1
|
Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Front Immunol 2025; 16:1526137. [PMID: 40098955 PMCID: PMC11911339 DOI: 10.3389/fimmu.2025.1526137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy for cancer has made significant strides in the last several years. The prognosis for cancer patients has significantly improved as a result, particularly in hematological diseases. However, it was discovered that translating these achievements to solid tumors proved challenging. The peptide-loading complex (PLC), a temporary multisubunit membrane assembly in the endoplasmic reticulum (ER), is crucial for initiating a hierarchical immune response. Chaperones calreticulin and tapasin make up the PLC, unique to class I glycoproteins, thiooxido-reductase ERp57, and a transporter associated with antigen processing. The loading and editing of major histocompatibility complex class I (MHC-I) molecules with peptide translocation into the ER are synchronized by the PLC. One of the immune escape strategies revealed for tumors so far is changes in the expression of MHC molecules. This is because MHC antigens are crucial in presenting antigens to T-lymphocytes and controlling NK cell activity. Furthermore, decreased MHC-I expression has been linked to malignancies resistant to T-cell-based cancer immunotherapies (adoptive transfer of antitumor CD8 T-cells or checkpoint inhibition). The PLC is essential for T-cell priming, differentiation, and tumor growth control because it can bind to a wide range of MHC-I allomorphs. In this review, we have looked into PLC's function and effects in all forms of cancer to improve cancer therapy techniques.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Suwanprakorn N, Shin KJ, Tran PH, Truong NT, Kim KS, Yoo HJ, Yang SG. Transcriptomic analysis of embryonic mouse hypothalamic N38 cells exposed to high-energy protons and/or simulated microgravity. Heliyon 2024; 10:e39533. [PMID: 39506968 PMCID: PMC11538749 DOI: 10.1016/j.heliyon.2024.e39533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Space exploration poses unique challenges to astronauts, especially the effects of space radiation and microgravity (μG). Understanding molecular responses to these factors is crucial for ensuring astronaut health, and this study aimed to identify transcriptomic changes in mouse hypothalamic cell line N38 (mHypoE-N38) caused by simulated space environments. Method Four experimental groups were established, namely, a ground condition group (GC; the control group), a proton irradiated group (the space radiation group), a simulated μG group, and a proton irradiated × simulated μG group (the combination group). RNA sequencing and quantitative real-time polymerase chain reaction were performed to investigate key altered genes and to validate them. Results Three hundred and fifty-five differentially expressed genes were identified. Notably, the expressions of UCN2 and UGT1A5 genes were upregulated in all three experimental groups, suggesting a shared regulatory mechanism with potential consequences for brain function during space missions. Moreover, the study revealed significant alterations in genes belonging to the USP17 and ZSCAN4 families, indicating active response to DNA damage and telomere maintenance. PCR results validated that UGT1A5, USP17 family, and ZSCAN4 families (ZSCAN4C, ZSCAN4D, and ZSCAN4F) were significantly upregulated at the mRNA level in the combination group, while UCN2, ZSCAN4A, and ZSCAN4B were not reproduced. Conclusion The present study on mHypoE-N38 cells exposed to space environments revealed a complex molecular narrative with disease-oriented implications. The knowledge gained might serve as a cornerstone for developing strategies to mitigate potential health risks associated with extended exposure to space-related stressors.
Collapse
Affiliation(s)
- Nattha Suwanprakorn
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Kyung-Ju Shin
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Phuong Hoa Tran
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Ngoc Thuan Truong
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| | - Kyu-Sung Kim
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Otorhinolaryngology, Head and Neck Surgery, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hye Jin Yoo
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Institute for Specialized Teaching and Research (INSTAR), Inha University, Incheon, 22332, Republic of Korea
| | - Su-Geun Yang
- Inha Institute of Aerospace Medicine, Inha University College of Medicine, Incheon, 22332, Republic of Korea
- Department of Biomedical Science, BK21 FOUR Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon, 22332, Republic of Korea
| |
Collapse
|
3
|
Nogueira MS, Sanchez SC, Milne CE, Amin W, Thomas SJ, Milne GL. Resolvins D5 and D1 undergo phase II metabolism by uridine 5'-diphospho-glucuronosyltransferases. Prostaglandins Other Lipid Mediat 2024; 174:106870. [PMID: 39038698 DOI: 10.1016/j.prostaglandins.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Specialized pro-resolving mediators (SPMs) are oxidized lipid mediators that have been shown to resolve inflammation in cellular and animal models as well as humans. SPMs and their biological precursors are even commercially available as dietary supplements. It has been understood for more than forty years that pro-inflammatory oxidized lipid mediators, including prostaglandins and leukotrienes, are rapidly inactivated via metabolism. Studies on the metabolism of SPMs are, however, limited. Herein, we report that resolvin D5 (RvD5) and resolvin D1 (RvD1), well-studied SPMs, are readily metabolized by human liver microsomes (HLM) to glucuronide conjugated metabolites. We further show that this transformation is catalyzed by specific uridine 5'-diphospho-glucuronosyltransferase (UGT) isoforms. Additionally, we demonstrate that RvD5 and RvD1 metabolism by HLM is influenced by non-steroidal anti-inflammatory drugs (NSAIDs), which can act as UGT inhibitors through cyclooxygenase-independent mechanisms. The results from these studies highlight the importance of considering metabolism, as well as factors that influence metabolic enzymes, when seeking to quantify SPMs in vivo.
Collapse
Affiliation(s)
- Marina S Nogueira
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Stephanie C Sanchez
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | | | - Warda Amin
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Sarah J Thomas
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6602, USA.
| |
Collapse
|
4
|
Zhang M, Rottschäfer V, C M de Lange E. The potential impact of CYP and UGT drug-metabolizing enzymes on brain target site drug exposure. Drug Metab Rev 2024; 56:1-30. [PMID: 38126313 DOI: 10.1080/03602532.2023.2297154] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Drug metabolism is one of the critical determinants of drug disposition throughout the body. While traditionally associated with the liver, recent research has unveiled the presence and functional significance of drug-metabolizing enzymes (DMEs) within the brain. Specifically, cytochrome P-450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) enzymes have emerged as key players in drug biotransformation within the central nervous system (CNS). This comprehensive review explores the cellular and subcellular distribution of CYPs and UGTs within the CNS, emphasizing regional expression and contrasting profiles between the liver and brain, humans and rats. Moreover, we discuss the impact of species and sex differences on CYPs and UGTs within the CNS. This review also provides an overview of methodologies for identifying and quantifying enzyme activities in the brain. Additionally, we present factors influencing CYPs and UGTs activities in the brain, including genetic polymorphisms, physiological variables, pathophysiological conditions, and environmental factors. Examples of CYP- and UGT-mediated drug metabolism within the brain are presented at the end, illustrating the pivotal role of these enzymes in drug therapy and potential toxicity. In conclusion, this review enhances our understanding of drug metabolism's significance in the brain, with a specific focus on CYPs and UGTs. Insights into the expression, activity, and influential factors of these enzymes within the CNS have crucial implications for drug development, the design of safe drug treatment strategies, and the comprehension of drug actions within the CNS. To that end, CNS pharmacokinetic (PK) models can be improved to further advance drug development and personalized therapy.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Santariová M, Zadinová K, Vostrá-Vydrová H, Kolářová MF, Kurhan S, Chaloupková H. Effect of Environmental Concentration of Carbamazepine on the Behaviour and Gene Expression of Laboratory Rats. Animals (Basel) 2023; 13:2097. [PMID: 37443892 DOI: 10.3390/ani13132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Carbamazepine (CBZ), an effective drug for epilepsy and other neurological diseases, and its metabolites are one of the most frequently detected substances in the aquatic environment. Although these are doses of very low concentrations, chronic exposure to them can affect the physiological processes of living organisms. This experiment may clarify if carbamazepine, under an environmental and a therapeutic concentration, can affect the behaviour of higher vertebrates, especially mammals, and gene expressions of Ugt1a6 and Ugt1a7 in the brain compared to the control group without exposure to CBZ. Three groups of thirteen rats were randomly formed, and each group was treated either with carbamazepine 12 mg/kg (therapeutic), carbamazepine 0.1 mg/kg (environmental), or by 10% DMSO solution (control). The memory, anxiety, and social behaviour of the rats were assessed by the test Elevated Plus Maze, the novel object recognition test, and the social chamber paradigm. After testing, they were euthanised and brain tissue samples were collected and analysed for mRNA expression of Ugt1a6 and Ugt1a7 genes. The tests did not show significant differences in the behaviour of the rats between the groups. However, there were significant changes at the gene expression level of Ugt1a7.
Collapse
Affiliation(s)
- Milena Santariová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Kateřina Zadinová
- Department of Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Hana Vostrá-Vydrová
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Martina Frühauf Kolářová
- Department of Veterinary Sciences, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Sebnem Kurhan
- Department of Food Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Helena Chaloupková
- Department of Ethology and Companion Animal Science, Czech University of Life Science Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
6
|
Gabel F, Hovhannisyan V, Andry V, Goumon Y. Central metabolism as a potential origin of sex differences in morphine antinociception but not induction of antinociceptive tolerance in mice. Br J Pharmacol 2023; 180:843-861. [PMID: 34986502 DOI: 10.1111/bph.15792] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE In rodents, morphine antinociception is influenced by sex. However, conflicting results have been reported regarding the interaction between sex and morphine antinociceptive tolerance. Morphine is metabolised in the liver and brain into morphine-3-glucuronide (M3G). Sex differences in morphine metabolism and differential metabolic adaptations during tolerance development might contribute to behavioural discrepancies. This article investigates the differences in peripheral and central morphine metabolism after acute and chronic morphine treatment in male and female mice. EXPERIMENTAL APPROACH Sex differences in morphine antinociception and tolerance were assessed using the tail-immersion test. After acute and chronic morphine treatment, morphine and M3G metabolic kinetics in the blood were evaluated using LC-MS/MS. They were also quantified in several CNS regions. Finally, the blood-brain barrier (BBB) permeability of M3G was assessed in male and female mice. KEY RESULTS This study demonstrated that female mice showed weaker morphine antinociception and faster induction of tolerance than males. Additionally, female mice showed higher levels of M3G in the blood and in several pain-related CNS regions than male mice, whereas lower levels of morphine were observed in these regions. M3G brain/blood ratios after injection of M3G indicated no sex differences in M3G BBB permeability, and these ratios were lower than those obtained after injection of morphine. CONCLUSION These differences are attributable mainly to morphine central metabolism, which differed between males and females in pain-related CNS regions, consistent with weaker morphine antinociceptive effects in females. However, the role of morphine metabolism in antinociceptive tolerance seemed limited. LINKED ARTICLES This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Florian Gabel
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Volodya Hovhannisyan
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Virginie Andry
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,SMPMS-INCI, Mass Spectrometry Facilities of the CNRS UPR3212, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France.,SMPMS-INCI, Mass Spectrometry Facilities of the CNRS UPR3212, CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Chik MW, Hazalin NAMN, Singh GKS. Regulation of phase I and phase II neurosteroid enzymes in the hippocampus of an Alzheimer's disease rat model: A focus on sulphotransferases and UDP-glucuronosyltransferases. Steroids 2022; 184:109035. [PMID: 35405201 DOI: 10.1016/j.steroids.2022.109035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
Neurosteroids have been associated with neurodegenerative diseases because they are involved in the modulation of neurotransmitter, neurotropic and neuroprotective actions. Emerging evidence suggests that the enzymes responsible for the synthesis of neurosteroids change during the progression of Alzheimer's disease (AD). The present study aimed to assess the changes in phase I and II enzymes involved in the metabolism of neurosteroids of the progestogen, androgenic and estrogenic steroidogenic pathways and the possibility that the neurosteroids are actively converted into the most abundant metabolites (i.e. glucuronides and sulphates). The gene expression for the phase I and II neurosteroid biosynthetic enzymes were studied in the hippocampus of streptozotocin AD rat model. Male Sprague-Dawley rats were randomly divided into control, sham (saline injected into the hippocampus) and 3 and 12 weeks post-STZ administration (STZ-G3w and STZ-G12w, respectively) groups. Behavioral assessments showed memory impairment in both STZ-injected groups, whereas the formation of amyloid-beta was more pronounced in the STZ-12w group. Gene expression of the hippocampus revealed that glucuronidation and sulphation enzymes transcript of the phase I metabolites were upregulated at the late stage of the disease progression (Hsd17b10, Hsd3b1, Akr1c3 and Cyp19a1) except for Sts. The phase II Sult and Ugt enzymes were mostly upregulated in the STZ-G12w rats (Sult1a1, Sult1e1, Ugt1a1, Ugt1a7c, Ugt1a6, Ugt2b35 and Ugt2b17) and normally expressed in the STZ-G3w group (Sult2a2, Sult2a6, Sult2b1, Ugt2b7, Sult4a1 and Ugt1a7c). In conclusion, changes occur in the phase I and II enzymes transcript of the progestogen, androgenic and estrogenic steroidogenic pathways during the progression of AD.
Collapse
Affiliation(s)
- Mazzura Wan Chik
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Nurul Aqmar Mohd Nor Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Integrative Pharmacogenomics Institute (iPROMiSE), Level 7, FF3, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; Brain Degeneration and Therapeutics Group, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
8
|
Yuan T, Lv S, Zhang W, Tang Y, Chang H, Hu Z, Fang L, Du J, Wu S, Yang X, Guo Y, Guo R, Ge Z, Wang L, Zhang C, Wang R, Cheng W. PF-PLC micelles ameliorate cholestatic liver injury via regulating TLR4/MyD88/NF-κB and PXR/CAR/UGT1A1 signaling pathways in EE-induced rats. Int J Pharm 2022; 615:121480. [PMID: 35041917 DOI: 10.1016/j.ijpharm.2022.121480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Paeoniflorin (PF) has a certain therapeutic effect on cholestasis liver injury. To further improve the bioavailability of PF and play its pharmacological role in liver protection, PF-phospholipid complex micelles (PF-PLC micelles) were prepared based on our previous research on PF-PLC. The protective effects of PF and PF-PLC micelles on cholestasis liver injury induced by 17α-ethynylestradiol (EE) were compared, and the possible mechanisms were further explored. Herein, we showed that PF-PLC micelles effectively improved liver function, alleviated liver pathological damage, and localized infiltration of inflammatory cells. Mechanism studies indicated that PF-PLC micelles treatment could suppress the TLR4/MyD88/NF-κB pathway, and further reduce the levels of pro-inflammatory factors. Meanwhile, our experimental results demonstrated that the beneficial effect of PF-PLC micelles on EE-induced cholestasis may be achieved by the upregulation of nuclear receptors and metabolic enzymes (PXR/CAR/UGT1A1). All these results indicate that PF-PLC micelles have great potential in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Tengteng Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Shujie Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Yanan Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Hong Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Zihan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Liang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Jiaojiao Du
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Sifan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Xinli Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Yangfu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Zongrui Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China.
| | - Rulin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| | - Weidong Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| |
Collapse
|
9
|
van der Schoor LWE, Verkade HJ, Bertolini A, de Wit S, Mennillo E, Rettenmeier E, Weber AA, Havinga R, Valášková P, Jašprová J, Struik D, Bloks VW, Chen S, Schreuder AB, Vítek L, Tukey RH, Jonker JW. Potential of therapeutic bile acids in the treatment of neonatal Hyperbilirubinemia. Sci Rep 2021; 11:11107. [PMID: 34045606 PMCID: PMC8160219 DOI: 10.1038/s41598-021-90687-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/09/2021] [Indexed: 02/04/2023] Open
Abstract
Neonatal hyperbilirubinemia or jaundice is associated with kernicterus, resulting in permanent neurological damage or even death. Conventional phototherapy does not prevent hyperbilirubinemia or eliminate the need for exchange transfusion. Here we investigated the potential of therapeutic bile acids ursodeoxycholic acid (UDCA) and obeticholic acid (OCA, 6-α-ethyl-CDCA), a farnesoid-X-receptor (FXR) agonist, as preventive treatment options for neonatal hyperbilirubinemia using the hUGT1*1 humanized mice and Ugt1a-deficient Gunn rats. Treatment of hUGT1*1 mice with UDCA or OCA at postnatal days 10-14 effectively decreased bilirubin in plasma (by 82% and 62%) and brain (by 72% and 69%), respectively. Mechanistically, our findings indicate that these effects are mediated through induction of protein levels of hUGT1A1 in the intestine, but not in liver. We further demonstrate that in Ugt1a-deficient Gunn rats, UDCA but not OCA significantly decreases plasma bilirubin, indicating that at least some of the hypobilirubinemic effects of UDCA are independent of UGT1A1. Finally, using the synthetic, non-bile acid, FXR-agonist GW4064, we show that some of these effects are mediated through direct or indirect activation of FXR. Together, our study shows that therapeutic bile acids UDCA and OCA effectively reduce both plasma and brain bilirubin, highlighting their potential in the treatment of neonatal hyperbilirubinemia.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anna Bertolini
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Sanne de Wit
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Elvira Mennillo
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Eva Rettenmeier
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - André A Weber
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rick Havinga
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Petra Valášková
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Jašprová
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dicky Struik
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vincent W Bloks
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Shujuan Chen
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrea B Schreuder
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Libor Vítek
- Fourth Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
10
|
Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. Alterations of Cytochrome P450s and UDP-Glucuronosyltransferases in Brain Under Diseases and Their Clinical Significances. Front Pharmacol 2021; 12:650027. [PMID: 33967789 PMCID: PMC8097730 DOI: 10.3389/fphar.2021.650027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) are both greatly important metabolic enzymes in various tissues, including brain. Although expressions of brain CYPs and UGTs and their contributions to drug disposition are much less than liver, both CYPs and UGTs also mediate metabolism of endogenous substances including dopamine and serotonin as well as some drugs such as morphine in brain, demonstrating their important roles in maintenance of brain homeostasis or pharmacological activity of drugs. Some diseases such as epilepsy, Parkinson's disease and Alzheimer's disease are often associated with the alterations of CYPs and UGTs in brain, which may be involved in processes of these diseases via disturbing metabolism of endogenous substances or resisting drugs. This article reviewed the alterations of CYPs and UGTs in brain, the effects on endogenous substances and drugs and their clinical significances. Understanding the roles of CYPs and UGTs in brain provides some new strategies for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yun Sheng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tong Wu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Zhu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
12
|
Jones S, Yarbrough AL, Shoeib A, Bush JM, Fantegrossi WE, Prather PL, Radominska-Pandya A, Fujiwara R. Enzymatic analysis of glucuronidation of synthetic cannabinoid 1-naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22). Xenobiotica 2019; 49:1388-1395. [PMID: 30739533 DOI: 10.1080/00498254.2019.1580403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized. In this study, we conducted in vitro pharmacokinetic analysis of FDU-PB-22 metabolism. Metabolic reactions containing FDU-PB-22 and human liver microsomes (HLMs) were independent of NADPH but not UDP-glucuronic acid (UDPGA), suggesting that UDP-glucuronosyltransferases (UGTs) are the primary enzymes involved in this metabolism. It was further determined that the metabolite extensively formed after incubating FDU-PB-22 with UDPGA in HLMs was the glucuronide of FDU-PB-22 3-carboxyindole (FBI-COOH). Various hepatic UGTs showed enzymatic activity for FBI-COOH. A series of UGT inhibitors showed moderate to strong inhibition of FBI-COOH-glucuronidation in HLMs, suggesting that multiple UGT isoforms are involved in FBI-COOH-glucuronidation in the liver. Interestingly, an extra-hepatic isoform, UGT1A10, exhibited the highest activity with a Km value of 38 µM and a Vmax value of 5.90 nmol/min/mg. Collectively, these results suggest that both genetic mutations of and the co-administration of inhibitors for FDU-PB-22-metabolizing UGTs will likely increase the risk of FDU-PB-22-induced toxicity.
Collapse
Affiliation(s)
- Sabrina Jones
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,Department of Physics and Department of Biological Sciences, University of Arkansas Fay etteville , Fayetteville , AR , USA
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,Department of Biology, University of Arkansas Little Rock , Little Rock , AR , USA
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - John M Bush
- Department of Biology, University of Arkansas Little Rock , Little Rock , AR , USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
13
|
Asai Y, Tanaka H, Nadai M, Katoh M. Effect of status epilepticus on expression of brain UDP-glucuronosyltransferase 1a in rats. Biopharm Drug Dispos 2017; 39:75-82. [PMID: 29131354 DOI: 10.1002/bdd.2114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 12/17/2022]
Abstract
Status epilepticus (SE) involves severe epileptic seizures that cause oxidative stress in the brain. Oxidative stress is known to influence uridine 5'-diposphate-glucuronosyltransferase (UGT) 1A expression. The present study aimed at elucidating the effect of SE on Ugt1a1, Ugt1a6 and Ugt1a7 expression in the rat brain. Kainic acid was used to create an animal model of SE. Sprague-Dawley rats were treated intraperitoneally with 10 mg/kg kainic acid. Ugt1a1 and Ugt1a7 mRNA levels were increased by SE in the cortex and hippocampus (Ugt1a1: 4.0- and 5.3-fold, respectively; Ugt1a7: 2.8- and 2.5-fold, respectively). Moreover, the induction degree of heme oxygenase-1 mRNA, an oxidative stress marker, was high in these regions, suggesting that oxidative stress could be involved in Ugt1a1 and Ugt1a7 induction. Ugt1a6 was elevated by 1.8-fold in the cortex in both SE and non-response (non-epileptic seizure response) rats, implying that Ugt1a6 induction may be independent from SE. An intraperitoneal single administration of 25 mg/kg diazepam (DZP) for the treatment of SE could attenuate heme oxygenase-1 induction in the cortex, whereas Ugt1a1 was decreased in the hippocampus, but not in the cortex, suggesting that there likely exists an alternative mechanism for Ugt1a1 reduction by DZP treatment. Continuous 14-day administration of DZP inhibited Ugt1a1 induction in the cortex, but did not have an effect on Ugt1a7 induction. This study indicated that SE altered the expression of brain Ugt1a1 and Ugt1a7, which could alter glucuronidation in the brain.
Collapse
Affiliation(s)
- Yuki Asai
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Hatsuna Tanaka
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Masayuki Nadai
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| | - Miki Katoh
- Pharmaceutics, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, 468-8503, Japan
| |
Collapse
|
14
|
Asai Y, Sakakibara Y, Nadai M, Katoh M. Effect of carbamazepine on expression of UDP-glucuronosyltransferase 1A6 and 1A7 in rat brain. Drug Metab Pharmacokinet 2017; 32:286-292. [DOI: 10.1016/j.dmpk.2017.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
|
15
|
Fujiwara R, Yoda E, Tukey RH. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 2017; 33:9-16. [PMID: 29079228 DOI: 10.1016/j.dmpk.2017.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Fujiwara R, Mitsugi R, Uemura A, Itoh T, Tukey RH. Severe Neonatal Hyperbilirubinemia in Crigler-Najjar Syndrome Model Mice Can Be Reversed With Zinc Protoporphyrin. Hepatol Commun 2017; 1:792-802. [PMID: 29399656 PMCID: PMC5678921 DOI: 10.1002/hep4.1082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurotoxic bilirubin is solely conjugated by UDP-glucuronosyltransferase (UGT) 1A1. Due to an inadequate function of UGT1A1, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage called kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does the most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk-induced neonatal hyperbilirubinemia might bring certain benefits to the body. One of the barriers to answering the above question is the lack of animal models that display mild to severe neonatal hyperbilirubinemia. A mouse model that develops neonatal hyperbilirubinemia was previously developed by a knockout of the Ugt1 locus. Deletion of Ugt1a1 results in neonatal lethality from bilirubin neurotoxicity. Bilirubin is the end product of heme catabolism in which heme oxygenase-I is largely involved. When zinc protoporphyrin, an inhibitor of heme oxygenase I, was administered to newborn Ugt1-/- mice, serum bilirubin levels dropped dramatically, rescuing the mice from bilirubin-induced neonatal lethality. Zinc protoporphyrin-treated Ugt1-/- mice developed normally as adults capable of reproducing, but their newborns showed even more severe hyperbilirubinemia. Microarray analysis of the hyperbilirubinemic livers indicated that a number of genes associated with nucleotide, transport, and immune response were significantly down-regulated in a serum bilirubin level-dependent manner. Conclusion: Our study provides an opportunity to advance the development of effective therapeutics to effectively and rapidly prevent bilirubin-induced toxicity. Neonatal hyperbilirubinemia has various impacts on the body that could be driven by the antioxidant property of bilirubin.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Biochemistry and Pharmacy, University of Tubingen, Tubingen, Germany.,Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Ryo Mitsugi
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Asuka Uemura
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tomoo Itoh
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA
| |
Collapse
|
17
|
Inhibition of UDP-glucuronosyltransferase (UGT)-mediated glycyrrhetinic acid 3- O -glucuronidation by polyphenols and triterpenoids. Drug Metab Pharmacokinet 2017; 32:218-223. [DOI: 10.1016/j.dmpk.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/06/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022]
|
18
|
Mitsugi R, Sumida K, Fujie Y, Tukey RH, Itoh T, Fujiwara R. Acyl-glucuronide as a Possible Cause of Trovafloxacin-Induced Liver Toxicity: Induction of Chemokine (C-X-C Motif) Ligand 2 by Trovafloxacin Acyl-glucuronide. Biol Pharm Bull 2017; 39:1604-1610. [PMID: 27725437 DOI: 10.1248/bpb.b16-00195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trovafloxacin is an antibiotic that was withdrawn from the market relatively soon after its release due to the risk of hepatotoxicity. Trovafloxacin is mainly metabolized to its acyl-glucuronide by uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) 1A1. In this study, we examined whether the acyl-glucuronide is involved in the development of hepatotoxicity. A UGT1A1-induced cell model was developed and the toxicity of trovafloxacin acyl-glucuronide was evaluated. The UGT1A1-induced cell model was developed by treating HepG2 cells with chrysin for 48 h. Chemokine (C-X-C motif) ligand 2, a cytokine involved in drug-induced liver injury, was uniquely induced by trovafloxacin in the UGT1A1-induced HepG2 cells. Induction of UGT1A1 resulted in a decrease in cell viability. An in vivo animal study further demonstrated the importance of UGT1A1 in the trovafloxacin-induced liver toxicity. Although the complete mechanism of trovafloxacin-induced liver injury is still unknown, trovafloxacin acyl-glucuronide can be involved in the development of toxic reactions in vitro and in vivo.
Collapse
Affiliation(s)
- Ryo Mitsugi
- Department of Pharmaceutics, School of Pharmacy, Kitasato University
| | | | | | | | | | | |
Collapse
|
19
|
Sakakibara Y, Katoh M, Imai K, Kondo Y, Asai Y, Ikushiro SI, Nadai M. Expression of UGT1A subfamily in rat brain. Biopharm Drug Dispos 2017; 37:314-9. [PMID: 27061716 DOI: 10.1002/bdd.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase (UGT) is an enzyme that catalyses a major phase II reaction in drug metabolism. Glucuronidation occurs mainly in the liver, but UGTs are also expressed in extrahepatic tissues, where they play an important role in local metabolism. UGT1A isoforms catalyse the glucuronidation of several drugs, neurotransmitters and neurosteroids that exert pharmacological and physiological effects on the brain. The aim of the current study was to determine UGT1A mRNA expression levels and glucuronidation activities in different regions of the rat brain (namely the cerebellum, frontal cortex, parietal cortex, piriform cortex, hippocampus, medulla oblongata, olfactory bulb, striatum and thalamus). It was found that all UGT1A isoforms were expressed in all the nine regions, but their expression levels differed between the regions. The difference between the regions of the brain where the mRNA levels were highest and those where they were lowest ranged between 2.1- to 7.8-fold. Glucuronidation activities were measured using the UGT substrates such as mycophenolic acid, p-nitrophenol and umbelliferone. Glucuronidation activity was detected in all nine regions of the brain. Activity levels differed between the regions, and were highest in the cerebellum, medulla oblongata and olfactory bulb. Differences in glucuronidation activity between regions with the highest rates and those with the lowest rates ranged from 5.3- to 10.1-fold. These results will contribute to our current understanding of the physiological and pharmacokinetic roles of drug-metabolizing enzymes in the brain. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kuniyuki Imai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuya Kondo
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
20
|
Fujiwara R, Yokoi T, Nakajima M. Structure and Protein-Protein Interactions of Human UDP-Glucuronosyltransferases. Front Pharmacol 2016; 7:388. [PMID: 27822186 PMCID: PMC5075577 DOI: 10.3389/fphar.2016.00388] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022] Open
Abstract
Mammalian UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from UDP-glucuronic acid to various xenobiotics and endobiotics. Since UGTs comprise rate-limiting enzymes for metabolism of various compounds, co-administration of UGT-inhibiting drugs and genetic deficiency of UGT genes can cause an increased blood concentration of these compounds. During the last few decades, extensive efforts have been made to advance the understanding of gene structure, function, substrate specificity, and inhibition/induction properties of UGTs. However, molecular mechanisms and physiological importance of the oligomerization and protein–protein interactions of UGTs are still largely unknown. While three-dimensional structures of human UGTs can be useful to reveal the details of oligomerization and protein–protein interactions of UGTs, little is known about the protein structures of human UGTs due to the difficulty in solving crystal structures of membrane-bound proteins. Meanwhile, soluble forms of plant and bacterial UGTs as well as a partial domain of human UGT2B7 have been crystallized and enabled us to predict three-dimensional structures of human UGTs using a homology-modeling technique. The homology-modeled structures of human UGTs do not only provide the detailed information about substrate binding or substrate specificity in human UGTs, but also contribute with unique knowledge on oligomerization and protein–protein interactions of UGTs. Furthermore, various in vitro approaches indicate that UGT-mediated glucuronidation is involved in cell death, apoptosis, and oxidative stress as well. In the present review article, recent understandings of UGT protein structures as well as physiological importance of the oligomerization and protein–protein interactions of human UGTs are discussed.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University Tokyo, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University Kanazawa, Japan
| |
Collapse
|
21
|
Hirashima R, Michimae H, Takemoto H, Sasaki A, Kobayashi Y, Itoh T, Tukey RH, Fujiwara R. Induction of the UDP-Glucuronosyltransferase 1A1 during the Perinatal Period Can Cause Neurodevelopmental Toxicity. Mol Pharmacol 2016; 90:265-74. [PMID: 27413119 PMCID: PMC4998668 DOI: 10.1124/mol.116.104174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels.
Collapse
Affiliation(s)
- Rika Hirashima
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hirofumi Michimae
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Hiroaki Takemoto
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Aya Sasaki
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Yoshinori Kobayashi
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Tomoo Itoh
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Robert H Tukey
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| | - Ryoichi Fujiwara
- Department of Pharmaceutics (R.H., A.S., T.I., R.F.), Division of Biostatistics (H.M.), and Department of Pharmacognosy (H.T., Y.K.), School of Pharmacy, Kitasato University, Tokyo, Japan; and Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, California (R.H.T.)
| |
Collapse
|