metab Toxicol 2020; 17:397-412. [PMID: 33339463 DOI: 10.1080/17425255.2021.1867105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Precision drug therapy requires accounting for pertinent factors in pharmacokinetic (PK) inter-individual variability (i.e., pharmacogenetics, diseases, polypharmacy, and natural product use) that can cause sub-therapeutic or adverse effects. Although each of these individual factors can alter victim drug PK, multi-factorial interactions can cause additive, synergistic, or opposing effects. Determining the magnitude and direction of these complex multi-factorial effects requires understanding the rate-limiting redundant and/or sequential PK processes for each drug.Areas covered: Perturbations in drug-metabolizing enzymes and/or transporters are integral to single- and multi-factorial PK interactions. Examples of single factor PK interactions presented include gene-drug (pharmacogenetic), disease-drug, drug-drug, and natural product-drug interactions. Examples of multi-factorial PK interactions presented include drug-gene-drug, natural product-gene-drug, gene-gene-drug, disease-natural product-drug, and disease-gene-drug interactions. Clear interpretation of multi-factorial interactions can be complicated by study design, complexity in victim drug PK, and incomplete mechanistic understanding of victim drug PK.Expert opinion: Incorporation of complex multi-factorial PK interactions into precision drug therapy requires advances in clinical decision tools, intentional PK study designs, drug-metabolizing enzyme and transporter fractional contribution determinations, systems and computational approaches (e.g., physiologically-based pharmacokinetic modeling), and PK phenotyping of progressive diseases.
Collapse
Affiliation(s)
- Baron Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - John Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
35
|
Li Z, Zhang J, Zhang Y, Zhou L, Zhao J, Lyu Y, Poon LH, Lin Z, To KKW, Yan X, Zuo Z. Intestinal absorption and hepatic elimination of drugs in high-fat high-cholesterol diet-induced non-alcoholic steatohepatitis rats: exemplified by simvastatin. Br J Pharmacol 2020; 178:582-599. [PMID: 33119943 DOI: 10.1111/bph.15298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Altered drug pharmacokinetics is a significant concern in non-alcoholic steatohepatitis (NASH) patients. Although high-fat high-cholesterol (HFHC) diet-induced NASH (HFHC-NASH) rats could simulate the typical dysregulation of cholesterol in NASH patients, experimental investigation on the altered drug pharmacokinetics in this model are limited. Thus, the present study comprehensive investigates the nature of such altered pharmacokinetics using simvastatin as the model drug. EXPERIMENTAL APPROACH Pharmacokinetic profiles of simvastatin and its active metabolite simvastatin acid together with compartmental pharmacokinetic modelling were used to identify the key factors involved in the altered pharmacokinetics of simvastatin in HFHC-NASH rats. Experimental investigations via in situ single-pass intestinal perfusion and intrahepatic injection of simvastatin were carried out. Histology, Ces1 activities and mRNA/protein levels of Oatp1b2/CYP2c11/P-gp in the small intestine/liver of healthy and HFHC-NASH rats were compared. KEY RESULTS Reduced intestinal absorption and more extensive hepatic elimination in HFHC-NASH rats resulted in less systemic exposures of simvastatin/simvastatin acid. In the small intestine of HFHC-NASH rats, thicker intestinal wall with more collagen fibres, increased Ces1 activity and up-regulated P-gp protein decreased the permeability of simvastatin, accelerated the hydrolysis of simvastatin and promoted the efflux of simvastatin acid respectively. In the liver of HFHC-NASH rats, higher hepatic P-gp expression accelerated the hepatic elimination of simvastatin. CONCLUSION AND IMPLICATIONS Altered histology, Ces1 activity and P-gp expression in the small intestine/liver were identified to be the major contributing factors leading to less systemic exposure of drugs in HFHC-NASH rats, which may be applicable to NASH patients.
Collapse
Affiliation(s)
- Ziwei Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Limin Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Long Hin Poon
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhixiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth Kin Wah To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
36
|
Subali D, Kwon MH, Bang WS, Kang HE. The pharmacokinetics of mycophenolic acid in rats with orotic acid induced nonalcoholic fatty liver disease. Can J Physiol Pharmacol 2020; 98:169-176. [DOI: 10.1139/cjpp-2019-0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-transplantation nonalcoholic fatty liver disease (NAFLD) is common in liver transplant recipients. Changes in the expression levels and activities of drug-metabolizing enzymes and drug transporters have been reported in patients with NAFLD and relevant rodent models. Here, we evaluated whether the pharmacokinetics of mycophenolic acid (MPA), an immunosuppressant, would be altered in rats with NAFLD. NAFLD was induced by feeding a diet containing 1% (w/w) orotic acid for 20 days. The extent of hepatic glucuronidation of MPA to a major metabolite, mycophenolic acid-7-O-glucuronide (MPAG), did not differ between rats with NAFLD and controls. The expression levels of hepatic multidrug resistance-associated protein 2, responsible for biliary excretion of MPAG, were comparable in rats with NAFLD and controls; the biliary excretion of MPAG was also similar in the two groups. Compared with control rats, rats with NAFLD did not exhibit significant changes in the areas under the plasma concentration – time curves of MPA or MPAG after intravenous (5 mg/kg) or oral (10 mg/kg) administration of MPA. However, delayed oral absorption of MPA was observed in rats with NAFLD compared with controls; the MPA and MPAG peak plasma concentrations fell significantly and the times to achieve them were prolonged following oral administration of MPA.
Collapse
Affiliation(s)
- Dionysius Subali
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| | - Mi Hye Kwon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| | - Won Seok Bang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| | - Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon 14662, South Korea
| |
Collapse
|
37
|
Ito K, Sjöstedt N, Brouwer KLR. Mechanistic Modeling of the Hepatic Disposition of Estradiol-17 β-Glucuronide in Sandwich-Cultured Human Hepatocytes. Drug Metab Dispos 2020; 48:116-122. [PMID: 31744810 PMCID: PMC6978695 DOI: 10.1124/dmd.119.088898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022] Open
Abstract
Estradiol-17β-glucuronide (E217G) is an estrogen metabolite that has cholestatic properties. In humans, circulating E217G is transported into hepatocytes by organic anion transporting polypeptides (OATPs) and is excreted into bile by multidrug-resistance associated protein 2 (MRP2). E217G is also a substrate of the basolateral efflux transporters MRP3 and MRP4, which translocate E217G from hepatocytes to blood. However, the contribution of basolateral efflux to hepatocyte disposition of E217G has not been evaluated previously. To address this question, E217G disposition was studied in sandwich-cultured human hepatocytes and mechanistic modeling was applied to calculate clearance values (mean ± S.D.) for uptake, intrinsic biliary excretion (CLint,bile) and intrinsic basolateral efflux (CLint,BL). The biliary excretion index of E217G was 45% ± 6%. The CLint,BL of E217G [0.18 ± 0.03 (ml/min)/g liver) was 1.6-fold higher than CLint,bile [0.11 ± 0.06 (ml/min)/g liver]. Simulations were performed to study the effects of increased CLint,BL and a concomitant decrease in CLint,bile on hepatic E217G exposure. Results demonstrated that increased CLint,BL can effectively reduce hepatocellular and biliary exposure to this potent cholestatic agent. Simulations also revealed that basolateral efflux can compensate for impaired biliary excretion and, vice versa, to avoid accumulation of E217G in hepatocytes. However, when both clearance processes are impaired by 90%, hepatocyte E217G exposure increases up to 10-fold. These data highlight the contribution of basolateral efflux transport, in addition to MRP2-mediated biliary excretion, to E217G disposition in human hepatocytes. This elimination route could be important, especially in cases where basolateral efflux is induced, such as cholestasis. SIGNIFICANCE STATEMENT: The disposition of the cholestatic estrogen metabolite estradiol-17β-glucuronide (E217G) was characterized in sandwich-cultured human hepatocytes. The intrinsic basolateral efflux clearance was estimated to be 1.6-fold higher than the intrinsic biliary excretion clearance, emphasizing the contribution of basolateral elimination in addition to biliary excretion. Simulations highlight how hepatocytes can effectively cope with increased E217G through the regulation of both basolateral and biliary transporters.
Collapse
Affiliation(s)
- Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Noora Sjöstedt
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.I., N.S., K.L.R.B.); and DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan (K.I.)
| |
Collapse
|
38
|
Vildhede A, Kimoto E, Pelis RM, Rodrigues AD, Varma MV. Quantitative Proteomics and Mechanistic Modeling of Transporter‐Mediated Disposition in Nonalcoholic Fatty Liver Disease. Clin Pharmacol Ther 2019; 107:1128-1137. [DOI: 10.1002/cpt.1699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Vildhede
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Emi Kimoto
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Ryan M. Pelis
- Department of Pharmaceutical Sciences Binghamton University Binghamton New York USA
| | | | | |
Collapse
|
39
|
Drozdzik M, Szelag‐Pieniek S, Post M, Zeair S, Wrzesinski M, Kurzawski M, Prieto J, Oswald S. Protein Abundance of Hepatic Drug Transporters in Patients With Different Forms of Liver Damage. Clin Pharmacol Ther 2019; 107:1138-1148. [PMID: 31697849 DOI: 10.1002/cpt.1717] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Sylwia Szelag‐Pieniek
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Mariola Post
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Samir Zeair
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Maciej Wrzesinski
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Jesus Prieto
- Center for Applied Medical Research University of Navarra Pamplona Spain
| | - Stefan Oswald
- Department of Clinical Pharmacology University Medicine of Greifswald Greifswald Germany
| |
Collapse
|
40
|
Segovia-Miranda F, Morales-Navarrete H, Kücken M, Moser V, Seifert S, Repnik U, Rost F, Brosch M, Hendricks A, Hinz S, Röcken C, Lütjohann D, Kalaidzidis Y, Schafmayer C, Brusch L, Hampe J, Zerial M. Three-dimensional spatially resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression. Nat Med 2019; 25:1885-1893. [PMID: 31792455 PMCID: PMC6899159 DOI: 10.1038/s41591-019-0660-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Early disease diagnosis is key to the effective treatment of diseases. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D (three-dimensional) structural changes resulting from functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of morphometric cellular and tissue parameters correlated with disease progression, and discover profound topological defects in the 3D bile canalicular (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and micro-cholestasis, consistent with elevated cholestatic biomarkers in patients' sera. Our spatially resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multiparametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.
Collapse
Affiliation(s)
| | | | - Michael Kücken
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Vincent Moser
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Sarah Seifert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Urska Repnik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Fabian Rost
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Mario Brosch
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Alexander Hendricks
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Sebastian Hinz
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | | | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Medicine I, Gastroenterology and Hepatology, University Hospital Carl-Gustav-Carus, Technische Universität Dresden (TU Dresden), Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden (TU Dresden), Dresden, Germany.
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
41
|
Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro. APL Bioeng 2019; 3:040902. [PMID: 31893256 PMCID: PMC6930139 DOI: 10.1063/1.5119090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The liver executes 500+ functions, such as protein synthesis, xenobiotic metabolism, bile production, and metabolism of carbohydrates/fats/proteins. Such functions can be severely degraded by drug-induced liver injury, nonalcoholic fatty liver disease, hepatitis B and viral infections, and hepatocellular carcinoma. These liver diseases, which represent a significant global health burden, are the subject of novel drug discovery by the pharmaceutical industry via the use of in vitro models of the human liver, given significant species-specific differences in disease profiles and drug outcomes. Isolated primary human hepatocytes (PHHs) are a physiologically relevant cell source to construct such models; however, these cells display a rapid decline in the phenotypic function within conventional 2-dimensional monocultures. To address such a limitation, several engineered platforms have been developed such as high-throughput cellular microarrays, micropatterned cocultures, self-assembled spheroids, bioprinted tissues, and perfusion devices; many of these platforms are being used to coculture PHHs with liver nonparenchymal cells to model complex cell cross talk in liver pathophysiology. In this perspective, we focus on the utility of representative platforms for mimicking key features of liver dysfunction in the context of chronic liver diseases and liver cancer. We further discuss pending issues that will need to be addressed in this field moving forward. Collectively, these in vitro liver disease models are being increasingly applied toward the development of new therapeutics that display an optimal balance of safety and efficacy, with a focus on expediting development, reducing high costs, and preventing harm to patients.
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
42
|
Montonye ML, Tian DD, Arman T, Lynch KD, Hagenbuch B, Paine MF, Clarke JD. A Pharmacokinetic Natural Product-Disease-Drug Interaction: A Double Hit of Silymarin and Nonalcoholic Steatohepatitis on Hepatic Transporters in a Rat Model. J Pharmacol Exp Ther 2019; 371:385-393. [PMID: 31420525 PMCID: PMC6800447 DOI: 10.1124/jpet.119.260489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) exhibit altered hepatic protein expression of metabolizing enzymes and transporters and altered xenobiotic pharmacokinetics. The botanical natural product silymarin, which has been investigated as a treatment of NASH, contains flavonolignans that inhibit organic anion-transporting polypeptide (OATP) transporter function. The purpose of this study was to assess the individual and combined effects of NASH and silymarin on the disposition of the model OATP substrate pitavastatin. Male Sprague Dawley rats were fed a control or a methionine- and choline-deficient diet (NASH model) for 8 weeks. Silymarin (10 mg/kg) or vehicle followed by pitavastatin (0.5 mg/kg) were administered intravenously, and the pharmacokinetics were determined. NASH increased mean total flavonolignan area under the plasma concentration-time curve (AUC0-120 min) 1.7-fold. Silymarin increased pitavastatin AUC0-120 min in both control and NASH animals approx. 2-fold. NASH increased pitavastatin plasma concentrations from 2 to 40 minutes, but AUC0-120 min was unchanged. The combination of silymarin and NASH had the greatest effect on pitavastatin AUC0-120 min, which increased 2.9-fold compared with control vehicle-treated animals. NASH increased the total amount of pitavastatin excreted into the bile 2.7-fold compared with control animals, whereas silymarin decreased pitavastatin biliary clearance approx. 3-fold in both control and NASH animals. This double hit of NASH and silymarin on hepatic uptake transporters is another example of a multifactorial pharmacokinetic interaction that may have a greater impact on drug disposition than each hit alone. SIGNIFICANCE STATEMENT: Multifactorial effects on xenobiotic pharmacokinetics are within the next frontier for precision medicine research and clinical application. The combination of silymarin and NASH is a probable clinical scenario that can affect drug uptake, liver concentrations, biliary elimination, and ultimately, efficacy and toxicity.
Collapse
Affiliation(s)
- Michelle L Montonye
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Bruno Hagenbuch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.L.M., D.-D.T., T.A., K.D.L., M.F.P., J.D.C.) and Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (B.H.)
| |
Collapse
|
43
|
Lykke Eriksen P, Sørensen M, Grønbæk H, Hamilton-Dutoit S, Vilstrup H, Thomsen KL. Non-alcoholic fatty liver disease causes dissociated changes in metabolic liver functions. Clin Res Hepatol Gastroenterol 2019; 43:551-560. [PMID: 30770336 DOI: 10.1016/j.clinre.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a major health concern affecting 25% of the world's population. It is generally held that a fatty liver does not influence liver function, but quantitative measurements of metabolic liver functions have not been systematically performed. We aimed to study selected hepatocellular metabolic functions in patients with different stages of NAFLD. METHODS Twenty-five non-diabetic, biopsy-proven NAFLD patients [12 with simple steatosis; 13 with non-alcoholic steatohepatitis (NASH)] and ten healthy controls were included in a cross-sectional study. Hepatocyte cytosolic function was assessed by the galactose elimination capacity (GEC), mitochondrial-cytosolic metabolic capacity by the functional hepatic nitrogen clearance (FHNC), microsomal function by the aminopyrine breath test, and excretory liver function by indocyanine green (ICG) elimination. RESULTS GEC was 20% higher in NAFLD than in controls [3.15 mmol/min (2.9-3.41) vs. 2.62 (2.32-2.93); P = 0.02]. FHNC was 30% lower in NAFLD [23.3 L/h (18.7-28.9) vs. 33.1 (28.9-37.9); P = 0.04], more so in simple steatosis [19.1 L/h (13.9-26.2); P = 0.003] and non-significantly in NASH [27.9 L/h (20.6-37.8); P = 0.19]. Aminopyrine metabolism was 25% lower in simple steatosis [8.9% (7.0-10.7)] and 50% lower in NASH [6.0% (4.5-7.5)] than in controls [11.9% (9.3-12.8)] (P < 0.001). ICG elimination was intact. CONCLUSIONS The hepatocellular metabolic functions were altered in a manner that was dissociated both by different effects on different liver functions and by different effects of different stages of NAFLD. Thus, NAFLD has widespread consequences for metabolic liver function, even in simple steatosis.
Collapse
Affiliation(s)
- Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark.
| | - Michael Sørensen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Stephen Hamilton-Dutoit
- Institute of Pathology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens boulevard 99, Aarhus, Denmark
| |
Collapse
|
44
|
Suga T, Yamaguchi H, Ogura J, Shoji S, Maekawa M, Mano N. Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 2019; 379:114664. [PMID: 31306673 DOI: 10.1016/j.taap.2019.114664] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive inflammatory and fibrotic disease. However, the progression mechanism of NASH is not well understood. Bile acids are endogenous molecules that regulate cholesterol homeostasis, lipid solubilization in the intestinal lumen, and metabolic signaling via several receptors. In this study, we investigated the relationship between bile acid composition and NASH-associated fibrosis using a mouse model fed choline-deficient, L-amino-acid-defined, high-fat diet with 0.1% methionine (CDAHFD). C57BL/6 J mice fed CDAHFD developed NASH and fibrosis within few weeks. With the progress of NASH-associated liver fibrosis, altered bile acid composition was observed in the liver, bile, and peripheral plasma. Decreased mRNA levels of bile acid metabolizing enzymes such as Cyp7a1 and Baat were observed in contrast to increased Sult2a1 level in the liver. Increased mRNA levels of Ostβ and Abcc4 and decreased in mRNA levels of Bsep, Abcc2, Ntcp, and Oatp1b2, suggesting that bile acids efflux from hepatocytes into the peripheral plasma rather than into bile. In conclusion, the changes in bile acid metabolizing enzymes and transporters expression, resulting in increasing the total bile acid concentration in the plasma, signify a protection mechanism by the hepatocyte to reduce hepatotoxicity during disease progression to NASH but may promote liver fibrosis.
Collapse
Affiliation(s)
- Takahiro Suga
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroaki Yamaguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Saori Shoji
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
45
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
46
|
Crowe A, Zheng W, Miller J, Pahwa S, Alam K, Fung KM, Rubin E, Yin F, Ding K, Yue W. Characterization of Plasma Membrane Localization and Phosphorylation Status of Organic Anion Transporting Polypeptide (OATP) 1B1 c.521 T>C Nonsynonymous Single-Nucleotide Polymorphism. Pharm Res 2019; 36:101. [PMID: 31093828 PMCID: PMC8456979 DOI: 10.1007/s11095-019-2634-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Membrane transport protein organic anion transporting polypeptide (OATP) 1B1 mediates hepatic uptake of many drugs (e.g. statins). The OATP1B1 c.521 T > C (p. V174A) polymorphism has reduced transport activity. Conflicting in vitro results exist regarding whether V174A-OATP1B1 has reduced plasma membrane localization; no such data has been reported in physiologically relevant human liver tissue. Other potential changes, such as phosphorylation, of the V174A-OATP1B1 protein have not been explored. Current studies characterized the plasma membrane localization of V174A-OATP1B1 in genotyped human liver tissue and cell culture and compared the phosphorylation status of V174A- and wild-type (WT)-OATP1B1. METHODS Localization of V174A- and WT-OATP1B1 were determined in OATP1B1 c.521 T > C genotyped human liver tissue (n = 79) by immunohistochemistry and in transporter-overexpressing human embryonic kidney (HEK) 293 and HeLa cells by surface biotinylation and confocal microscopy. Phosphorylation and transport of OATP1B1 was determined using 32P-orthophosphate labeling and [3H]estradiol-17β-glucuronide accumulation, respectively. RESULTS All three methods demonstrated predominant plasma membrane localization of both V174A- and WT-OATP1B1 in human liver tissue and in cell culture. Compared to WT-OATP1B1, the V174A-OATP1B1 has significantly increased phosphorylation and reduced transport. CONCLUSIONS We report novel findings of increased phosphorylation, but not impaired membrane localization, in association with the reduced transport function of the V174A-OATP1B1.
Collapse
Affiliation(s)
- Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Wei Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Rubin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng Yin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
47
|
Gervasoni C, Cattaneo D, Filice C, Galli M. Drug-induced liver steatosis in patients with HIV infection. Pharmacol Res 2019; 145:104267. [PMID: 31077811 DOI: 10.1016/j.phrs.2019.104267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022]
Abstract
Drug-induced liver injury (DILI) due to the use of prescription and non-prescription medication by HIV-positive and HIV-negative patients is one of the main causes of acute liver failure and transplantation in Western countries and, although rare, has to be considered a serious problem because of its unforeseeable nature and possibly fatal course. Drug-induced steatosis (DIS) and steatohepatitis (DISH) are infrequent but well-documented types of DILI. Although a number of commonly used drugs are associated with steatosis, it is not always easy to identify them as causative agents because of the weak temporal relationship between the administration of the drug and the clinical event, the lack of a confirmatory re-challenge, and the high prevalence of non-alcoholic fatty liver disease (NAFLD) in the general population, which often makes it difficult to make a differential diagnosis of DIS and DISH. The scenario is even more complex in HIV-positive patients not only because of the underlying disease, but also because the various anti-retroviral regimens have different effects on liver steatosis. Given the high prevalence of liver steatosis in HIV-positive patients and the increasing use of drugs associated with a potential steatotic risk, the identification of clinical signs suggesting liver damage should help to avoid the possible misdiagnosis of "primary" NAFLD in a patient with DIS or DISH. This review will therefore initially concentrate on the current diagnostic criteria for DIS/DISH and their differential diagnosis from NAFLD. Subsequently, it will consider the different clinical manifestations of iatrogenic liver steatosis in detail, with specific reference to HIV-positive patients. Finally, the last part of the review will be dedicated to the possible effects of liver steatosis on the bioavailability of antiretroviral and other drugs.
Collapse
Affiliation(s)
- Cristina Gervasoni
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy.
| | - Dario Cattaneo
- Gestione Ambulatoriale Politerapie (GAP) Outpatient Clinic, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
| | - Carlo Filice
- Infectious Diseases Department, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Massimo Galli
- Department of Infectious Diseases, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
48
|
Kurzawski M, Szeląg-Pieniek S, Łapczuk-Romańska J, Wrzesiński M, Sieńko J, Oswald S, Droździk M. The reference liver - ABC and SLC drug transporters in healthy donor and metastatic livers. Pharmacol Rep 2019; 71:738-745. [PMID: 31207436 DOI: 10.1016/j.pharep.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Analysis of results and conclusions in studies dedicated to pathology of the liver are usually based on comparison of pathological liver specimens and control/reference (considered as healthy) tissues. There are two main sources of the control liver samples used as the reference livers, i.e. deceased organ donor livers and non-tumorous tissue from metastatic livers, which are also applied for drug transporter investigations. However, no information has yet been published on drug transporters in these two major types of reference livers. METHODS We explored ABC (P-gp, MRP1, MRP2, MRP3, MRP4, BCRP, BSEP) and SLC (NTCP, MCT1, OCT1, OCT3, OAT2, OATP1B1, OATP1B3, OATP2B1) family transporters expression (qPCR) and protein abundance (LC-MS/MS) in healthy donors (n = 9) and metastatic (n = 13) livers. RESULTS The analysis of mRNA content revealed significant differences in ABCB11, ABCC1, ABCG2, SLC10A1, SLC16A1, SLCO1B1 and SLCO2B1 gene expression between livers from organ donors and patients who underwent surgical resection of metastatic tumors. The protein abundance of NTCP was significantly higher, whereas of P-gp significantly lower in non-tumorous tissues from metastatic livers. Greater inter-individual variability in protein abundance of all studied transporters in subjects with metastatic colon cancer was also observed. CONCLUSIONS The results suggest that final conclusions in liver pathology studies may depend on the reference liver tissue used, especially in gene expression studies.
Collapse
Affiliation(s)
- Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland.
| | - Sylwia Szeląg-Pieniek
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Łapczuk-Romańska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Maciej Wrzesiński
- Department of General and Transplantation Surgery, Marie Curie Regional Hospital, Szczecin, Poland
| | - Jerzy Sieńko
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
49
|
Hu DG, Marri S, McKinnon RA, Mackenzie PI, Meech R. Deregulation of the Genes that Are Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Hepatocellular Carcinoma. J Pharmacol Exp Ther 2019; 368:363-381. [PMID: 30578287 DOI: 10.1124/jpet.118.255018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Genes involved in drug absorption, distribution, metabolism, and excretion (ADME) are called ADME genes. Currently, 298 genes that encode phase I and II drug metabolizing enzymes, transporters, and modifiers are designated as ADME genes by the PharmaADME Consortium. ADME genes are highly expressed in the liver and their levels can be influenced by liver diseases such as hepatocellular carcinoma (HCC). In this study, we obtained RNA-sequencing and microRNA (miRNA)-sequencing data from 371 HCC patients via The Cancer Genome Atlas liver hepatocellular carcinoma project and performed ADME gene-targeted differential gene expression analysis and expression correlation analysis. Two hundred thirty-three of the 298 ADME genes (78%) were expressed in HCC. Of these genes, almost one-quarter (58 genes) were significantly downregulated, while only 6% (15) were upregulated in HCC relative to healthy liver. Moreover, one-half (14/28) of the core ADME genes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, CYP3A4, NAT1, NAT2, UGT2B7, SLC22A1, SLCO1B1, and SLCO1B3) were downregulated. In addition, about one-half of the core ADME genes were positively correlated with each other and were also positively (AHR, ARNT, HNF4A, PXR, CAR, PPARA, and RXRA) or negatively (PPARD and PPARG) correlated with transcription factors known as ADME modifiers. Finally, we show that most miRNAs known to regulate core ADME genes are upregulated in HCC. Collectively, these data reveal 1) an extensive transcription factor-mediated ADME coexpression network in the liver that efficiently coordinates the metabolism and elimination of endogenous and exogenous compounds; and 2) a widespread deregulation of this network in HCC, most likely due to deregulation of both transcriptional and post-transcriptional (miRNA) pathways.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer (D.G.H., R.A.M., P.I.M., R.M.), and Department of Molecular Medicine and Pathology (S.M.), Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Shashikanth Marri
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer (D.G.H., R.A.M., P.I.M., R.M.), and Department of Molecular Medicine and Pathology (S.M.), Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer (D.G.H., R.A.M., P.I.M., R.M.), and Department of Molecular Medicine and Pathology (S.M.), Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer (D.G.H., R.A.M., P.I.M., R.M.), and Department of Molecular Medicine and Pathology (S.M.), Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer (D.G.H., R.A.M., P.I.M., R.M.), and Department of Molecular Medicine and Pathology (S.M.), Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
50
|
Toth EL, Li H, Dzierlenga AL, Clarke JD, Vildhede A, Goedken M, Cherrington NJ. Gene-by-Environment Interaction of Bcrp -/- and Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis Alters SN-38 Disposition. Drug Metab Dispos 2018; 46:1478-1486. [PMID: 30166404 PMCID: PMC6193212 DOI: 10.1124/dmd.118.082081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Disease progression to nonalcoholic steatohepatitis (NASH) has profound effects on the expression and function of drug-metabolizing enzymes and transporters, which provide a mechanistic basis for variable drug response. Breast cancer resistance protein (BCRP), a biliary efflux transporter, exhibits increased liver mRNA expression in NASH patients and preclinical NASH models, but the impact on function is unknown. It was shown that the transport capacity of multidrug resistance protein 2 (MRP2) is decreased in NASH. SN-38, the active irinotecan metabolite, is reported to be a substrate for Bcrp, whereas SN-38 glucuronide (SN-38G) is a Mrp2 substrate. The purpose of this study was to determine the function of Bcrp in NASH through alterations in the disposition of SN-38 and SN-38G in a Bcrp knockout (Bcrp-/- KO) and methionine- and choline-deficient (MCD) model of NASH. Sprague Dawley [wild-type (WT)] rats and Bcrp-/- rats were fed either a methionine- and choline-sufficient (control) or MCD diet for 8 weeks to induce NASH. SN-38 (10 mg/kg) was administered i.v., and blood and bile were collected for quantification by liquid chromatography-tandem mass spectrometry. In Bcrp-/- rats on the MCD diet, biliary efflux of SN-38 decreased to 31.9%, and efflux of SN-38G decreased to 38.7% of control, but WT-MCD and KO-Control were unaffected. These data indicate that Bcrp is not solely responsible for SN-38 biliary efflux, but rather implicate a combined role for BCRP and MRP2. Furthermore, the disposition of SN-38 and SN-38G is altered by Bcrp-/- and NASH in a gene-by-environment interaction and may result in variable drug response to irinotecan therapy in polymorphic patients.
Collapse
Affiliation(s)
- Erica L Toth
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Hui Li
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Anika L Dzierlenga
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - John D Clarke
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Anna Vildhede
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Michael Goedken
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona (E.L.T., H.L., A.L.D., N.J.C.); Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.D.C.); Pharmacokinetics, Dynamics, and Metabolism, Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut (A.V.); and Research Pathology Services, Rutgers University, Newark, New Jersey (M.G.)
| |
Collapse
|