1
|
Ushirozako G, Noda Y, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Newly Identified Tree Shrew Cytochrome P450 2A13 is Expressed in Liver and Lung and Encodes a Functional Drug-Metabolizing Enzyme Similar to Dog Cytochrome P450 2A13 and Pig Cytochrome P450 2A19. Drug Metab Dispos 2023; 51:610-617. [PMID: 36669854 DOI: 10.1124/dmd.122.001152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/17/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
The tree shrew, a non-rodent primate-like species, is used in various fields of biomedical research, including hepatitis virus infection, myopia, depression, and toxicology. Recent genome analysis found that the numbers of cytochrome P450 (P450 or CYP) genes are similar in tree shrews and humans and their sequence identities are high. Although the P450s are a family of important drug-metabolizing enzymes, they have not yet been fully investigated in tree shrews. In the current study, tree shrew CYP2A13 cDNA was isolated from liver, and its characteristics were compared with those of pig, dog, and human CYP2As. Tree shrew CYP2A13 amino acid sequences were highly identical (87-92%) to the human CYP2As and contained sequence motifs characteristic of P450s. Phylogenetic analysis revealed that tree shrew CYP2A13 was more closely related to human CYP2As than to rat CYP2As, similar to dog and pig CYP2As. Among the tissue types analyzed, tree shrew CYP2A13 mRNA was preferentially expressed in liver and lung, similar to dog CYP2A13 mRNA, whereas dog CYP2A25 and pig CYP2A19 mRNAs were predominantly expressed in liver. Tree shrew liver microsomes and tree shrew CYP2A13 proteins heterologously expressed in Escherichia coli catalyzed coumarin 7-hydroxylation and phenacetin O-deethylation, just as human, dog, and pig CYP2A proteins and liver microsomes do. These results demonstrate that tree shrew CYP2A13 is expressed in liver and lung and encodes a functional drug-metabolizing enzyme. SIGNIFICANCE STATEMENT: Novel tree shrew cytochrome P450 2A13 (CYP2A13) was identified and characterized in comparison with human, dog, and pig CYP2As. Tree shrew CYP2A13 isolated from liver had high sequence identities and close phylogenetic relationships to its human homologs and was abundantly expressed in liver and lung at the mRNA level. Tree shrew CYP2A13 metabolized coumarin and phenacetin, human selective CYP2A6 and CYP2A13 substrates, respectively, similar to dog and pig CYP2As, and is a functional drug-metabolizing enzyme likely responsible for drug clearances.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Hiroaki Kawaguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| |
Collapse
|
2
|
Uno Y, Uehara S, Yamazaki H. Polymorphic cytochromes P450 in non-human primates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:329-364. [PMID: 35953160 DOI: 10.1016/bs.apha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cynomolgus macaques (Macaca fascicularis, an Old World monkey) are widely used in drug development because of their genetic and physiological similarities to humans, and this trend has continued with the use of common marmosets (Callithrix jacchus, a New World monkey). Information on the major drug-metabolizing cytochrome P450 (CYP, P450) enzymes of these primate species indicates that multiple forms of their P450 enzymes have generally similar substrate selectivities to those of human P450 enzymes; however, some differences in isoform, activity, and substrate specificity account for limited species differences in drug oxidative metabolism. This review provides information on the P450 enzymes of cynomolgus macaques and marmosets, including cDNA, tissue expression, substrate specificity, and genetic variants, along with age differences and induction. Typical examples of important P450s to be considered in drug metabolism studies include cynomolgus CYP2C19, which is expressed abundantly in liver and metabolizes numerous drugs. Moreover, genetic variants of cynomolgus CYP2C19 affect the individual pharmacokinetic data of drugs such as R-warfarin. These findings provide a foundation for understanding each P450 enzyme and the individual pharmacokinetic and toxicological results in cynomolgus macaques and marmosets as preclinical models. In addition, the effects of induction on some drug clearances mediated by P450 enzymes are also described. In summary, this review describes genetic and acquired individual differences in cynomolgus and marmoset P450 enzymes involved in drug oxidation that may be associated with pharmacological and/or toxicological effects.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | |
Collapse
|
3
|
Uehara S, Uno Y, Yamazaki H. The marmoset cytochrome P450 superfamily: Sequence/phylogenetic analyses, genomic structure, and catalytic function. Biochem Pharmacol 2019; 171:113721. [PMID: 31751534 DOI: 10.1016/j.bcp.2019.113721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Abstract
The common marmoset (Callithrix jacchus) is a New World monkey that has attracted much attention as a potentially useful primate model for preclinical testing. A total of 36 marmoset cytochrome P450 (P450) isoforms in the P450 1-51 subfamilies have been identified and characterized by the application of genome analysis and molecular functional characterization. In this mini-review, we provide an overview of the genomic structures, sequence identities, and substrate selectivities of marmoset P450s compared with those of human P450s. Based on the sequence identity, phylogeny, and genomic organization of marmoset P450s, orthologous relationships were established between human and marmoset P450s. Twenty-four members of the marmoset P450 1A, 2A, 2B, 2C, 2D, 2E, 3A, 4A, and 4F subfamilies shared high degrees of homology in terms of cDNA (>89%) and amino acid sequences (>85%) with the corresponding human P450s; P450 2C76 was among the exceptions. Phylogenetic analysis using amino acid sequences revealed that marmoset P450s in the P450 1-51 families were located in the same clades as their human and macaque P450 homologs. This finding underlines the evolutionary closeness of marmoset P450s to their human and macaque homologs. Most marmoset P450 1-4 enzymes catalyzed the typical drug-metabolizing reactions of the corresponding human P450 homologs, except for some differences of P450 2A6 and 2B6. Consequently, it appears that the substrate specificities of enzymes in the P450 1-4 families are generally similar in marmosets and humans. The information presented here supports a better understanding of the functional characteristics of marmoset P450s and their similarities and differences with human P450s. It is hoped that this mini-review will facilitate the successful use of marmosets as primate models in drug metabolism and pharmacokinetic studies.
Collapse
Affiliation(s)
- Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
4
|
Uehara S, Oshio T, Nakanishi K, Tomioka E, Suzuki M, Inoue T, Uno Y, Sasaki E, Yamazaki H. Survey of Drug Oxidation Activities in Hepatic and Intestinal Microsomes of Individual Common Marmosets, a New Nonhuman Primate Animal Model. Curr Drug Metab 2019; 20:103-113. [PMID: 30280664 PMCID: PMC6635653 DOI: 10.2174/1389200219666181003143312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical studies. Information for major drug-metabolizing cytochrome P450 (P450) enzymes is now available that supports the use of this primate species as an animal model for drug development. Here, we collect and provide an overview of information on the activities of common marmoset hepatic and intestinal microsomes with respect to 28 typical human P450 probe oxidations. RESULTS Marmoset P450 2D6/8-dependent R-metoprolol O-demethylation activities in hepatic microsomes were significantly correlated with those of midazolam 1'- and 4-hydroxylations, testosterone 6β-hydroxylation, and progesterone 6β-hydroxylation, which are probe reactions for marmoset P450 3A4/5/90. In marmosets, the oxidation activities of hepatic microsomes and intestinal microsomes were roughly comparable for midazolam and terfenadine. Overall, multiple forms of marmoset P450 enzymes in livers and intestines had generally similar substrate recognition functionalities to those of human and/or cynomolgus monkey P450 enzymes. CONCLUSION The marmoset could be a model animal for humans with respect to the first-pass extraction of terfenadine and related substrates. These findings provide a foundation for understanding individual pharmacokinetic and toxicological results in nonhuman primates as preclinical models and will help to further support understanding of the molecular mechanisms of human P450 function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hiroshi Yamazaki
- Address correspondence to this author at the Showa Pharmaceutical University, 3-3165 Higashi-Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan; Tel/Fax: +81-42-721-1406; E-mail:
| |
Collapse
|
5
|
In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochem Pharmacol 2018; 152:272-278. [DOI: 10.1016/j.bcp.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022]
|
6
|
Oshio T, Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2B6, a propofol hydroxylase expressed in liver. Xenobiotica 2018; 49:265-269. [DOI: 10.1080/00498254.2018.1439204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Toru Oshio
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd, Kainan Wakayama, Japan
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Center of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan
- Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
7
|
Kumondai M, Hosono H, Maekawa M, Yamaguchi H, Mano N, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of 9 CYP2A13 allelic variants by assessment of nicotine C-oxidation and coumarin 7-hydroxylation. Drug Metab Pharmacokinet 2017; 33:82-89. [PMID: 29342418 DOI: 10.1016/j.dmpk.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Cytochrome P450 2A13 (CYP2A13) is responsible for the metabolism of chemical compounds such as nicotine, coumarin, and tobacco-specific nitrosamine. Several of these compounds have been recognized as procarcinogens activated by CYP2A13. We recently showed that CYP2A13*2 contributes to inter-individual variations observed in bladder cancer susceptibility because CYP2A13*2 might cause a decrease in enzymatic activity. Other CYP2A13 allelic variants may also affect cancer susceptibility. In this study, we performed an in vitro analysis of the wild-type enzyme (CYP2A13.1) and 8 CYP2A13 allelic variants, using nicotine and coumarin as representative CYP2A13 substrates. These CYP2A13 variant proteins were heterologously expressed in 293FT cells, and the kinetic parameters of nicotine C-oxidation and coumarin 7-hydroxylation were estimated. The quantities of CYP2A13 holoenzymes in microsomal fractions extracted from 293FT cells were determined by measuring reduced carbon monoxide-difference spectra. The kinetic parameters for CYP2A13.3, CYP2A13.4, and CYP2A13.10 could not be determined because of low metabolite concentrations. Five other CYP2A13 variants (CYP2A13.2, CYP2A13.5, CYP2A13.6, CYP2A13.8, and CYP2A13.9) showed markedly reduced enzymatic activity toward both substrates. These findings provide insights into the mechanism underlying inter-individual differences observed in genotoxicity and cancer susceptibility.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Hiroki Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, 980-8574, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
8
|
Uehara S, Uno Y, Oshio T, Inoue T, Sasaki E, Yamazaki H. Marmoset pulmonary cytochrome P450 2F1 oxidizes biphenyl and 7-ethoxycoumarin and hepatic human P450 substrates. Xenobiotica 2017; 48:656-662. [DOI: 10.1080/00498254.2017.1354138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, Japan,
| | - Toru Oshio
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan, and
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan, and
- Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| |
Collapse
|
9
|
Uehara S, Uno Y, Yamazaki H. Hepatic expression of cytochrome P450 enzymes in non-human primate species. J Med Primatol 2017; 46:347-351. [PMID: 28664555 DOI: 10.1111/jmp.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
Cytochromes P450 (P450) largely remain to be characterized in great apes. Comparative immunochemical detection of drug metabolizing forms of P450s 1A, 2A, 2B, 2C, 2D, 2E, 2J, 3A, 4A, and 4F in liver microsomes from chimpanzees, gorillas, orangutans, gibbons, cynomolgus and rhesus macaques, and common marmosets were carried out.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan.,Laboratory of Translational Research, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
10
|
Shimada T, Kakimoto K, Takenaka S, Koga N, Uehara S, Murayama N, Yamazaki H, Kim D, Guengerich FP, Komori M. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl. Drug Metab Dispos 2016; 44:1899-1909. [PMID: 27625140 PMCID: PMC6047209 DOI: 10.1124/dmd.116.072991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with Ks values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute-1) than CYP2A13 (∼0.02 minute-1) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute-1) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute-1) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute-1). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Kensaku Kakimoto
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Nobuyuki Koga
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Shotaro Uehara
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Norie Murayama
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Hiroshi Yamazaki
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Donghak Kim
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - F Peter Guengerich
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| |
Collapse
|
11
|
Uno Y, Uehara S, Yamazaki H. Utility of non-human primates in drug development: Comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem Pharmacol 2016; 121:1-7. [DOI: 10.1016/j.bcp.2016.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
|
12
|
Uehara S, Uno Y, Ishii S, Inoue T, Sasaki E, Yamazaki H. Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ω-hydroxylase expressed in liver and kidney tissues. Xenobiotica 2016; 47:553-561. [PMID: 27435360 DOI: 10.1080/00498254.2016.1206673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. A cDNA encoding novel cytochrome P450 (P450) 4A enzyme was cloned from marmoset livers by reverse transcription (RT)-polymerase chain reaction (PCR) based on the marmoset genome sequences. The amino acid sequence deduced from P450 4A11 cDNA contained consensus sequences of six substrate recognition sites and one heme-binding domain. 2. Marmoset P450 4A11, highly identical (85-88%) to cynomolgus monkey and human P450 4A enzymes, was grouped into the same cluster as cynomolgus monkey and human P450 4A enzymes by phylogenetic analysis. 3. The tissue distribution analyses by real-time RT PCR and immunoblotting demonstrated that marmoset P450 4A11 mRNA and proteins were expressed in kidneys and livers. Marmoset P450 4A11 enzyme heterologously expressed in Escherichia coli preferentially catalyzed the ω-hydroxylation of arachidonic acid and lauric acid, similar to cynomolgus monkey and human P450 4A11 enzymes. However, lauric acid ω-hydroxylation activity of marmoset P450 4A11 was low compared with those of marmoset liver microsomes. 4. These results indicated that novel marmoset P450 4A11 was also a fatty acid ω-hydroxylase expressed in kidneys and livers, with the same regioselectivity (at ω-position of fatty acid) as cynomolgus monkey and human P450 4A enzymes.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Sakura Ishii
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Takashi Inoue
- c Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Erika Sasaki
- c Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
13
|
Uehara S, Uno Y, Yuki Y, Inoue T, Sasaki E, Yamazaki H. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine. Drug Metab Dispos 2016; 44:833-41. [PMID: 27044800 DOI: 10.1124/dmd.116.070367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yukako Yuki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
14
|
Okubo M, Narita M, Murayama N, Akimoto Y, Goto A, Yamazaki H. Individual differences in in vitro and in vivo metabolic clearances of the antipsychotic drug olanzapine from non-smoking and smoking Japanese subjects genotyped for cytochrome P4502D6 and flavincontaining monooxygenase 3. Hum Psychopharmacol 2016; 31:83-92. [PMID: 26856397 DOI: 10.1002/hup.2515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The antipsychotic olanzapine is reportedly metabolized by inducible human cytochrome P450 (CYP) 1A2 and variable copy-number CYP2D6 and polymorphic flavin-containing monooxygenase 3 (FMO3) in different pathways. We investigated individual differences in the metabolite formation and clearance of olanzapine in vitro and in vivo. METHODS Human liver microsomal olanzapine oxidation activities were evaluated, and plasma concentrations of olanzapine were determined in 21 Japanese patients (mean age: 50 years, range: 32-69 years, 14 male and 7 female, including 6 smokers) genotyped for CYP2D6 (*1, *5, and *10) and FMO3 (E158K, C197fsX, R205C, V257M, E308G, and R500X). RESULTS Furafylline (a CYP1A2 inhibitor), quinidine (a CYP2D6 inhibitor), and heat treatment (inactivates FMO3) suppressed liver microsomal metabolic clearance of olanzapine by approximately 30%. Olanzapine N-demethylation and N-oxygenation were found to be catalyzed by CYP1A2 and CYP2D6 and by CYP2D6 and FMO3, respectively, in experiments using liver microsomes and recombinant enzymes. Plasma concentrations and clearance of olanzapine were not affected by CYP2D6 or FMO3 genotypes or smoking behavior. CONCLUSIONS Olanzapine clearance was not affected by CYP2D6 or FMO3 genotypes or smoking behavior as a single factor under the present conditions because olanzapine clearance is mediated by multiple enzymes involved in two major and one minor pathways.
Collapse
Affiliation(s)
- Maho Okubo
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Momoko Narita
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | - Akiko Goto
- Tsurugaoka Garden Hospital, Machida, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
15
|
Uehara S, Uno Y, Inoue T, Okamoto E, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica 2016; 46:977-85. [PMID: 26899760 DOI: 10.3109/00498254.2016.1146366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Takashi Inoue
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Eriko Okamoto
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Erika Sasaki
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-Ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
16
|
Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1. Drug Metab Dispos 2016; 44:8-15. [PMID: 26502772 DOI: 10.1124/dmd.115.067561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
The common marmoset (Callithrix jacchus), a New World monkey, has potential to be an animal model for drug metabolism studies. In this study, we identified and characterized cytochrome P450 (P450) 1A1 and 1B1 in addition to the known P450 1A2 in marmosets. Marmoset P450 1A1 and 1B1 cDNA contained open reading frames encoding 512 and 543 amino acids, respectively, with high sequence identities (90%-93%) to other primate P450 1A1s and 1B1s. A phylogenetic tree based on amino acid sequences showed close evolutionary relationships among marmoset, macaque, and human P450 1A and 1B enzymes. By mRNA quantification and immunoblot analyses in five marmoset tissues, P450 1A1 was mainly expressed in lungs and small intestines, and P450 1A2 was expressed predominantly in livers. In contrast, P450 1B1 was expressed in all tissues tested. Marmoset P450 1A1, 1A2, and 1B1 heterologously expressed in Escherichia coli catalyzed 7-ethoxyresorufin O-deethylation, 7-ethoxycoumarin O-deethylation, and phenacetin O-deethylation, similar to those of humans and cynomolgus monkeys. Notably, marmoset P450 1A1 and 1A2 more efficiently catalyzed 7-ethoxyresorufin O-deethylation than those of the human homologs, but were comparable to those of the cynomolgus monkey homologs. Additionally, marmoset P450 1B1 preferentially catalyzed estradiol 4-hydroxylation; however, rat P450 1B1 more favorably catalyzed estradiol 2-hydroxylation, indicating that the estradiol hydroxylation specificity of marmoset P450 1B1 was similar to those of human and cynomolgus monkey P450 1B1. These results indicated that marmoset P450 1A and 1B enzymes had functional characteristics similar to those of humans and cynomolgus monkeys, suggesting that P450 1A and 1B-dependent metabolism was similar among marmosets, cynomolgus monkeys, and humans.
Collapse
|
17
|
Uehara S, Uno Y, Inoue T, Suzuki T, Utoh M, Sasaki E, Yamazaki H. Caffeine 7-N-demethylation andC-8-oxidation mediated by liver microsomal cytochrome P450 enzymes in common marmosets. Xenobiotica 2015; 46:573-578. [DOI: 10.3109/00498254.2015.1096980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Uehara S, Uno Y, Inoue T, Kawano M, Shimizu M, Toda A, Utoh M, Sasaki E, Yamazaki H. Novel Marmoset Cytochrome P450 2C19 in Livers Efficiently Metabolizes Human P450 2C9 and 2C19 Substrates, S-Warfarin, Tolbutamide, Flurbiprofen, and Omeprazole. Drug Metab Dispos 2015; 43:1408-16. [PMID: 26228688 DOI: 10.1124/dmd.115.066100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/29/2015] [Indexed: 02/04/2023] Open
Abstract
The common marmoset (Callithrix jacchus), a small New World monkey, has the potential for use in human drug development due to its evolutionary closeness to humans. Four novel cDNAs, encoding cytochrome P450 (P450) 2C18, 2C19, 2C58, and 2C76, were cloned from marmoset livers to characterize P450 2C molecular properties, including previously reported P450 2C8. The deduced amino acid sequence showed high sequence identities (>86%) with those of human P450 2Cs, except for marmoset P450 2C76, which has a low sequence identity (∼70%) with any human P450 2Cs. Phylogenetic analysis showed that marmoset P450 2Cs were more closely clustered with those of humans and macaques than other species investigated. Quantitative polymerase chain reaction analysis showed that all of the marmoset P450 2C mRNAs were predominantly expressed in liver as opposed to the other tissues tested. Marmoset P450 2C proteins were detected in liver by immunoblotting using antibodies against human P450 2Cs. Among marmoset P450 2Cs heterologously expressed in Escherichia coli, marmoset P450 2C19 efficiently catalyzed human P450 2C substrates, S-warfarin, diclofenac, tolbutamide, flurbiprofen, and omeprazole. Marmoset P450 2C19 had high Vmax and low Km values for S-warfarin 7-hydroxylation that were comparable to those in human liver microsomes, indicating warfarin stereoselectivity similar to findings in humans. Faster in vivo S-warfarin clearance than R-warfarin after intravenous administration of racemic warfarin (0.2 mg/kg) to marmosets was consistent with the in vitro kinetic parameters. These results indicated that marmoset P450 2C enzymes had functional characteristics similar to those of humans, and that P450 2C-dependent metabolic properties are likewise similar between marmosets and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Mirai Kawano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Akiko Toda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Masahiro Utoh
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
19
|
Uehara S, Inoue T, Utoh M, Toda A, Shimizu M, Uno Y, Sasaki E, Yamazaki H. Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol and midazolam, in common marmosets (Callithrix jacchus). Xenobiotica 2015; 46:163-8. [DOI: 10.3109/00498254.2015.1057270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|