1
|
Chen J, Tamareille S, Chèvremont E, Gimel JC, Calvignac B, Dallerac D, Lautram N, Lay TL, Rapenne C, Verdu I, Saulnier P, Martinez É, Lefebvre G. Distribution of amiodarone between lipid nanocapsules and residual micelles: Tangential flow filtration as a purification method and its impact on cytotoxicity. Int J Pharm 2025; 677:125651. [PMID: 40328342 DOI: 10.1016/j.ijpharm.2025.125651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Amiodarone (AMD) is an anti-arrhythmic drug prescribed for the treatment of atrial fibrillation. Despite its efficiency, AMD causes several extracardiac side effects due to its highly lipophilic nature, limiting its clinical use. Lipid nanocapsules (LNCs) are a promising approach for encapsulating AMD and altering its whole-body biodistribution. It has been established that during the phase inversion composition process to prepare LNCs loaded with AMD (LNC-AMD), some residual micelles will also be formed. These residual micelles could contain AMD and impact the formulation's cytotoxicity. In this study, we present a scalable tangential flow filtration (TFF) process for the separation of micelles from LNCs. Subsequently, dynamic light scattering and asymmetric flow-field flow fractionation in combination with UV and RI detections are subtly associated with a mass balance to assess the efficiency of TFF in removing free polyethylene glycol and surfactant micelles. An encapsulation efficiency of 91 % in the LNCs was calculated with a drug loading of 7.2 mg per gram of dry matter constituting the LNCs. Finally, the cytotoxicity of the LNC vector and LNC-AMD candidate nanomedicines, both purified and non-purified, was evaluated on H9C2, A549, and HepG2 cell lines. It has been demonstrated that the elimination of free polyethylene glycol and residual surfactant micelles results in a substantial enhancement in cell viability. The cytotoxic results raise questions about the cell-specific uptake and distribution of purified LNCs.
Collapse
Affiliation(s)
- Jaspe Chen
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Sophie Tamareille
- Univ Angers, Inserm, CNRS, MITOVASC, SFR ICAT, F-49000 Angers, France
| | | | - Jean-Christophe Gimel
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - Brice Calvignac
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - David Dallerac
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Nolwenn Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Tanguy Le Lay
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Clara Rapenne
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Isabelle Verdu
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France
| | - Émilie Martinez
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Guillaume Lefebvre
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, SynNanoVect, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
2
|
Tanios C, Billet S, Méausoone C, Landkocz Y, Gennequin C, Labaki M, Nsouli B, Aboukaïs A, Cazier F, Abi-Aad E. Impact of waste origin and post-treatment techniques on the composition and toxicity of biogas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178688. [PMID: 39914317 DOI: 10.1016/j.scitotenv.2025.178688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
The toxicity of real biogas on human lung cells exposed at the air-liquid interface (ALI) was studied for the first time. Real biogases were sampled on site at two biomethanation centers, one in France and the other in Lebanon. Biogas was produced from the organic component of household municipal waste (i.e., food/kitchen waste and green waste). The chemical analysis was performed by Gas Chromatography (GC) or by online analyzers, in situ or further after collection of the samples in Tedlar bags or adsorption on Tenax tubes. The real biogases were composed of CH4 and CO2, NH3, H2S, and of some Volatile Organic Compounds, such as BTEX and terpenes. The main biogas components from the two selected biogas plants were closed due to the use of the same Valorga® process, whereas the concentrations of the secondary compounds depended on the origin and nature of waste and on the use of a biogas post-treatment. Green waste produced higher concentrations of terpenes. Moreover, the treatment by desulfurization and by activated charcoal decreased its content in sulfur compounds and BTEX, respectively. Then, the toxicity of the two biogases was investigated by RT-qPCR in human lung cell cultures (BEAS-2B) exposed using the ALI Vitrocell® exposure device. No cytotoxicity was detected in the exposed cells. A dose- and time-dependent induction of inflammation markers was observed at the gene level in relation to oxidative stress in BEAS-2B cells exposed to both biogases. These inductions were mainly higher after exposure to the biogas containing more secondary compounds, such as BTEX. In conclusion, this in vitro mechanistic study confirmed the importance of the post-treatment of the biogas to lower the concentration of secondary compounds. Indeed, elimination of some biogas impurities is essential to avoid high toxicity, for an ideal use of biogas for waste management and renewable energy production.
Collapse
Affiliation(s)
- Carole Tanios
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France; Laboratory of Physical Chemistry of Materials (LCPM)/PR2N, Faculty of Sciences, Lebanese University, Fanar, PO Box 90656, Jdeidet El Metn, Lebanon; Lebanese Atomic Energy Commission (CLEA), National Council for Scientific Research (CNRS), Riad El Solh, Lebanon
| | - Sylvain Billet
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France.
| | - Clémence Méausoone
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| | - Yann Landkocz
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| | - Cédric Gennequin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| | - Madona Labaki
- Laboratory of Physical Chemistry of Materials (LCPM)/PR2N, Faculty of Sciences, Lebanese University, Fanar, PO Box 90656, Jdeidet El Metn, Lebanon
| | - Bilal Nsouli
- Lebanese Atomic Energy Commission (CLEA), National Council for Scientific Research (CNRS), Riad El Solh, Lebanon
| | - Antoine Aboukaïs
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM, Centre Commun de Mesures, F-59140 Dunkerque, France
| | - Edmond Abi-Aad
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140 Dunkerque, France
| |
Collapse
|
3
|
Pochini L, Tedesco GE, Mazza T, Scalise M, Indiveri C. OCTN1 mediates acetylcholine transport in the A549 lung cancer cells: possible pathophysiological implications. Front Mol Biosci 2024; 11:1512530. [PMID: 39719963 PMCID: PMC11666908 DOI: 10.3389/fmolb.2024.1512530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
A role for acetylcholine in cell proliferation, epithelial mesenchymal transition and invasion has been well assessed and related to the presence of the non-neuronal cholinergic system in lung cancer. For the operation of this non-neuronal system, acetylcholine should be released by a transporter mediated non-quantal process. OCTN1 is one of the transporters able to catalyse acetylcholine efflux in vitro and ex vivo. Using the A549 cell line as a lung cancer model, it has been found that these cells express OCTN1 at a higher level with respect to other cancer cells. The transport capacity of OCTN1 extracted from A549 and reconstituted into proteoliposomes reflects the protein expression profile. The properties of the acetylcholine transport mediated by OCTN1 of A549 in terms of specificity to ligands and ability to catalyse efflux of acetylcholine correspond to those previously described for the same transporter in other cells or to those of the human recombinant protein. OCTN1 is the major player in acetylcholine release in A549 and, therefore, may represent a target for inhibitors able to block the acetylcholine action in this type of aggressive tumors.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Giusi Elisabetta Tedesco
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| |
Collapse
|
4
|
Jirau-Colón H, Jiménez-Vélez BD. PM 2.5 Extracts Induce INFγ-Independent Activation of CIITA, MHCII, and Increases Inflammation in Human Bronchial Epithelium. TOXICS 2024; 12:292. [PMID: 38668515 PMCID: PMC11054084 DOI: 10.3390/toxics12040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The capacity of particulate matter (PM) to enhance and stimulate the expression of pro-inflammatory mediators has been previously demonstrated in non-antigen-presenting cells (human bronchial epithelia). Nonetheless, many proposed mechanisms for this are extrapolated from known canonical molecular pathways. This work evaluates a possible mechanism for inflammatory exacerbation after exposure to PM2.5 (from Puerto Rico) and CuSO4, using human bronchial epithelial cells (BEAS-2B) as a model. The induction of CIITA, MHCII genes, and various pro-inflammatory mediators was investigated. Among these, the phosphorylation of STAT1 Y701 was significantly induced after 4 h of PM2.5 exposure, concurrent with a slight increase in CIITA and HLA-DRα mRNA levels. INFγ mRNA levels remained low amidst exposure time, while IL-6 levels significantly increased at earlier times. IL-8 remained low, as expected from attenuation by IL-6 in the known INFγ-independent inflammation pathway. The effects of CuSO4 showed an increase in HLA-DRα expression after 8 h, an increase in STAT1 at 1 h, and RF1 at 8 h We hypothesize and show evidence that an inflammatory response due to PM2.5 extract exposure in human bronchial epithelia can be induced early via an alternate non-canonical pathway in the absence of INFγ.
Collapse
Affiliation(s)
- Héctor Jirau-Colón
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| | - Braulio D. Jiménez-Vélez
- Department of Biochemistry, University of Puerto Rico Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Center for Environmental and Toxicological Research, Biochemistry Department, San Juan 00935, Puerto Rico
| |
Collapse
|
5
|
Chen W, Ge P, Deng M, Liu X, Lu Z, Yan Z, Chen M, Wang J. Toxicological responses of A549 and HCE-T cells exposed to fine particulate matter at the air-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27375-27387. [PMID: 38512571 PMCID: PMC11052810 DOI: 10.1007/s11356-024-32944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Fine particulate matter (PM2.5) can enter the human body in various ways and have adverse effects on human health. Human lungs and eyes are exposed to the air for a long time and are the first to be exposed to PM2.5. The "liquid immersion exposure method" has some limitations that prevent it from fully reflecting the toxic effects of particulate matter on the human body. In this study, the collected PM2.5 samples were chemically analyzed. An air-liquid interface (ALI) model with a high correlation to the in vivo environment was established based on human lung epithelial cells (A549) and immortalized human corneal epithelial cells (HCE-T). The VITROCELL Cloud 12 system was used to distribute PM2.5 on the cells evenly. After exposure for 6 h and 24 h, cell viability, apoptosis rate, reactive oxygen species (ROS) level, expression of inflammatory factors, and deoxyribonucleic acid (DNA) damage were measured. The results demonstrated significant dose- and time-dependent effects of PM2.5 on cell viability, cell apoptosis, ROS generation, and DNA damage at the ALI, while the inflammatory factors showed dose-dependent effects only. It should be noted that even short exposure to low doses of PM2.5 can cause cell DNA double-strand breaks and increased expression of γ-H2AX, indicating significant genotoxicity of PM2.5. Increased abundance of ROS in cells plays a crucial role in the cytotoxicity induced by PM2.5 exposure These findings emphasize the significant cellular damage and genotoxicity that may result from short-term exposure to low levels of PM2.5.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minjun Deng
- Ningxia Meteorological Service Center, Yinchuan, 750002, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
6
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
8
|
Cunha MM, Pereira ABM, Lino RC, da Silva PR, Andrade-Silva LE, de Vito FB, de Souza HM, Silva-Vergara ML, Rogério AP. Effects of combination of Cryptococcus gattii and IFN-γ, IL-4 or IL-27 on human bronchial epithelial cells. Immunobiology 2023; 228:152312. [PMID: 36577248 DOI: 10.1016/j.imbio.2022.152312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Airway epithelial cells are crucial for the establishment of cryptococcosis. In experimental cryptococcosis, the Th2 immune response is associated with host susceptibility, while Th1 cells are associated with protection. The absence of IL-27 receptor alpha in mice favor the increase Cryptococcus neoformans burden in the lung. Here, we evaluated the effects of the combination of IL-4, IFN-γ or IL-27 with C. gattii on human bronchial epithelial cells (BEAS-2B). METHODS BEAS-2B were stimulated with IL-4, IFN-γ or IL-27 (100 ng/mL) and/or live yeast forms of C. gattii (multiplicities of infection (MOI) of 1-100) and vice-versa, as well as with heat-killed cells of C. gattii for 24 h. RESULTS None of the C. gattii MOIs had cytotoxic effects on BEAS-2B when compared to control. The cells stimulated by cytokines (IL-4, IFN-γ or IL-27) followed by live yeast forms of C. gattii (MOI of 100) infection and vice-versa demonstrated a reduction in IL-6, IL-8 and/or CCL2 production and activation of STAT6 (induced by IL-4) and STAT1 (induced by IL-27 or IFN-γ) when compared to cells stimulated with C. gattii, IL-4, IFN-γ or IL-27. In the combination of cytokines and heat-killed cells of C. gattii, no inhibition of these inflammatory parameters was observed. The growth of C. gattii was increased while the phagocytosis of live yeast forms of C. gattii in the BEAS-2B were reduced in the presence of IL-4, IFN-γ or IL-27. Conclusion The association of live yeast forms, but not heat-killed yeast forms, of C. gattii with IL-4, IFN-γ or IL-27 induced an anti-inflammatory effect.
Collapse
Affiliation(s)
- Maiara Medeiros Cunha
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Roberta Campos Lino
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Leonardo Euripedes Andrade-Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Mycology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Fernanda Bernadelli de Vito
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Hélio Moraes de Souza
- Institute of Biological and Natural Sciences, Department of Genetics, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Mario Leon Silva-Vergara
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Mycology, Federal University of Triangulo Mineiro, Uberaba, MG, USA
| | - Alexandre Paula Rogério
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triangulo Mineiro, Uberaba, MG, USA.
| |
Collapse
|
9
|
Cavallero A, Puccini P, Aprile V, Lucchi M, Gervasi P, Longo V, Gabriele M. Presence, enzymatic activity, and subcellular localization of paraoxonases 1, 2, and 3 in human lung tissues. Life Sci 2022; 311:121147. [DOI: 10.1016/j.lfs.2022.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
10
|
Kelty J, Kovalchuk N, Uwimana E, Yin L, Ding X, Van Winkle L. In vitro airway models from mice, rhesus macaques, and humans maintain species differences in xenobiotic metabolism and cellular responses to naphthalene. Am J Physiol Lung Cell Mol Physiol 2022; 323:L308-L328. [PMID: 35853015 PMCID: PMC9423729 DOI: 10.1152/ajplung.00349.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
The translational value of high-throughput toxicity testing will depend on pharmacokinetic validation. Yet, popular in vitro airway epithelia models were optimized for structure and mucociliary function without considering the bioactivation or detoxification capabilities of lung-specific enzymes. This study evaluated xenobiotic metabolism maintenance within differentiated air-liquid interface (ALI) airway epithelial cell cultures (human bronchial; human, rhesus, and mouse tracheal), isolated airway epithelial cells (human, rhesus, and mouse tracheal; rhesus bronchial), and ex vivo microdissected airways (rhesus and mouse) by measuring gene expression, glutathione content, and naphthalene metabolism. Glutathione levels and detoxification gene transcripts were measured after 1-h exposure to 80 µM naphthalene (a bioactivated toxicant) or reactive naphthoquinone metabolites. Glutathione and glutathione-related enzyme transcript levels were maintained in ALI cultures from all species relative to source tissues, while cytochrome P450 monooxygenase gene expression declined. Notable species differences among the models included a 40-fold lower total glutathione content for mouse ALI trachea cells relative to human and rhesus; a higher rate of naphthalene metabolism in mouse ALI cultures for naphthalene-glutathione formation (100-fold over rhesus) and naphthalene-dihydrodiol production (10-fold over human); and opposite effects of 1,2-naphthoquinone exposure in some models-glutathione was depleted in rhesus tissue but rose in mouse ALI samples. The responses of an immortalized bronchial cell line to naphthalene and naphthoquinones were inconsistent with those of human ALI cultures. These findings of preserved species differences and the altered balance of phase I and phase II xenobiotic metabolism among the characterized in vitro models should be considered for future pulmonary toxicity testing.
Collapse
Affiliation(s)
- Jacklyn Kelty
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, California
| | - Nataliia Kovalchuk
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Eric Uwimana
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Lei Yin
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Xinxin Ding
- Pharmacology and Toxicology Department, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Laura Van Winkle
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, California
| |
Collapse
|
11
|
Nicotine Inhibits the Cytotoxicity and Genotoxicity of NNK Mediated by CYP2A13 in BEAS-2B Cells. Molecules 2022; 27:molecules27154851. [PMID: 35956805 PMCID: PMC9369970 DOI: 10.3390/molecules27154851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Both tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and nicotine can be metabolized by cytochrome P450 2A13 (CYP2A13). Previous studies have shown that nicotine has a potential inhibitory effect on the toxicity of NNK. However, due to the lack of CYP2A13 activity in conventional lung cell lines, there had been no systematic in vitro investigation for the key target organ, the lung. Here, BEAS-2B cells stably expressing CYP2A13 (B-2A13 cells) were constructed to investigate the effects of nicotine on the cytotoxicity and genotoxicity of NNK. The results showed more sensitivity for NNK-induced cytotoxicity in B-2A13 cells than in BEAS-2B and B-vector cells. NNK significantly induced DNA damage, cell cycle arrest, and chromosomal damage in B-2A13 cells, but had no significant effect on BEAS-2B cells and the vector control cells. The combination of different concentration gradient of nicotine without cytotoxic effects and a single concentration of NNK reduced or even counteracted the cytotoxicity and multi-dimensional genotoxicity in a dose-dependent manner. In conclusion, CYP2A13 caused the cytotoxicity and genotoxicity of NNK in BEAS-2B cells, and the addition of nicotine could inhibit the toxicity of NNK.
Collapse
|
12
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
13
|
Djidrovski I, Georgiou M, Tasinato E, Leonard MO, Van den Bor J, Lako M, Armstrong L. Direct transcriptomic comparison of xenobiotic metabolism and toxicity pathway induction of airway epithelium models at an air-liquid interface generated from induced pluripotent stem cells and primary bronchial epithelial cells. Cell Biol Toxicol 2022; 39:1-18. [PMID: 35641671 PMCID: PMC10042770 DOI: 10.1007/s10565-022-09726-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022]
Abstract
The airway epithelium represents the main barrier between inhaled air and the tissues of the respiratory tract and is therefore an important point of contact with xenobiotic substances into the human body. Several studies have recently shown that in vitro models of the airway grown at an air-liquid interface (ALI) can be particularly useful to obtain mechanistic information about the toxicity of chemical compounds. However, such methods are not very amenable to high throughput since the primary cells cannot be expanded indefinitely in culture to obtain a sustainable number of cells. Induced pluripotent stem cells (iPSCs) have become a popular option in the recent years for modelling the airways of the lung, but despite progress in the field, such models have so far not been assessed for their ability to metabolise xenobiotic compounds and how they compare to the primary bronchial airway model (pBAE). Here, we report a comparative analysis by TempoSeq (oligo-directed sequencing) of an iPSC-derived airway model (iBAE) with a primary bronchial airway model (pBAE). The iBAE and pBAE were differentiated at an ALI and then evaluated in a 5-compound screen with exposure to a sub-lethal concentration of each compound for 24 h. We found that despite lower expression of xenobiotic metabolism genes, the iBAE similarly predicted the toxic pathways when compared to the pBAE model. Our results show that iPSC airway models at ALI show promise for inhalation toxicity assessments with further development.
Collapse
Affiliation(s)
- Ivo Djidrovski
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK.,Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Maria Georgiou
- Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Elena Tasinato
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK
| | - Martin O Leonard
- Toxicology Department, Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Harwell Campus, Chilton, OX11 0RQ, UK
| | - Jelle Van den Bor
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Majlinda Lako
- Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Lyle Armstrong
- The Biosphere, Newcells Biotech Ltd., Draymans way, Newcastle Helix, Newcastle upon Tyne, NE4 5BX, UK. .,Biosciences Institute, The International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
14
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
15
|
Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells infected with Cryptococcus neoformans. Inflammopharmacology 2021; 29:1603-1612. [PMID: 34405339 DOI: 10.1007/s10787-021-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The interaction of Cryptococcus neoformans with airway epithelial cells is crucial for the establishment of cryptococcosis. Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. METHOD Here, we evaluated the effects of AT-RvD1 (1, 10 or 100 nM) on human bronchial epithelial cells (BEAS-2B) stimulated with C. neoformans (1, 10 or 100 multiplicities of infection; MOI). RESULTS After 24 h, C. neoformans (all MOI) demonstrated no cytotoxic effects and increased IL-8 production on BEAS-2B cells when compared to controls. In addition, C. neoformans (MOI 100) increased the concentration of IL-6, but not of IL-10. AT-RvD1 (100 nM) significantly reduced the concentration of IL-8 and IL-6 and increased IL-10 production in C. neoformans-stimulated BEAS-2B cells. C. neoformans increased the phosphorylation of NF-κB and ERK1/2, and ALX/FPR2 expression. AT-RvD1 reduced the activation of NF-kB without altering the ERK1/2 and ALX/FPR2 expression. The anti-inflammatory effects of AT-RvD1 were dependent on the ALX/FPR2, once its antagonist (BOC2) reversed its anti-inflammatory effects. No alteration on the fungal burden as well as interactions with BEAS-2B cells was observed by AT-RvD1. CONCLUSION AT-RvD1 demonstrated significant anti-inflammatory effects in bronchial epithelial cells infected with C. neoformans without affecting the development of C. neoformans infection in the airways. TRIAL REGISTRATION Not applicable.
Collapse
|
16
|
Markwitz P, Olszak T, Gula G, Kowalska M, Arabski M, Drulis-Kawa Z. Emerging Phage Resistance in Pseudomonas aeruginosa PAO1 Is Accompanied by an Enhanced Heterogeneity and Reduced Virulence. Viruses 2021; 13:1332. [PMID: 34372538 PMCID: PMC8310095 DOI: 10.3390/v13071332] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial surface structures of a proteinic nature and glycoconjugates contribute to biofilm formation and provide shields to host defense mechanisms (e.g., the complement system and phagocytosis). A loss or alteration of these molecules, leading to phage resistance, could result in fewer virulent bacteria. In this study, we evaluate the biology and phenotype changes in Pseudomonas aeruginosa PAO1 phage-resistant clones, which emerge in phage-treated biofilms. We characterize these clones for phage-typing patterns, antibiotic resistance, biofilm formation, pathogenicity, and interactions with the innate immune system. Another important question that we address is whether phage-resistant mutants are also generated incidentally, despite the phage treatment-selective pressure, as the natural adaptation of the living biofilm population. It is found that the application of different phages targeting a particular receptor selects similar phage resistance patterns. Nevertheless, this results in a dramatic increase in the population heterogeneity, giving over a dozen phage-typing patterns, compared to one of the untreated PAO1 sessile forms. We also confirm the hypothesis that "phage-resistant bacteria are more susceptible to antibiotics and host-clearance mechanisms by the immune system". These findings support phage application in therapy, although the overall statement that phage treatment selects the less virulent bacterial population should be further verified using a bigger collection of clinical strains.
Collapse
Affiliation(s)
- Pawel Markwitz
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| | - Tomasz Olszak
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| | - Grzegorz Gula
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| | - Magdalena Kowalska
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland; (M.K.); (M.A.)
| | - Michal Arabski
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406 Kielce, Poland; (M.K.); (M.A.)
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, University of Wroclaw, 51-148 Wroclaw, Poland; (P.M.); (T.O.); (G.G.)
| |
Collapse
|
17
|
Pereira ABM, Oliveira JR, Souza ALJ, Andrade-Silva L, Silva MV, Silva PR, Silva-Vergara ML, Rogerio AP. Effects of cigarette smoke extract on bronchial epithelial cells stimulated with Cryptococcus neoformans. Med Microbiol Immunol 2021; 210:221-233. [PMID: 34228244 DOI: 10.1007/s00430-021-00715-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
In the airways, the adhesion of Cryptococcus neoformans with airway epithelial cells is crucial for the establishment of cryptococcosis. Tobacco smoke is considered a risk factor for cryptococcosis. Here, we evaluated the effects of cigarette smoke extract (CSE) on human bronchial epithelial cells (BEAS-2B) stimulated with C. neoformans. Multiplicities of infection (MOIs) of 1-100 of C. neoformans per cell led to increased IL-8 production and no cytotoxic effects when compared to those of controls. C. neoformans (MOI 100) also significantly increased the concentration of IL-6. In cells stimulated with CSE doses (1.0, 2.5 and 5.0%) from one or five cigarettes, increased IL-1β production was observed only in doses from one (1.0%) and five (2.5%) cigarettes when compared to that of controls. However, only 1.0% CSE failed to show cytotoxic effects. In addition, CSE significantly increased the concentration of IL-8. Cells stimulated with both CSE and C. neoformans demonstrated a reduction in IL-6/STAT3 signalling compared to that in cells stimulated by C. neoformans. In addition, a significant increase in IL-10 production was also observed. No alterations in NF-kB or ICAM-1 expression were observed among the groups. The combination of CSE and C. neoformans favoured the increase of fungal numbers and extracellular adhering of C. neoformans on BEAS-2B cells. In addition, the internalization of C. neoformans on BEAS-2B cells was reduced after CSE stimulation. In conclusion, the association of CSE and C. neoformans induced an anti-inflammatory effect in bronchial epithelial cells, which might favour the development of C. neoformans infection in the airways.
Collapse
Affiliation(s)
- Aline Beatriz Mahler Pereira
- Laboratory of Experimental Immunopharmacology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Street Vigário Carlos 162, Uberaba, MG, 38025-380, Brazil
| | - Jhony Robison Oliveira
- Laboratory of Experimental Immunopharmacology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Street Vigário Carlos 162, Uberaba, MG, 38025-380, Brazil
| | - Ana Leticia Julio Souza
- Laboratory of Experimental Immunopharmacology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Street Vigário Carlos 162, Uberaba, MG, 38025-380, Brazil
| | - Leonardo Andrade-Silva
- Laboratory of Mycology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius Silva
- Laboratory of Immunology, Institute Department of Clinical Medicine, of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Paulo Roberto Silva
- Laboratory of Experimental Immunopharmacology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Street Vigário Carlos 162, Uberaba, MG, 38025-380, Brazil
| | - Mario Leon Silva-Vergara
- Laboratory of Mycology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Alexandre Paula Rogerio
- Laboratory of Experimental Immunopharmacology, Department of Clinical Medicine, Institute of Health Sciences, Federal University of Triangulo Mineiro, Street Vigário Carlos 162, Uberaba, MG, 38025-380, Brazil.
| |
Collapse
|
18
|
Chen KY, Tseng CH, Feng PH, Sun WL, Ho SC, Lin CW, Van Hiep N, Luo CS, Tseng YH, Chen TT, Liu WT, Lee KY, Wu SM. 3-Nitrobenzanthrone promotes malignant transformation in human lung epithelial cells through the epiregulin-signaling pathway. Cell Biol Toxicol 2021; 38:865-887. [PMID: 34036453 DOI: 10.1007/s10565-021-09612-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
Exposure to environmental and occupational contaminants leads to lung cancer. 3-Nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA) is a potential carcinogen in ambient air or diesel particulate matter. Studies have revealed that short-term exposure to 3-NBA induces cell death, reactive oxygen species activation, and DNA adduct formation and damage. However, details of the mechanism by which chronic exposure to 3-NBA influences lung carcinogenesis remain largely unknown. In this study, human lung epithelial BEAS-2B cells were continuously exposed to 0-10-μM 3-NBA for 6 months. NanoString analysis was conducted to evaluate gene expression in the cells, revealing that 3-NBA-mediated transformation results in a distinct gene expression signature including carbon cancer metabolism, metastasis, and angiogenesis. Alterations in tumor-promoting genes such as EREG (epiregulin), SOX9, E-cadherin, TWIST, and IL-6 were involved in epithelial cell aggressiveness. Kaplan-Meier plotter analyses indicated that increased EREG and IL-6 expressions in early-stage lung cancer cells are correlated with poor survival. In vivo xenografts on 3-NBA-transformed cells exhibited prominent tumor formation and metastasis. EREG knockout cells exposed to 3-NBA for a short period exhibited high apoptosis and low colony formation. By contrast, overexpression of EREG in 3-NBA-transformed cells markedly activated the PI3K/AKT and MEK/ERK signaling pathways, resulting in tumorigenicity. Furthermore, elevated IL-6 and EREG expressions synergistically led to STAT3 signaling activation, resulting in clonogenic cell survival and migration. Taken together, chronic exposure of human lung epithelial cells to 3-NBA leads to malignant transformation, in which the EREG signaling pathway plays a pivotal mediating role. • Short-term exposure of lung epithelial cells to 3-NBA can lead to ROS production and cell apoptosis. • Long-term chronic exposure to 3-NBA upregulates the levels of tumor-promoting genes such as EREG and IL-6. • Increased EREG expression in 3-NBA-transformed cells markedly contributes to tumorigenesis through PI3K/AKT and MEK/ERK activation and synergistically enhances the IL-6/STAT3 signaling pathway, which promotes tumorigenicity.
Collapse
Affiliation(s)
- Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Hua Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yen-Han Tseng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Enlo-Scott Z, Bäckström E, Mudway I, Forbes B. Drug metabolism in the lungs: opportunities for optimising inhaled medicines. Expert Opin Drug Metab Toxicol 2021; 17:611-625. [DOI: 10.1080/17425255.2021.1908262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zachary Enlo-Scott
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Erica Bäckström
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Population Health & Environmental Sciences, Imperial College London, London, United Kingdom; National Institute for Health Research, Health Protection Research Units in Chemical and Radiation Threats and Hazards and Environmental Exposures and Health, Imperial College London, London, UK
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
20
|
Gabriele M, Puccini P, Gervasi PG, Longo V. Carboxylesterases and arylacetamide deacetylase comparison in human A549, H460, and H727 pulmonary cells. Life Sci 2021; 277:119486. [PMID: 33864822 DOI: 10.1016/j.lfs.2021.119486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
AIMS Human carboxylesterases (CESs) and arylacetamide deacetylase (AADAC) are serine-esterase enzymes catalyzing the hydrolysis of many compounds containing esters, amides, thioesters, or acetyl groups. This study aimed to investigate the presence, kinetic parameters, and inhibition of CES1, CES2, and AADAC in A549, H460, and H727 pulmonary cells in both living cells and S9 fractions. MATERIALS AND METHODS The p-nitrophenyl acetate (pNPA) and 4-methylumbelliferyl acetate (4-MUA) were used as non-selective esterase substrates, whereas phenacetin as selective AADAC substrate. CESs activities were also investigated in living cells by cellular bioimaging using selective fluorescent probes. KEY FINDINGS AADAC gene was detected in A549 and H460 cells; nevertheless, arylesterase activity was not found in relative S9 fractions. Besides, CES1 and CES2 were expressed to a different extent by all lung cells, and enzymatic activities were quite overlapping each other. All enzymes exhibited a typical Michaelis-Menten saturation curve and, regarding 4-MUA, similar Km values were found in both living cells and S9 fractions. Conversely, kinetic parameters relative to the pNPA hydrolysis by S9 fractions were significantly lower than those detected in living cells. Inhibition studies revealed that 4-MUA hydrolysis was inhibited by bis-p-nitrophenyl phosphate and phenylmethanesulfonyl fluoride more than loperamide; on the contrary, pNPA hydrolysis inhibition was limited with similar inhibition profiles being obtained in both living cells and S9 fractions. The presence of carboxylesterases was definitely confirmed by cellular bioimaging. SIGNIFICANCE These findings add information to esterase knowledge in pulmonary cells that could be used as in vitro models for toxicological and pharmacological studies.
Collapse
Affiliation(s)
- Morena Gabriele
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Moruzzi 1, 56124 Pisa, Italy.
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A., via Palermo 26/A, Parma, Italy
| | - Pier Giovanni Gervasi
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- National Research Council, Institute of Agricultural Biology and Biotechnology, via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
21
|
Puhr M, Eigentler A, Handle F, Hackl H, Ploner C, Heidegger I, Schaefer G, Brandt MP, Hoefer J, Van der Pluijm G, Klocker H. Targeting the glucocorticoid receptor signature gene Mono Amine Oxidase-A enhances the efficacy of chemo- and anti-androgen therapy in advanced prostate cancer. Oncogene 2021; 40:3087-3100. [PMID: 33795839 PMCID: PMC8084733 DOI: 10.1038/s41388-021-01754-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
Despite increasing options for treatment of castration-resistant prostate cancer, development of drug resistance is inevitable. The glucocorticoid receptor (GR) is a prime suspect for acquired therapy resistance, as prostate cancer (PCa) cells are able to increase GR signaling during anti-androgen therapy and thereby circumvent androgen receptor (AR)-blockade and cell death. As standard AR-directed therapies fail to block the GR and GR inhibitors might result in intolerable side effects, the identification of GR signature genes, which are better suited for a targeted approach, is of clinical importance. Therefore, the specific epithelial and stromal GR signature was determined in cancer-associated fibroblasts as well as in abiraterone and enzalutamide-resistant cells after glucocorticoid (GC) treatment. Microarray and ChIP analysis identified MAO-A as a directly up-regulated mutual epithelial and stromal GR target, which is induced after GC treatment and during PCa progression. Elevated MAO-A levels were confirmed in in vitro cell models, in primary tissue cultures after GC treatment, and in patients after neoadjuvant chemotherapy with GCs. MAO-A expression correlates with GR/AR activity as well as with a reduced progression-free survival. Pharmacological MAO-A inhibition combined with 2nd generation AR signaling inhibitors or chemotherapeutics results in impaired growth of androgen-dependent, androgen-independent, and long-term anti-androgen-treated cells. In summary, these findings demonstrate that targeting MAO-A represents an innovative therapeutic strategy to synergistically block GR and AR dependent PCa cell growth and thereby overcome therapy resistance.
Collapse
MESH Headings
- Male
- Humans
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Phenylthiohydantoin/pharmacology
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Nitriles/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Benzamides/pharmacology
- Androstenes/pharmacology
- Androstenes/therapeutic use
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Cancer-Associated Fibroblasts/drug effects
- Glucocorticoids/pharmacology
Collapse
Affiliation(s)
- Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Andrea Eigentler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schaefer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian P Brandt
- Department of Urology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Julia Hoefer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabri Van der Pluijm
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
22
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
23
|
Carbon nanotube filler enhances incinerated thermoplastics-induced cytotoxicity and metabolic disruption in vitro. Part Fibre Toxicol 2020; 17:40. [PMID: 32787867 PMCID: PMC7424660 DOI: 10.1186/s12989-020-00371-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 11/11/2022] Open
Abstract
Background Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. Results The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. Conclusions Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.
Collapse
|
24
|
Canivet L, Denayer FO, Dubot P, Garçon G, Lo Guidice JM. Toxicity of iron nanoparticles towards primary cultures of human bronchial epithelial cells. J Appl Toxicol 2020; 41:203-215. [PMID: 32767597 DOI: 10.1002/jat.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
Air pollution is a public health issue and the toxicity of ambient particulate matter (PM) is well-recognized. Although it does not mostly contribute to the total mass of PM, increasing evidence indicates that the ultrafine fraction has generally a greater toxicity than the others do. A better knowledge of the underlying mechanisms involved in the pathological disorders related to nanoparticles (NPs) remains essential. Hence, the goal of this study was to determine better whether the exposure to a relatively low dose of well-characterized iron-rich NPs (Fe-NPs) might alter some critical toxicological endpoints in a relevant primary culture model of human bronchial epithelial cells (HBECs). We sought to use Fe-NPs representative of those frequently found in the industrial smokes of metallurgical industries. After having noticed the effective internalization of Fe-NPs, oxidative, inflammatory, DNA repair, and apoptotic endpoints were investigated within HBECs, mainly through transcriptional screening. Taken together, these results revealed that, despite it only produced relatively low levels of reactive oxygen species without any significant oxidative damage, low-dose Fe-NPs quickly significantly deregulated the transcription of some target genes closely involved in the proinflammatory response. Although this inflammatory process seemed to stay under control over time in case of this acute scenario of exposure, the future study of its evolution after a scenario of repeated exposure could be very interesting to evaluate the toxicity of Fe-NPs better.
Collapse
Affiliation(s)
- Ludivine Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Franck-Olivier Denayer
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - Pierre Dubot
- CNRS UMR 7182, Métaux et céramiques à microstructure contrôlée, Institut de Chimie et des Matériaux, Paris Est, Thiais, France
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS-IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France
| |
Collapse
|
25
|
Platel A, Privat K, Talahari S, Delobel A, Dourdin G, Gateau E, Simar S, Saleh Y, Sotty J, Antherieu S, Canivet L, Alleman LY, Perdrix E, Garçon G, Denayer FO, Lo Guidice JM, Nesslany F. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) particles on lung models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134666. [PMID: 31812380 DOI: 10.1016/j.scitotenv.2019.134666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Air pollution and particulate matter (PM) are classified as carcinogenic to humans. Pollutants evidence for public health concern include coarse (PM10) and fine (PM2.5) particles. However, ultrafine particles (PM0.1) are assumed to be more toxic than larger particles, but data are still needed to better understand their mechanism of action. In this context, the aim of our work was to investigate the in vitro and in vivo genotoxic potential of fine (PM2.5-018) and quasi ultra-fine (PM0.18) particles from an urban-industrial area (Dunkirk, France) by using comet, micronucleus and/or gene mutation assays. In vitro assessment was performed with 2 lung immortalized cell lines (BEAS-2B and NCI-H292) and primary normal human bronchial epithelial cells (NHBE) grown at the air-liquid interface or in submerged conditions (5 µg PM/cm2). For in vivo assessment, tests were performed after acute (24 h, 100 µg PM/animal), subacute (1 month, 10 µg PM/animal) and subchronic (3 months, 10 µg PM/animal) intranasal exposure of BALB/c mice. In vitro, our results show that PM2.5-018 and PM0.18 induced primary DNA damage but no chromosomal aberrations in immortalized cells. Negative results were noted in primary cells for both endpoints. In vivo assays revealed that PM2.5-018 and PM0.18 induced no significant increases in DNA primary damage, chromosomal aberrations or gene mutations, whatever the duration of exposure. This investigation provides initial answers regarding the in vitro and in vivo genotoxic mode of action of PM2.5-018 and PM0.18 at moderate doses and highlights the need to develop standardized specific methodologies for assessing the genotoxicity of PM. Moreover, other mechanisms possibly implicated in pulmonary carcinogenesis, e.g. epigenetics, should be investigated.
Collapse
Affiliation(s)
- A Platel
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - K Privat
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Talahari
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - A Delobel
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - G Dourdin
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - E Gateau
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Simar
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - Y Saleh
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - J Sotty
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Antherieu
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - L Canivet
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France; Ecole des Mines de Douai, Département Chimie et Environnement, 941 Rue Charles Bourseul, BP 10838, 59508 Douai Cedex, France.
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France; Ecole des Mines de Douai, Département Chimie et Environnement, 941 Rue Charles Bourseul, BP 10838, 59508 Douai Cedex, France.
| | - G Garçon
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - F O Denayer
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - J M Lo Guidice
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - F Nesslany
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| |
Collapse
|
26
|
Montalbano AM, Albano GD, Anzalone G, Moscato M, Gagliardo R, Di Sano C, Bonanno A, Ruggieri S, Cibella F, Profita M. Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells. CHEMOSPHERE 2020; 245:125600. [PMID: 31864052 DOI: 10.1016/j.chemosphere.2019.125600] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread as flame-retardants in different types of consumer products. PBDEs present in the air or dust and their inhalation can damage human health by influencing the respiratory system. We evaluated the effects of environment relevant concentrations (0.01-1 μM) of PBDE-47, PBDE-99 and PBDE-209 on the mechanism of oxidative stress, dysregulation of cell proliferation, apoptosis, and DNA damage and repair (in term of H2AX phosphorylation ser139) in an in-vitro/ex-vivo model of bronchial epithelial cells. PBDEs (-47, -99 and -209) at the environment relevant concentrations (0.01 and 1 μM) induce oxidative stress (in term of NOX-4 expression as well as ROS and JC-1 production), activate the mechanism of DNA-damage and repair affecting Olive Tail length (comet assay) production and H2AX phosphorylation (ser139) in normal human bronchial epithelial cells. Furthermore PBDEs, although do not affect cell viability, induce cell apoptosis and single cell capacity to grow into a colony (like a cancer phenotype) in bronchial epithelial cells. Finally, PBDE-47 had a greater effect than -99 and -209. PBDE-47, -99 and -209 congeners exert cytotoxic and genotoxic effects, and play a critical role in the dysregulation of oxidative stress, damaging DNA and the related gene expression in bronchial epithelial cells. Our findings might suggest that PBDEs inhalation might have adverse effect on human health regarding pulmonary diseases in the areas of environmental pollution.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giusy Daniela Albano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Giulia Anzalone
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Monica Moscato
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Caterina Di Sano
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Anna Bonanno
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Silvia Ruggieri
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy
| | - Mirella Profita
- Institute for Research and Biomedical Innovation (IRIB), National Research Council of Italy (CNR), Palermo, Italy.
| |
Collapse
|
27
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
28
|
Sironval V, Palmai-Pallag M, Vanbever R, Huaux F, Mejia J, Lucas S, Lison D, van den Brule S. HIF-1α is a key mediator of the lung inflammatory potential of lithium-ion battery particles. Part Fibre Toxicol 2019; 16:35. [PMID: 31533843 PMCID: PMC6751682 DOI: 10.1186/s12989-019-0319-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 01/30/2023] Open
Abstract
Background Li-ion batteries (LIB) are increasingly used worldwide. They are made of low solubility micrometric particles, implying a potential for inhalation toxicity in occupational settings and possibly for consumers. LiCoO2 (LCO), one of the most used cathode material, induces inflammatory and fibrotic lung responses in mice. LCO also stabilizes hypoxia-inducible factor (HIF) -1α, a factor implicated in inflammation, fibrosis and carcinogenicity. Here, we investigated the role of cobalt, nickel and HIF-1α as determinants of toxicity, and evaluated their predictive value for the lung toxicity of LIB particles in in vitro assays. Results By testing a set of 5 selected LIB particles (LCO, LiNiMnCoO2, LiNiCoAlO2) with different cobalt and nickel contents, we found a positive correlation between their in vivo lung inflammatory activity, and (i) Co and Ni particle content and their bioaccessibility and (ii) the stabilization of HIF-1α in the lung. Inhibition of HIF-1α with chetomin or PX-478 blunted the lung inflammatory response to LCO in mice. In IL-1β deficient mice, HIF-1α was the upstream signal of the inflammatory lung response to LCO. In vitro, the level of HIF-1α stabilization induced by LIB particles in BEAS-2B cells correlated with the intensity of lung inflammation induced by the same particles in vivo. Conclusions We conclude that HIF-1α, stabilized in lung cells by released Co and Ni ions, is a mechanism-based biomarker of lung inflammatory responses induced by LIB particles containing Co/Ni. Documenting the Co/Ni content of LIB particles, their bioaccessibility and their capacity to stabilize HIF-1α in vitro can be used to predict the lung inflammatory potential of LIB particles. Electronic supplementary material The online version of this article (10.1186/s12989-019-0319-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violaine Sironval
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 57 - bte B1.57.06, 1200, Brussels, Belgium.
| | - Mihaly Palmai-Pallag
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 57 - bte B1.57.06, 1200, Brussels, Belgium
| | - Rita Vanbever
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73 - bte B1.73.12, 1200, Brussels, Belgium
| | - François Huaux
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 57 - bte B1.57.06, 1200, Brussels, Belgium
| | - Jorge Mejia
- Research Centre for the Physics of Matter and Radiation (PMR-LARN), NARILIS, Université de Namur, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Stéphane Lucas
- Research Centre for the Physics of Matter and Radiation (PMR-LARN), NARILIS, Université de Namur, rue de Bruxelles 61, 5000, Namur, Belgium
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 57 - bte B1.57.06, 1200, Brussels, Belgium
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 57 - bte B1.57.06, 1200, Brussels, Belgium
| |
Collapse
|
29
|
Uboldi C, Sanles Sobrido M, Bernard E, Tassistro V, Herlin-Boime N, Vrel D, Garcia-Argote S, Roche S, Magdinier F, Dinescu G, Malard V, Lebaron-Jacobs L, Rose J, Rousseau B, Delaporte P, Grisolia C, Orsière T. In Vitro Analysis of the Effects of ITER-Like Tungsten Nanoparticles: Cytotoxicity and Epigenotoxicity in BEAS-2B Cells. NANOMATERIALS 2019; 9:nano9091233. [PMID: 31480309 PMCID: PMC6780084 DOI: 10.3390/nano9091233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022]
Abstract
Tungsten was chosen as a wall component to interact with the plasma generated by the International Thermonuclear Experimental fusion Reactor (ITER). Nevertheless, during plasma operation tritiated tungsten nanoparticles (W-NPs) will be formed and potentially released into the environment following a Loss-Of-Vacuum-Accident, causing occupational or accidental exposure. We therefore investigated, in the bronchial human-derived BEAS-2B cell line, the cytotoxic and epigenotoxic effects of two types of ITER-like W-NPs (plasma sputtering or laser ablation), in their pristine, hydrogenated, and tritiated forms. Long exposures (24 h) induced significant cytotoxicity, especially for the hydrogenated ones. Plasma W-NPs impaired cytostasis more severely than the laser ones and both types and forms of W-NPs induced significant micronuclei formation, as shown by cytokinesis-block micronucleus assay. Single DNA strand breaks, potentially triggered by oxidative stress, occurred upon exposure to W-NPs and independently of their form, as observed by alkaline comet assay. After 24 h it was shown that more than 50% of W was dissolved via oxidative dissolution. Overall, our results indicate that W-NPs can affect the in vitro viability of BEAS-2B cells and induce epigenotoxic alterations. We could not observe significant differences between plasma and laser W-NPs so their toxicity might not be triggered by the synthesis method.
Collapse
Affiliation(s)
- Chiara Uboldi
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille Université, 13005 Marseille, France
| | - Marcos Sanles Sobrido
- CNRS, IRD, INRA, Coll France, CEREGE, Aix Marseille Université, 13545 Aix-en-Provence, France
| | - Elodie Bernard
- CNRS, LP3, Aix Marseille Université, 13005 Marseille, France
- CEA, CNRS, BIAM, Aix Marseille Université, 13108 Saint Paul-Lez-Durance, France
| | - Virginie Tassistro
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille Université, 13005 Marseille, France
| | | | - Dominique Vrel
- LSPM, Université Paris 13, UPR 3407 CNRS, 93430 Villetaneuse, France
| | | | - Stéphane Roche
- INSERM, MMG, Aix Marseille Université, 13005 Marseille, France
| | | | - Gheorghe Dinescu
- INFLPR, 409 Atomistilor Street, Magurele, 77125 Bucharest, Romania
| | - Véronique Malard
- CEA, CNRS, BIAM, Aix Marseille Université, 13108 Saint Paul-Lez-Durance, France
| | | | - Jerome Rose
- CNRS, IRD, INRA, Coll France, CEREGE, Aix Marseille Université, 13545 Aix-en-Provence, France
| | - Bernard Rousseau
- CEA, SCBM, Université Paris Saclay, 91191 Gif-sur-Yvette, France
| | | | | | - Thierry Orsière
- CNRS, IRD, IMBE, Avignon Université, Aix Marseille Université, 13005 Marseille, France.
| |
Collapse
|
30
|
OCTN2-Mediated Acetyl-l-Carnitine Transport in Human Pulmonary Epithelial Cells In Vitro. Pharmaceutics 2019; 11:pharmaceutics11080396. [PMID: 31394757 PMCID: PMC6723908 DOI: 10.3390/pharmaceutics11080396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
The carnitine transporter OCTN2 is associated with asthma and other inflammatory diseases. The aims of this work were (i) to determine carnitine uptake into freshly isolated human alveolar type I (ATI)-like epithelial cells in primary culture, (ii) to compare the kinetics of carnitine uptake between respiratory epithelial in vitro cell models, and (iii) to establish whether any cell line was a suitable model for studies of carnitine transport at the air-blood barrier. Levels of time-dependent [3H]-acetyl-l-carnitine uptake were similar in ATI-like, NCl-H441, and Calu-3 epithelial cells, whereas uptake into A549 cells was ~5 times higher. Uptake inhibition was more pronounced by OCTN2 modulators, such as l-Carnitine and verapamil, in ATI-like primary epithelial cells compared to NCl-H441 and Calu-3 epithelial cells. Our findings suggest that OCTN2 is involved in the cellular uptake of acetyl-l-carnitine at the alveolar epithelium and that none of the tested cell lines are optimal surrogates for primary cells.
Collapse
|
31
|
Gałczyńska K, Ciepluch K, Madej Ł, Kurdziel K, Maciejewska B, Drulis-Kawa Z, Węgierek-Ciuk A, Lankoff A, Arabski M. Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes with imidazole-4-acetate anion or 1-allylimidazole. Sci Rep 2019; 9:9777. [PMID: 31278366 PMCID: PMC6611867 DOI: 10.1038/s41598-019-46224-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/19/2019] [Indexed: 12/23/2022] Open
Abstract
The physicochemical properties of metal complexes determine their potential applications as antitumor agents. In this study, the antitumor properties of mononuclear cobalt(II) and copper(II) coordination compounds (stoichiometry: [Co(iaa)2(H2O)2]·H2O (iaa = imidazole-4-acetate anion), [Co(1-allim)6](NO3)2 (1-allim = 1-allylimidazole), [Cu(iaa)2H2O] and [Cu(1-allim)4(NO3)2]) and their ligands have been evaluated on human lung carcinoma A549 cells and normal bronchial BEAS-2B cells. Designing the chemical structure of new antitumor agents the possible interactions with macromolecules such as DNA or proteins should be take into account. PCR gene tlr4 product served as DNA model, whereas lysozyme and phage-derived endolysin (both peptidoglycan degrading enzymes) were applied as protein/enzyme model. The interactions were analysed using PCR-HRM and circular dichroism, FT-IR, spectrophotometry, respectively. Additionally, the antimicrobial properties of the complexes at a non-cytotoxic concentration were analyzed against S. aureus, E. coli, P. aeruginosa and C. albicans strains. The results obtained in this study showed the selective cytotoxicity of metal complexes, mainly [Cu(1-allim)4(NO3)2] towards tumor cells. From all tested compounds, only [Co(iaa)2(H2O)2].H2O non-covalently interacts with DNA. Cu(II) and Co(II) complexes did not affect the secondary conformation of tested proteins but modified the hydrolytic activity of enzymes (lysozyme and endolysin). Moreover, only [Co(iaa)2(H2O)2].H2O exhibited the antifungal properties. In conclusion, Co(II) and Cu(II) metal complexes bearing two imidazole-4-acetate ligands seemed to be promising antitumor and antifungal agents for future drug design and application.
Collapse
Affiliation(s)
- Katarzyna Gałczyńska
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland
| | - Karol Ciepluch
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland
| | - Łukasz Madej
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734, Kielce, Poland
| | - Krystyna Kurdziel
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15G, 25-406, Kielce, Poland
| | - Barbara Maciejewska
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63-77, 51-148, Wrocław, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63-77, 51-148, Wrocław, Poland
| | - Aneta Węgierek-Ciuk
- Department of Radiobiology and Immunology, Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland
| | - Anna Lankoff
- Department of Radiobiology and Immunology, Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland.,Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Michał Arabski
- Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland.
| |
Collapse
|
32
|
Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Lo Guidice JM, Courcot D, Garçon G. In vitro evaluation of organic extractable matter from ambient PM 2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. ENVIRONMENTAL RESEARCH 2019; 171:510-522. [PMID: 30743243 DOI: 10.1016/j.envres.2019.01.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells. The wide variety of chemicals, including PAH and other related-chemicals, found in OEM, has been rather associated with early oxidative events, as supported by the early activation of the sensible NRF-2 signaling pathway. For the most harmful conditions, the activation of this signaling pathway could not totally counteract the ROS overproduction, thereby leading to critical oxidative damage to macromolecules (lipid peroxidation, oxidative DNA adducts). While NRF-2 is an anti-inflammatory, OEM exposure did not trigger any significant change in the secretion of inflammatory cytokines (i.e., TNFα, IL-1β, IL-6, IL-8, MCP-1, and IFNγ). According to the high concentrations of PAH and other related organic chemicals found in this OEM, CYP1A1 and 1B1 genes exhibited high transcription levels in BEAS-2B cells, thereby supporting both the activation of the critical AhR signaling pathway and the formation of highly reactive ultimate metabolites. As a consequence, genotoxic events occurred in BEAS-2B cells exposed to this OEM together with cell survival events, with possible harmful cell cycle deregulation. However, more studies are required to implement these observations and to contribute to better decipher the critical role of the organic fraction of air pollution-derived PM2.5 in the activation of some sensitive signaling pathways closely associated with G1/S and intra-S checkpoint blockage, on the one hand, and cell survival, on the other hand.
Collapse
Affiliation(s)
- Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Ghidaa Badran
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France; CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Mohamed Roumie
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | | | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
33
|
Méausoone C, El Khawaja R, Tremolet G, Siffert S, Cousin R, Cazier F, Billet S, Courcot D, Landkocz Y. In vitro toxicological evaluation of emissions from catalytic oxidation removal of industrial VOCs by air/liquid interface (ALI) exposure system in repeated mode. Toxicol In Vitro 2019; 58:110-117. [PMID: 30910524 DOI: 10.1016/j.tiv.2019.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Toxicity of toluene and by-products formed during its catalytic oxidative degradation was studied in human bronchial BEAS-2B cells repeatedly exposed. BEAS-2B cells were exposed using an Air-Liquid Interface (ALI) System (Vitrocell®) for 1 h per day during 1, 3 or 5 days to gaseous flows: toluene vapors (100 and 1000 ppm) and outflow after catalytic oxidation of toluene (10 and 100%). After exposure to gaseous flow, cytotoxicity, inflammatory response and Xenobiotic Metabolism Enzymes (XME) gene expression were investigated. No significant cytotoxicity was found after 5 days for every condition of exposure. After cells exposure to catalytic oxidation flow, IL-6 level increased no significantly in a time- and dose-dependent way, while an inverted U-shaped profile of IL-8 secretion was observed. XME genes induction, notably CYP2E1 and CYP2F1 results were in line with the presence of unconverted toluene and benzene formed as a by-product, detected by analytical methods. Exposure to pure toluene also demonstrated the activation of these XMEs involved in its metabolism. Repeated exposure permits to show CYP1A1, CYP1B1 and CY2S1 expression, probably related to the formation of other by-products, as PAHs, not detected by standard analytical methods used for the development of catalysts.
Collapse
Affiliation(s)
- Clémence Méausoone
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Rebecca El Khawaja
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Gauthier Tremolet
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Stéphane Siffert
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Renaud Cousin
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesure, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Dominique Courcot
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France..
| | - Yann Landkocz
- UCEIV - EA4492, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, Université du Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|
34
|
Le Vée M, Bacle A, Jouan E, Lecureur V, Potin S, Fardel O. Induction of multidrug resistance-associated protein 3 expression by diesel exhaust particle extract in human bronchial epithelial BEAS-2B cells. Toxicol In Vitro 2019; 58:60-68. [PMID: 30898553 DOI: 10.1016/j.tiv.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Diesel exhaust particles (DEPs) are common environmental air pollutants known to impair expression and activity of drug detoxifying proteins, including hepatic ATP-binding cassette (ABC) drug transporters. The present study was designed to determine whether organic DEP extract (DEPe) may also target ABC drug transporters in bronchial cells. DEPe (10 μg/mL) was demonstrated to induce mRNA and protein expression of the multidrug resistance-associated protein (MRP) 3 in cultured bronchial epithelial BEAS-2B cells, whereas mRNA levels of other MRPs, multidrug resistance gene 1 or breast cancer resistance protein were unchanged, reduced or not detected. DEPe also increased MRP3 mRNA expression in normal human bronchial epithelial cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway by AhR antagonist or AhR silencing, as well as the silencing of nuclear-factor-E2-related factor 2 (Nrf2) repressed DEPe-mediated MRP3 induction. This underlines the implication of the AhR and Nrf2 signaling cascades in DEPe-mediated MRP3 regulation. DEPe was additionally demonstrated to directly inhibit MRP activity in BEAS-2B cells, in a concentration-dependent manner. Taken together, these data indicate that DEPs may impair expression and activity of MRPs, notably MRP3, in human bronchial cells, which may have consequences in terms of lung barrier and toxicity for humans exposed to diesel pollution.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
35
|
Sedláková V, Kloučková M, Garlíková Z, Vašíčková K, Jaroš J, Kandra M, Kotasová H, Hampl A. Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips. Drug Discov Today 2019; 24:971-982. [PMID: 30877077 DOI: 10.1016/j.drudis.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
The human respiratory system is continuously exposed to varying levels of hazardous substances ranging from environmental toxins to purposely administered drugs. If the noxious effects exceed the inherent regenerative capacity of the respiratory system, injured tissue undergoes complex remodeling that can significantly affect lung function and lead to various diseases. Advanced near-to-native in vitro lung models are required to understand the mechanisms involved in pulmonary damage and repair and to reliably test the toxicity of compounds to lung tissue. This review is an overview of the development of in vitro respiratory system models used for study of lung diseases. It includes discussion of using these models for environmental toxin assessment and pulmonary toxicity screening.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Division of Cardiac Surgery, Cardiovascular Tissue Engineering Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa K1Y 4W7, Canada.
| | - Michaela Kloučková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Kateřina Vašíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Mário Kandra
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| |
Collapse
|
36
|
Jin L, Xie J, Wong CKC, Chan SKY, Abbaszade G, Schnelle-Kreis J, Zimmermann R, Li J, Zhang G, Fu P, Li X. Contributions of City-Specific Fine Particulate Matter (PM 2.5) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2881-2891. [PMID: 30730710 DOI: 10.1021/acs.est.9b00449] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Growing literature has documented varying toxic potencies of source- or site-specific fine particulate matter (PM2.5), as opposed to the practice that treats particle toxicities as independent of composition given the incomplete understanding of the toxicity of the constituents. Quantifying component-specific contribution is the key to unlocking the geographical disparities of particle toxicity from a mixture perspective. In this study, we performed integrated mixture-toxicity experiments and modeling to quantify the contribution of metals and polycyclic aromatic hydrocarbons (PAHs), two default culprit component groups of PM2.5 toxicity, to in vitro oxidative stress caused by wintertime PM2.5 from Beijing and Guangzhou, two megacities in China. PM2.5 from Beijing exhibited greater toxic potencies at equal mass concentrations. The targeted chemical analysis revealed higher burden of metals and PAHs per unit mass of PM2.5 in Beijing. These chemicals together explained 38 and 24% on average of PM2.5-induced reactive oxygen species in Beijing and Guangzhou, respectively, while >60% of the effects remained to be resolved in terms of contributing chemicals. PAHs contributed approximately twice the share of the PM2.5 mixture effects as metals. Fe, Cu, and Mn were the dominant metals, constituting >80% of the metal-shared proportion of the PM2.5 effects. Dibenzo[ a, l]pyrene alone explained >65% of the PAH-shared proportion of the PM2.5 toxicity effects. The significant contribution from coal combustion and vehicular emissions in Beijing suggested the major source disparities of toxicologically active PAHs between the two cities. Our study provided novel quantitative insights into the role of varying toxic component profiles in shaping the differential toxic potencies of city-specific PM2.5 pollution.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , People's Republic of China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , People's Republic of China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong
| | - Serena K Y Chan
- Croucher Institute for Environmental Sciences, Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics , Helmholtz Zentrum München (HMGU/CMA) , 85764 Neuherberg , Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics , Helmholtz Zentrum München (HMGU/CMA) , 85764 Neuherberg , Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics , Helmholtz Zentrum München (HMGU/CMA) , 85764 Neuherberg , Germany
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry , University of Rostock (UR/IC) , 18059 Rostock , Germany
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , People's Republic of China
| |
Collapse
|
37
|
Bonetta S, Bonetta S, Schilirò T, Ceretti E, Feretti D, Covolo L, Vannini S, Villarini M, Moretti M, Verani M, Carducci A, Bagordo F, De Donno A, Bonizzoni S, Bonetti A, Pignata C, Carraro E, Gelatti U. Mutagenic and genotoxic effects induced by PM 0.5 of different Italian towns in human cells and bacteria: The MAPEC_LIFE study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:1124-1135. [PMID: 30682747 DOI: 10.1016/j.envpol.2018.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) is considered an atmospheric pollutant that mostly affects human health. The finest fractions of PM (PM2.5 or less) play a major role in causing chronic diseases. The aim of this study was to investigate the genotoxic effects of PM0.5 collected in five Italian towns using different bioassays. The role of chemical composition on the genotoxicity induced was also evaluated. The present study was included in the multicentre MAPEC_LIFE project, which aimed to evaluate the associations between air pollution exposure and early biological effects in Italian children. PM10 samples were collected in 2 seasons (winter and spring) using a high-volume multistage cascade impactor. The results showed that PM0.5 represents a very high proportion of PM10 (range 10-63%). PM0.5 organic extracts were chemically analysed (PAHs, nitro-PAHs) and tested by the comet assay (A549 and BEAS-2B cells), MN test (A549 cells) and Ames test on Salmonella strains (TA100, TA98, TA98NR and YG1021). The highest concentrations of PAHs and nitro-PAHs in PM0.5 were observed in the Torino, Brescia and Pisa samples in winter. The Ames test showed low mutagenic activity. The highest net revertants/m3 were observed in the Torino and Brescia samples (winter), and the mutagenic effect was associated with PM0.5 (p < 0.01), PAH and nitro-PAH (p < 0.05) concentrations. The YG1021 strain showed the highest sensitivity to PM0.5 samples. No genotoxic effect of PM0.5 extracts was observed using A549 cells except for some samples in winter (comet assay), while BEAS-2B cells showed light DNA damage in the Torino, Brescia and Pisa samples in winter, highlighting the higher sensitivity of BEAS-2B cells, which was consistent with the Ames test (p < 0.01). The results obtained showed that it is important to further investigate the finest fractions of PM, which represent a relevant percentage of PM10, taking into account the chemical composition and the biological effects induced.
Collapse
Affiliation(s)
- Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Silvia Bonetta
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| | - Loredana Covolo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| | - Samuele Vannini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Marco Verani
- Department of Biology, University of Pisa, 35/39 Via S. Zeno, 56127 Pisa, Italy.
| | - Annalaura Carducci
- Department of Biology, University of Pisa, 35/39 Via S. Zeno, 56127 Pisa, Italy.
| | - Francesco Bagordo
- Department of Biological and Environmental Science and Technology, University of Salento, 165 Via Monteroni, 73100 Lecce, Italy.
| | - Antonella De Donno
- Department of Biological and Environmental Science and Technology, University of Salento, 165 Via Monteroni, 73100 Lecce, Italy.
| | | | - Alberto Bonetti
- Centro Servizi Multisettoriale e Tecnologico - CSMT Gestione S.c.a.r.l., 45 Via Branze, 25123 Brescia, Italy.
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, 94 Piazza Polonia, 10126 Torino, Italy.
| | - Umberto Gelatti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy.
| |
Collapse
|
38
|
Gea M, Schilirò T, Iacomussi P, Degan R, Bonetta S, Gilli G. Cytotoxicity and genotoxicity of light emitted by incandescent, halogen, and LED bulbs on ARPE-19 and BEAS-2B cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:998-1014. [PMID: 30325709 DOI: 10.1080/15287394.2018.1510350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
LED technology has the extraordinary ability to reduce energy consumption, constituting an economic and ecological advantage, so it is planned to replace incandescent, halogen and other inefficient bulbs for public and domestic lighting with LEDs. LEDs present specific spectral and energetic characteristics compared with those of other domestic light sources, so the potential risks for human health of these bulbs need to be explored. The aim of this study was to assess cytotoxicity and genotoxicity of light emitted by different commercial light bulbs: incandescent, halogen, and two LED bulbs with different correlated color temperatures. The evaluation was done on ARPE-19 as a specific cell model for eye toxicity and on BEAS-2B as a good cell model for toxicology tests. Light induced mainly cytotoxic effects on ARPE-19 and DNA damage on BEAS-2B, so different cell lines showed different biological responses. Moreover, our findings indicate that among the four bulbs, cold LED caused the highest cytotoxic effect on ARPE-19 and the highest genotoxic and oxidative effect on BEAS-2B. Cold LED is probably able to cause more cellular damage because it contains more high-energy radiations (blue). These results suggest that LED technology could be a safe alternative to older technologies, but the use of warm LED should be preferred to cold LED, which can potentially cause adverse effects on retinal cells.
Collapse
Affiliation(s)
- Marta Gea
- a Department of Public Health and Pediatrics , University of Torino , Torino , Italy
| | - Tiziana Schilirò
- a Department of Public Health and Pediatrics , University of Torino , Torino , Italy
| | - Paola Iacomussi
- b Italian National Metrological Institute , INRIM , Torino , Italy
| | - Raffaella Degan
- a Department of Public Health and Pediatrics , University of Torino , Torino , Italy
| | - Sara Bonetta
- a Department of Public Health and Pediatrics , University of Torino , Torino , Italy
| | - Giorgio Gilli
- a Department of Public Health and Pediatrics , University of Torino , Torino , Italy
| |
Collapse
|
39
|
Savary CC, Bellamri N, Morzadec C, Langouët S, Lecureur V, Vernhet L. Long term exposure to environmental concentrations of diesel exhaust particles does not impact the phenotype of human bronchial epithelial cells. Toxicol In Vitro 2018; 52:154-160. [DOI: 10.1016/j.tiv.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 11/26/2022]
|
40
|
Rampacci E, Marenzoni ML, Chiaradia E, Passamonti F, Ricci M, Pepe M, Coletti M, Giovagnoli S. In vitro performances of novel co-spray-dried azithromycin/rifampicin microparticles for Rhodococcus equi disease treatment. Sci Rep 2018; 8:12149. [PMID: 30108265 PMCID: PMC6092326 DOI: 10.1038/s41598-018-30715-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
This work was aimed at providing clues on the in vitro performances of novel azithromycin/rifampicin combinations, in the form of co-spray-dried microparticles (AZM/RIF MP), against Rhodococcus equi, an animal and emerging human pathogen found responsible for worrying zoonosis. Various AZM/RIF combinations were spray-dried and characterized for their morphology and size. Susceptibility studies included determination of MIC, MBC, Fractional Inhibitory/Bactericidal Concentration Indexes and intracellular activity in R. equi-infected THP-1 cells. Cytotoxicity was tested on BEAS-2B cells through MTT assay and combination index assessment for drug interaction. Spray-dried MP were collapsed and 3-10 times smaller than commercial powders. Drug combinations showed an enhancement of in vitro antibacterial activity with a remarkable synergistic bactericidal effect. Azithromycin MP and AZM/RIF MP 2:1 led to a CFU reduction of >90% up to 4 days after treatment at all tested concentrations (p = 0.001) but AZM/RIF MP 2:1 were at least four-fold more potent than AZM MP alone. IC50 values of >100 mg/L supported low cytotoxicity of drug combinations and the combination index suggested an antagonistic toxic effect. Co-spray-drying enhanced powder dispersibility and solubility, which may improve bioavailability as well as provide administration alternatives. The novel AZM/RIF MP combinations could result a valid platform to develop new treatment strategies against R. equi infections in animals and humans.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, Centro di Studio del Cavallo Sportivo, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy.
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06123, Italy.
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, Centro di Studio del Cavallo Sportivo, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, Centro di Studio del Cavallo Sportivo, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, Centro di Studio del Cavallo Sportivo, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06123, Italy
| | - Marco Pepe
- Department of Veterinary Medicine, Centro di Studio del Cavallo Sportivo, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Mauro Coletti
- Department of Veterinary Medicine, Centro di Studio del Cavallo Sportivo, University of Perugia, Via San Costanzo 4, Perugia, 06126, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, Perugia, 06123, Italy
| |
Collapse
|
41
|
Di Bucchianico S, Gliga AR, Åkerlund E, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells. Part Fibre Toxicol 2018; 15:32. [PMID: 30016969 PMCID: PMC6050732 DOI: 10.1186/s12989-018-0268-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/29/2018] [Indexed: 12/05/2022] Open
Abstract
Background Genotoxicity is an important toxicological endpoint due to the link to diseases such as cancer. Therefore, an increased understanding regarding genotoxicity and underlying mechanisms is needed for assessing the risk with exposure to nanoparticles (NPs). The aim of this study was to perform an in-depth investigation regarding the genotoxicity of well-characterized Ni and NiO NPs in human bronchial epithelial BEAS-2B cells and to discern possible mechanisms. Comparisons were made with NiCl2 in order to elucidate effects of ionic Ni. Methods BEAS-2B cells were exposed to Ni and NiO NPs, as well as NiCl2, and uptake and cellular dose were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). The NPs were characterized in terms of surface composition (X-ray photoelectron spectroscopy), agglomeration (photon cross correlation spectroscopy) and nickel release in cell medium (ICP-MS). Cell death (necrosis/apoptosis) was investigated by Annexin V-FITC/PI staining and genotoxicity by cytokinesis-block micronucleus (cytome) assay (OECD 487), chromosomal aberration (OECD 473) and comet assay. The involvement of intracellular reactive oxygen species (ROS) and calcium was explored using the fluorescent probes, DCFH-DA and Fluo-4. Results NPs were efficiently taken up by the BEAS-2B cells. In contrast, no or minor uptake was observed for ionic Ni from NiCl2. Despite differences in uptake, all exposures (NiO, Ni NPs and NiCl2) caused chromosomal damage. Furthermore, NiO NPs were most potent in causing DNA strand breaks and generating intracellular ROS. An increase in intracellular calcium was observed and modulation of intracellular calcium by using inhibitors and chelators clearly prevented the chromosomal damage. Chelation of iron also protected against induced damage, particularly for NiO and NiCl2. Conclusions This study has revealed chromosomal damage by Ni and NiO NPs as well as Ni ionic species and provides novel evidence for a calcium-dependent mechanism of cyto- and genotoxicity. Electronic supplementary material The online version of this article (10.1186/s12989-018-0268-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Åkerlund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sara Skoglund
- KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
42
|
Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells. Toxicol Lett 2018; 289:54-62. [DOI: 10.1016/j.toxlet.2018.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/24/2018] [Accepted: 03/10/2018] [Indexed: 11/20/2022]
|
43
|
Lee JYJ, Miller JA, Basu S, Kee TZV, Loo LH. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence. Arch Toxicol 2018; 92:2055-2075. [PMID: 29705884 PMCID: PMC6002469 DOI: 10.1007/s00204-018-2213-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2018] [Indexed: 01/22/2023]
Abstract
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called “High-throughput In vitro Phenotypic Profiling for Toxicity Prediction” (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.
Collapse
Affiliation(s)
- Jia-Ying Joey Lee
- Bioinformatics Institute, Agency for Science, Technology, and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - James Alastair Miller
- Bioinformatics Institute, Agency for Science, Technology, and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Sreetama Basu
- Bioinformatics Institute, Agency for Science, Technology, and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Ting-Zhen Vanessa Kee
- Bioinformatics Institute, Agency for Science, Technology, and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute, Agency for Science, Technology, and Research, 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Singapore.
| |
Collapse
|
44
|
Fröhlich E. Toxicity of orally inhaled drug formulations at the alveolar barrier: parameters for initial biological screening. Drug Deliv 2017; 24:891-905. [PMID: 28574335 PMCID: PMC8241192 DOI: 10.1080/10717544.2017.1333172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oral delivery is the most common mode of systemic drug application. Inhalation is mainly used for local therapy of lung diseases but may also be a promising route for systemic delivery of drugs that have poor oral bioavailability. The thin alveolar barrier enables fast and efficient uptake of many molecules and could deliver small molecules and proteins, which are susceptible to degradation and show poor absorption by oral application. The low rate of biotransformation and proteolytic degradation increases bioavailability of drugs but accumulation of not absorbed material may impair normal lung function. This limitation is more relevant for compounds that should be systematically active because higher doses have to be applied to the lung. The review describes processes that determine absorption of orally inhaled formulations, namely dissolution in the lung lining fluid and uptake and degradation by alveolar epithelial cells and macrophages. Dissolution testing in simulated lung fluid, screening for cytotoxicity and pro-inflammatory action in respiratory cells and study of macrophage morphology, and phagocytosis can help to identify adverse effects of pulmonary formulations.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- a Center for Medical Research, Medical University of Graz , Graz , Austria.,b Research Center Pharmaceutical Engineering GmbH , Graz , Austria
| |
Collapse
|
45
|
Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 2017; 7:9392. [PMID: 28839203 PMCID: PMC5570922 DOI: 10.1038/s41598-017-09818-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
Abstract
Fine particulate matter (PM2.5) exposure, especially to its organic components, induces adverse health effects on the respiratory system. However, the molecular mechanisms have still not been fully elucidated. Long non-coding RNA (lncRNA) is involved in various physio-pathological processes. In this study, the roles of lncRNA were investigated to reveal the toxicology of PM2.5. Organic extracts of PM2.5 from Nanjing and Shanghai cities were adopted to treat human bronchial epithelial cell lines (BEAS-2B and A549). RNA sequencing showed that the lncRNA functioned as antisense RNA, intergenic RNA and pre-miRNA. The mRNA profiles were also altered after exposure. PM2.5 from Nanjing showed a more serious impact than that from Shanghai. In detail, higher expression of n405968 was positively related to the elevated mRNA levels of inflammatory factors (IL-6 and IL-8). Increasing levels of metastasis associated lung adenocarcinoma transcript 1 (MALAT1) were positively associated with the induced epithelial-mesenchymal transition (EMT) process. Similar response was observed between both cell lines. The higher content of polycyclic aromatic hydrocarbons (PAHs) is likely to contribute to higher toxicity of PM2.5 from Nanjing than that from Shanghai. Antagonism of aryl hydrocarbon receptor (AHR) or inhibition of CYP1A1 diminished the effects stimulated by PM2.5. Our results indicated that lncRNAs could be involved in the toxicology of PM2.5 through regulating the inflammation and EMT process.
Collapse
|
46
|
Carpentier R, Platel A, Maiz-Gregores H, Nesslany F, Betbeder D. Vectorization by nanoparticles decreases the overall toxicity of airborne pollutants. PLoS One 2017; 12:e0183243. [PMID: 28813539 PMCID: PMC5557588 DOI: 10.1371/journal.pone.0183243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/01/2017] [Indexed: 12/24/2022] Open
Abstract
Atmospheric pollution is mainly composed of volatile pollutants and particulate matter that strongly interact. However, their specific roles in the induction of cellular toxicity, in particular the impact of the vectorization of atmospheric pollutants by ultrafine particles, remains to be fully elucidated. For this purpose, non-toxic poly-lactic co-glycolic acid (PLGA) nanoparticles were synthesized and three pollutants (benzo(a)pyrene, naphthalene and di-ethyl-hexyl-phthalate) were adsorbed on the surface of the nanoparticles in order to evaluate the toxicity (cytotoxicity, genotoxicity and ROS induction) of these complexes to a human airway epithelial cell line. The adsorption of the pollutants onto the nanoparticles was confirmed by HPLC analysis. Interestingly, the cytotoxicity assays (MTT, LDH and CellTox Green) clearly demonstrated that the vectorization by nanoparticles decreases the toxicity of the adsorbed pollutants. Genotoxicity was assessed by the micronucleus test and the comet assay and showed no increase in primary DNA damage or in chromosomal aberrations of nanoparticle vectorized pollutants. Neither cytotoxicity nor genotoxicity was correlated with ROS induction. To conclude, our results indicate that the vectorization of pollutants by nanoparticles does not potentiate the toxicity of the pollutants studied and that, on the contrary, adsorption onto nanoparticles could protect cells against pollutants’ toxicity.
Collapse
Affiliation(s)
- Rodolphe Carpentier
- Inserm, LIRIC - UMR 995, Lille, France
- Univ Lille, LIRIC - UMR 995, Lille, France
- CHRU de Lille, LIRIC - UMR 995, Lille, France
- * E-mail:
| | - Anne Platel
- Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, Lille, France
- Univ Lille, EA4483, Lille, France
| | | | - Fabrice Nesslany
- Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, Lille, France
- Univ Lille, EA4483, Lille, France
| | - Didier Betbeder
- Inserm, LIRIC - UMR 995, Lille, France
- Univ Lille, LIRIC - UMR 995, Lille, France
- CHRU de Lille, LIRIC - UMR 995, Lille, France
- Université d’Artois, Lens, France
| |
Collapse
|
47
|
Boei JJWA, Vermeulen S, Klein B, Hiemstra PS, Verhoosel RM, Jennen DGJ, Lahoz A, Gmuender H, Vrieling H. Xenobiotic metabolism in differentiated human bronchial epithelial cells. Arch Toxicol 2017; 91:2093-2105. [PMID: 27738743 PMCID: PMC5399058 DOI: 10.1007/s00204-016-1868-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Differentiated human bronchial epithelial cells in air liquid interface cultures (ALI-PBEC) represent a promising alternative for inhalation studies with rodents as these 3D airway epithelial tissue cultures recapitulate the human airway in multiple aspects, including morphology, cell type composition, gene expression and xenobiotic metabolism. We performed a detailed longitudinal gene expression analysis during the differentiation of submerged primary human bronchial epithelial cells into ALI-PBEC to assess the reproducibility and inter-individual variability of changes in transcriptional activity during this process. We generated ALI-PBEC cultures from four donors and focussed our analysis on the expression levels of 362 genes involved in biotransformation, which are of primary importance for toxicological studies. Expression of various of these genes (e.g., GSTA1, ADH1C, ALDH1A1, CYP2B6, CYP2F1, CYP4B1, CYP4X1 and CYP4Z1) was elevated following the mucociliary differentiation of airway epithelial cells into a pseudo-stratified epithelial layer. Although a substantial number of genes were differentially expressed between donors, the differences in fold changes were generally small. Metabolic activity measurements applying a variety of different cytochrome p450 substrates indicated that epithelial cultures at the early stages of differentiation are incapable of biotransformation. In contrast, mature ALI-PBEC cultures were proficient in the metabolic conversion of a variety of substrates albeit with considerable variation between donors. In summary, our data indicate a distinct increase in biotransformation capacity during differentiation of PBECs at the air-liquid interface and that the generation of biotransformation competent ALI-PBEC cultures is a reproducible process with little variability between cultures derived from four different donors.
Collapse
Affiliation(s)
- Jan J. W. A. Boei
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Sylvia Vermeulen
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Binie Klein
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Renate M. Verhoosel
- Department of Pulmonology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Danyel G. J. Jennen
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria-Fundación Hospital La Fe, 46009 Valencia, Spain
| | | | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Postal Zone S4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
48
|
Leclercq B, Happillon M, Antherieu S, Hardy EM, Alleman LY, Grova N, Perdrix E, Appenzeller BM, Lo Guidice JM, Coddeville P, Garçon G. Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1074-1088. [PMID: 27593349 DOI: 10.1016/j.envpol.2016.08.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/24/2016] [Accepted: 08/24/2016] [Indexed: 05/25/2023]
Abstract
While the knowledge of the underlying mechanisms by which air pollution-derived particulate matter (PM) exerts its harmful health effects is still incomplete, detailed in vitro studies are highly needed. With the aim of getting closer to the human in vivo conditions and better integrating a number of factors related to pre-existing chronic pulmonary inflammatory, we sought to develop primary cultures of normal human bronchial epithelial (NHBE) cells and chronic obstructive pulmonary disease (COPD)-diseased human bronchial epithelial (DHBE) cells, grown at the air-liquid interface. Pan-cytokeratin and MUC5AC immunostaining confirmed the specific cell-types of both these healthy and diseased cell models and showed they are closed to human bronchial epithelia. Thereafter, healthy and diseased cells were repeatedly exposed to air pollution-derived PM4 at the non-cytotoxic concentration of 5 μg/cm2. The differences between the oxidative and inflammatory states in non-exposed NHBE and COPD-DHBE cells indicated that diseased cells conserved their specific physiopathological characteristics. Increases in both oxidative damage and cytokine secretion were reported in repeatedly exposed NHBE cells and particularly in COPD-DHBE cells. Diseased cells repeatedly exposed had lower capacities to metabolize the organic chemicals-coated onto the air-pollution-derived PM4, such as benzo[a]pyrene (B[a]P), but showed higher sensibility to the formation of OH-B[a]P DNA adducts, because their diseased state possibly affected their defenses. Differential profiles of epigenetic hallmarks (i.e., global DNA hypomethylation, P16 promoter hypermethylation, telomere length shortening, telomerase activation, and histone H3 modifications) occurred in repeatedly exposed NHBE and particularly in COPD-DHBE cells. Taken together, these results closely supported the highest responsiveness of COPD-DHBE cells to a repeated exposure to air pollution-derived PM4. The use of these innovative in vitro exposure systems such as NHBE and COPD-DHBE cells could therefore be consider as a very useful and powerful promising tool in the field of the respiratory toxicology, taking into account sensitive individuals.
Collapse
Affiliation(s)
- B Leclercq
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - M Happillon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - S Antherieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - E M Hardy
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - L Y Alleman
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - N Grova
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - E Perdrix
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - B M Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France
| | - P Coddeville
- Mines de Douai, SAGE, CS10838, F-59508 Douai, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France.
| |
Collapse
|
49
|
Nickel S, Clerkin CG, Selo MA, Ehrhardt C. Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin Drug Deliv 2016; 13:667-90. [DOI: 10.1517/17425247.2016.1140144] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sabrina Nickel
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caoimhe G. Clerkin
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohammed Ali Selo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, Kufa University, Al-Najaf, Iraq
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Major D, Derbes RS, Wang H, Roy-Engel AM. Effects of corexit oil dispersants and the WAF of dispersed oil on DNA damage and repair in cultured human bronchial airway cells, BEAS-2B. GENE REPORTS 2016; 3:22-30. [PMID: 27563691 DOI: 10.1016/j.genrep.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large quantities of dispersants were used as a method to disperse the roughly 210 million gallons of spilled crude oil that consumed the Gulf of Mexico. Little is known if the oil-dispersant and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to and oil-dispersant mixtures on human airway BEAS-2B epithelial cells. Here we present the cytotoxic and genotoxic in vitro effects on the human lung cells BEAS-2B following exposure to Corexit dispersants EC9500 and EC9527, Water Accommodated Fraction (WAF) -crude, WAF-9500 + Oil, and WAF-9527 + Oil. Cellular cytotoxicity to WAF-dispersed oil samples was observed at concentrations greater than 1000 ppm with over 70% of observed cellular death. At low concentration exposures (100 and 300 ppm) DNA damage was evidenced by the detection of single strand breaks (SSBs) and double strand breaks (DSBs) as measured by alkaline and neutral comet assay analyses. Immunoblot analyses of the phosphorylated histone H2A.X (ɣ-H2A.X) and tumor suppressor p53 protein confirmed activation of the DNA damage response due to the exposure-induced DNA breaks. Although, many xenobiotics interfere with DNA repair pathways, in vitro evaluation of the nucleotide excision repair (NER) and DSB repair pathways appear to be unaffected by the oil-dispersant mixtures tested. Overall, this study supports that oil-dispersant mixtures induce genotoxic effects in culture.
Collapse
Affiliation(s)
- Danielle Major
- Department of Global Environmental Health Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Rebecca S Derbes
- Tulane Cancer Center and Louisiana Cancer Research Consortium (LCRC), Tulane University, New Orleans, LA 70112, USA
| | - He Wang
- Department of Global Environmental Health Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA; Tulane Cancer Center and Louisiana Cancer Research Consortium (LCRC), Tulane University, New Orleans, LA 70112, USA
| | - Astrid M Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|