1
|
Koubek EJ, Ralya AT, Larson TR, McGovern RM, Buhrow SA, Covey JM, Adjei AA, Takebe N, Ames MM, Goetz MP, Reid JM. Population Pharmacokinetics of Z-Endoxifen in Patients With Advanced Solid Tumors. J Clin Pharmacol 2022; 62:1121-1131. [PMID: 35358345 PMCID: PMC9339467 DOI: 10.1002/jcph.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to develop and validate a population pharmacokinetic model for Z-endoxifen in patients with advanced solid tumors and to identify clinical variables that influence pharmacokinetic parameters. Z-endoxifen-HCl was administered orally once a day on a 28-day cycle (±3 days) over 11 dose levels ranging from 20 to 360 mg. A total of 1256 Z-endoxifen plasma concentration samples from 80 patients were analyzed using nonlinear mixed-effects modeling to develop a population pharmacokinetic model for Z-endoxifen. A 2-compartment model with oral depot and linear elimination adequately described the data. The estimated apparent total clearance, apparent central volume of distribution, and apparent peripheral volume of distribution were 4.89 L/h, 323 L, and 39.7 L, respectively, with weight-effect exponents of 0.75, 1, and 1, respectively. This model was used to explore the effects of clinical and demographic variables on Z-endoxifen pharmacokinetics. Weight, race on clearance, and aspartate aminotransferase on the absorption rate constant were identified as significant covariates in the final model. This novel population pharmacokinetic model provides insight regarding factors that may affect the pharmacokinetics of Z-endoxifen and may assist in the design of future clinical trials.
Collapse
Affiliation(s)
- Emily J. Koubek
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Thomas R. Larson
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Sarah A. Buhrow
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Alex A. Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Naoko Takebe
- National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew M. Ames
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel M. Reid
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Lessigiarska I, Peng Y, Tsakovska I, Alov P, Lagarde N, Jereva D, Villoutreix BO, Nicot AB, Pajeva I, Pencheva T, Miteva MA. Computational Analysis of Chemical Space of Natural Compounds Interacting with Sulfotransferases. Molecules 2021; 26:molecules26216360. [PMID: 34770768 PMCID: PMC8588419 DOI: 10.3390/molecules26216360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to investigate the chemical space and interactions of natural compounds with sulfotransferases (SULTs) using ligand- and structure-based in silico methods. An in-house library of natural ligands (hormones, neurotransmitters, plant-derived compounds and their metabolites) reported to interact with SULTs was created. Their chemical structures and properties were compared to those of compounds of non-natural (synthetic) origin, known to interact with SULTs. The natural ligands interacting with SULTs were further compared to other natural products for which interactions with SULTs were not known. Various descriptors of the molecular structures were calculated and analyzed. Statistical methods (ANOVA, PCA, and clustering) were used to explore the chemical space of the studied compounds. Similarity search between the compounds in the different groups was performed with the ROCS software. The interactions with SULTs were additionally analyzed by docking into different experimental and modeled conformations of SULT1A1. Natural products with potentially strong interactions with SULTs were outlined. Our results contribute to a better understanding of chemical space and interactions of natural compounds with SULT enzymes and help to outline new potential ligands of these enzymes.
Collapse
Affiliation(s)
- Iglika Lessigiarska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Yunhui Peng
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ivanka Tsakovska
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, 75003 Paris, France;
| | - Dessislava Jereva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, F-44000 Nantes, France;
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
| | - Tania Pencheva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.L.); (I.T.); (P.A.); (D.J.); (I.P.)
- Correspondence: (T.P.); (M.A.M.)
| | - Maria A. Miteva
- INSERM U1268 “Medicinal Chemistry and Translational Research”, CiTCoM UMR 8038 CNRS—Université de Paris, 75006 Paris, France;
- Correspondence: (T.P.); (M.A.M.)
| |
Collapse
|
3
|
Yi M, Negishi M, Lee SJ. Estrogen Sulfotransferase (SULT1E1): Its Molecular Regulation, Polymorphisms, and Clinical Perspectives. J Pers Med 2021; 11:jpm11030194. [PMID: 33799763 PMCID: PMC8001535 DOI: 10.3390/jpm11030194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
Estrogen sulfotransferase (SULT1E1) is a phase II enzyme that sulfates estrogens to inactivate them and regulate their homeostasis. This enzyme is also involved in the sulfation of thyroid hormones and several marketed medicines. Though the profound action of SULT1E1 in molecular/pathological biology has been extensively studied, its genetic variants and functional studies have been comparatively rarely studied. Genetic variants of this gene are associated with some diseases, especially sex-hormone-related cancers. Comprehending the role and polymorphisms of SULT1E1 is crucial to developing and integrating its clinical relevance; therefore, this study gathered and reviewed various literature studies to outline several aspects of the function, molecular regulation, and polymorphisms of SULT1E1.
Collapse
Affiliation(s)
- MyeongJin Yi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA; (M.Y.); (M.N.)
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA; (M.Y.); (M.N.)
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Bokji-ro 75, Busanjin-gu, Busan 47392, Korea
- Correspondence: ; Tel.: +82-51-890-8665
| |
Collapse
|
4
|
Balyan R, Cai M, Zhao W, Dai Z, Zhai Y, Chen G. Repeated restraint stress upregulates rat sulfotransferase 1A1. J Basic Clin Physiol Pharmacol 2018; 30:265-273. [PMID: 30864418 DOI: 10.1515/jbcpp-2016-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 11/15/2018] [Indexed: 11/15/2022]
Abstract
BackgroundSulfotransferases (SULTs) are phase II drug-metabolizing enzymes. SULTs also regulate the biological activities of biological signaling molecules, such as various hormones, bile acids, and monoamine neurotransmitters; therefore, they play critical roles in the endocrine and nervous systems. People are subject to various kinds of physical, chemical, toxicological, physiological, and psychological stresses at one time or another. The study of the effects produced by stress may lead to finding novel remedies for many disease conditions. The effect of repeated restraint stress on rat SULT expression has not been studied. MethodsThis study involves the effect of repeated restraint stress on SULT1A1 expressions. Male Sprague-Dawley rats (n=4) were subjected to repeated restraint stress 2 h/day for 7 days. Protein and RNA expression of SULT1A1 were analyzed by western blot and quantitative real time reverse transcription polymerase chain reaction, respectively, in important tissues. ResultsWe observed that repeated restraint stress increased the expression of SULT1A1 in the liver, adrenal glands, cerebellum, hypothalamus, and cerebral cortex in male rats. Patterns of enhanced expression were observed at both mRNA and protein level, indicating that repeated restraint stress stimulates enzyme expression at the transcriptional level. ConclusionsChanges of SULT1A1 expression in important tissues caused by repeated restraint stress will have a significant effect on drug metabolism and xenobiotics detoxification. The significant changes in endocrine glands and brain sections may also cause disturbances in hormone homeostasis, therefore leading to disease conditions. This report provides clues for the understanding of the effect of stresses on health.
Collapse
Affiliation(s)
- Rajiv Balyan
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ma Cai
- College of Life Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - Wenhong Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China
| | - Zhao Dai
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Yujia Zhai
- Department of Anesthesiology, The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Guangping Chen
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA, Phone: +405-744-2349
| |
Collapse
|
5
|
Parker VS, Squirewell EJ, Lehmler HJ, Robertson LW, Duffel MW. Hydroxylated and sulfated metabolites of commonly occurring airborne polychlorinated biphenyls inhibit human steroid sulfotransferases SULT1E1 and SULT2A1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:196-201. [PMID: 29408762 PMCID: PMC6078096 DOI: 10.1016/j.etap.2018.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that are associated with varied adverse health effects. Lower chlorinated PCBs are prevalent in indoor and outdoor air and can be metabolized to their hydroxylated derivatives (OH-PCBs) followed by sulfation to form PCB sulfates. Sulfation is also a means of signal termination for steroid hormones. The human estrogen sulfotransferase (SULT1E1) and alcohol/hydroxysteroid sulfotransferase (SULT2A1) catalyze the formation of steroid sulfates that are inactive at steroid hormone receptors. We investigated the inhibition of SULT1E1 (IC50s ranging from 7.2 nM to greater than 10 μM) and SULT2A1 (IC50s from 1.3 μM to over 100 μM) by five lower-chlorinated OH-PCBs and their corresponding PCB sulfates relevant to airborne PCB-exposure. Several congeners of lower chlorinated OH-PCBs relevant to airborne PCB exposures were potent inhibitors of SULT1E1 and SULT2A1 and thus have the potential to disrupt regulation of intracellular concentrations of the receptor-active steroid substrates for these enzymes.
Collapse
Affiliation(s)
- Victoria S Parker
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, United States
| | - Edwin J Squirewell
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Larry W Robertson
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, United States
| | - Michael W Duffel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
6
|
Rahayu ST, Harahap Y, Mun`im A, Sutandyo N. Determination of Tamoxifen and 4-Hydroxytamoxifen Levels in Rat Plasma after Administration of the Ethyl Acetate Fraction of Myrmecodia erinaceae Becc. using Liquid Chromatography Tandem Mass-Spectrometry. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.215.223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|