1
|
O'Mahony ET, Arian CM, Aryeh KS, Wang K, Thummel KE, Kelly EJ. Human intestinal enteroids: Nonclinical applications for predicting oral drug disposition, toxicity, and efficacy. Pharmacol Ther 2025:108879. [PMID: 40398537 DOI: 10.1016/j.pharmthera.2025.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
The application of human enteroid systems presents a significant opportunity within the drug development pipeline, highlighting considerable potential for advancements in the characterization and evaluation of new molecular entities. Derived from LGR5+ crypt-based columnar cells, enteroid systems more accurately recapitulate the microanatomy and physiological processes of the human intestinal mucosa compared to traditionally used systems. They contain the complement of major mucosal epithelial cell types, maintain the genetic identity of the donor and intestinal segment they were derived from, and exhibit biological functions and specific activities that are seen in vivo. In this review, we examine the applications of human enteroid systems in nonclinical drug development and compare findings to existing and emerging in vitro models of the small intestine. Specifically, we explore enteroid systems in the context of predicting oral drug disposition, focusing on apparent permeability, intestinal first-pass metabolism, and drug interactions, as well as their utility in assessing drug-induced gastrointestinal toxicity and screening therapeutic efficacy against enteric diseases. Additionally, we highlight aspects of enteroid systems that warrant further study.
Collapse
Affiliation(s)
- Eimear T O'Mahony
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kayenat S Aryeh
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kai Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, United States of America
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Kidney Research Institute, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
2
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
3
|
Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: A comprehensive review on processing, properties, and therapeutic implications. Biointerphases 2023; 18:020801. [PMID: 36963961 DOI: 10.1116/6.0002372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Gastrointestinal tract (GIT) malignancies are an important public health problem considering the increased incidence in recent years and the high morbidity and mortality associated with it. GIT malignancies constitute 26% of the global cancer incidence burden and 35% of all cancer-related deaths. Gastrointestinal cancers are complex and heterogenous diseases caused by the interplay of genetic and environmental factors. The tumor microenvironment (TME) of gastrointestinal tract carcinomas is dynamic and complex; it cannot be recapitulated in the basic two-dimensional cell culture systems. In contrast, three-dimensional (3D) in vitro models can mimic the TME more closely, enabling an improved understanding of the microenvironmental cues involved in the various stages of cancer initiation, progression, and metastasis. However, the heterogeneity of the TME is incompletely reproduced in these 3D culture models, as they fail to regulate the orientation and interaction of various cell types in a complex architecture. To emulate the TME, 3D bioprinting has emerged as a useful technique to engineer cancer tissue models. Bioprinted cancer tissue models can potentially recapitulate cancer pathology and increase drug resistance in an organ-mimicking 3D environment. In this review, we describe the 3D bioprinting methods, bioinks, characterization of 3D bioprinted constructs, and their application in developing gastrointestinal tumor models that integrate their microenvironment with different cell types and substrates, as well as bioprinting modalities and their application in therapy and drug screening. We review prominent studies on the 3D bioprinted esophageal, hepatobiliary, and colorectal cancer models. In addition, this review provides a comprehensive understanding of the cancer microenvironment in printed tumor models, highlights current challenges with respect to their clinical translation, and summarizes future perspectives.
Collapse
Affiliation(s)
- Kalappa Prashantha
- Centre for Research and Innovation, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, BGSIT, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| | - Malini Muthappa
- Department of Physiology, Adichunchanagiri Institute of Medicinal Sciences Adichunchanagiri University, B.G. Nagara, Mandya District 571448, Karnataka, India
| |
Collapse
|
4
|
Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int J Mol Sci 2023; 24:ijms24043595. [PMID: 36835003 PMCID: PMC9958734 DOI: 10.3390/ijms24043595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
The use of cell models is common to mimic cellular and molecular events in interaction with their environment. In the case of the gut, the existing models are of particular interest to evaluate food, toxicants, or drug effects on the mucosa. To have the most accurate model, cell diversity and the complexity of the interactions must be considered. Existing models range from single-cell cultures of absorptive cells to more complex combinations of two or more cell types. This work describes the existing solutions and the challenges that remain to be solved.
Collapse
|
5
|
Almutary AG, Alnuqaydan AM, Almatroodi SA, Bakshi HA, Chellappan DK, Tambuwala MM. Development of 3D-Bioprinted Colitis-Mimicking Model to Assess Epithelial Barrier Function Using Albumin Nano-Encapsulated Anti-Inflammatory Drugs. Biomimetics (Basel) 2023; 8:41. [PMID: 36810372 PMCID: PMC9944493 DOI: 10.3390/biomimetics8010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Physiological barrier function is very difficult to replicate in vitro. This situation leads to poor prediction of candidate drugs in the drug development process due to the lack of preclinical modelling for intestinal function. By using 3D bioprinting, we generated a colitis-like condition model that can evaluate the barrier function of albumin nanoencapsulated anti-inflammatory drugs. Histological characterization demonstrated the manifestation of the disease in 3D-bioprinted Caco-2 and HT-29 constructs. A comparison of proliferation rates in 2D monolayer and 3D-bioprinted models was also carried out. This model is compatible with currently available preclinical assays and can be implemented as an effective tool for efficacy and toxicity prediction in drug development.
Collapse
Affiliation(s)
- Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hamid A. Bakshi
- The Hormel institute, Medical research Center, University of Minnesota, Austin, MN 55912, USA
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
6
|
Lopez-Escalera S, Wellejus A. Evaluation of Caco-2 and human intestinal epithelial cells as in vitro models of colonic and small intestinal integrity. Biochem Biophys Rep 2022; 31:101314. [PMID: 35873654 PMCID: PMC9304606 DOI: 10.1016/j.bbrep.2022.101314] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model. We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria. We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation. Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function. Human embryonic intestinal epithelial cells cannot form a significant barrier. Contrary to Caco-2 cells HIECs do not express the tight junction protein occludin. Probiotic bacteria induce a tight barrier in Caco-2 cells but not in HIECs.
Collapse
Affiliation(s)
- Silvia Lopez-Escalera
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, DK-2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, Bachstraβe 18K, 07743, Jena, Germany
| | - Anja Wellejus
- Human Health Research, Scientific Affairs, Chr. Hansen A/S, Bøge Alle 10-12, DK-2970, Hørsholm, Denmark
- Corresponding author.
| |
Collapse
|
7
|
Sasaki Y, Tatsuoka H, Tsuda M, Sumi T, Eguchi Y, So K, Higuchi Y, Takayama K, Torisawa Y, Yamashita F. Intestinal Permeability of Drugs in Caco-2 Cells Cultured in Microfluidic Devices. Biol Pharm Bull 2022; 45:1246-1253. [DOI: 10.1248/bpb.b22-00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuko Sasaki
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hirotaka Tatsuoka
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Masahiro Tsuda
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Takumi Sumi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuka Eguchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kanako So
- Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Yusuke Torisawa
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
8
|
Przybylla R, Mullins CS, Krohn M, Oswald S, Linnebacher M. Establishment and Characterization of Novel Human Intestinal In Vitro Models for Absorption and First-Pass Metabolism Studies. Int J Mol Sci 2022; 23:9861. [PMID: 36077251 PMCID: PMC9456142 DOI: 10.3390/ijms23179861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Commonly used intestinal in vitro models are limited in their potential to predict oral drug absorption. They either lack the capability to form a tight cellular monolayer mimicking the intestinal epithelial barrier or the expression of cytochrome P450 3A4 (CYP3A4). The aim of this study was to establish a platform of colorectal cancer patient-derived cell lines for evaluation of human intestinal drug absorption and metabolism. We characterized ten 2D cell lines out of our collection with confluent outgrowth and long-lasting barrier forming potential as well as suitability for high throughput applications with special emphasis on expression and inducibility of CYP3A4. By assessment of the transepithelial electrical resistance (TEER) the cells barrier function capacity can be quantified. Very high TEER levels were detected for HROC60. A high basal CYP3A4 expression and function was found for HROC32. Eight cell lines showed higher CYP3A4 induction by stimulation via the vitamin D receptor compared to Caco-2 cells (5.1- to 16.8-fold change). Stimulation of the pregnane X receptor led to higher CYP3A4 induction in two cell lines. In sum, we identified the two cell lines HROC183 T0 M2 and HROC217 T1 M2 as useful tools for in vitro drug absorption studies. Due to their high TEER values and inducibility by drug receptor ligands, they may be superior to Caco-2 cells to analyze oral drug absorption and intestinal drug-drug interactions. Significance statement: Selecting appropriate candidates is important in preclinical drug development. Therefore, cell models to predict absorption from the human intestine are of the utmost importance. This study revealed that the human cell lines HROC183 T0 M2 and HROC217 T1 M2 may be better suited models and possess higher predictive power of pregnane X receptor- and vitamin D-mediated drug metabolism than Caco-2 cells. Consequently, they represent useful tools for predicting intestinal absorption and simultaneously enable assessment of membrane permeability and first-pass metabolism.
Collapse
Affiliation(s)
- Randy Przybylla
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| | | | - Mathias Krohn
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, 18057 Rostock, Germany
| |
Collapse
|
9
|
Organoid-derived intestinal epithelial cells are a suitable model for preclinical toxicology and pharmacokinetic studies. iScience 2022; 25:104542. [PMID: 35754737 PMCID: PMC9218437 DOI: 10.1016/j.isci.2022.104542] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
Intestinal organoids are physiologically relevant tools used for cellular models. However, the suitability of organoids to examine biological functions over existing established cell lines lacks sufficient evidence. Cytochrome P450 3A4 (CYP3A4) induction by pregnane X receptor ligands, glucose uptake via sodium/glucose cotransporter 1, and microsomal triglyceride transfer protein-dependent ApoB-48 secretion, which are critical for human intestinal metabolism, were observed in organoid-derived two-dimensional cells but little in Caco-2 cells. CYP3A4 induction evaluation involved a simplified method of establishing organoids that constitutively expressed a reporter gene. Compound screening identified several anticancer drugs with selective activities toward Caco-2 cells, highlighting their characteristics as cancer cells. Another compound screening revealed a decline in N-(4-hydroxyphenyl)retinamide cytotoxicity upon rifampicin treatment in organoid-derived cells, under CYP3A4-induced conditions. This study shows that organoid-derived intestinal epithelial cells (IECs) possess similar physiological properties as intestinal epithelium and can serve as tools for enhancing the prediction of biological activity in humans. Comparison of mRNA expression between organoid-derived intestinal epithelial cells (IECs) and Caco-2 cells Evaluation of CYP3A4, SGLT1, and MTP protein function in organoid-derived IECs Identification of anti-cancer drugs as selective cytotoxicity against Caco-2 cells Reduction of N-(4-hydroxyphenyl)retinamide (4-HPR) cytotoxicity by rifampicin in organoid-derived IECs
Collapse
|
10
|
Parajuli P, Gokulan K, Khare S. Preclinical In Vitro Model to Assess the Changes in Permeability and Cytotoxicity of Polarized Intestinal Epithelial Cells during Exposure Mimicking Oral or Intravenous Routes: An Example of Arsenite Exposure. Int J Mol Sci 2022; 23:ijms23094851. [PMID: 35563241 PMCID: PMC9101442 DOI: 10.3390/ijms23094851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/04/2022] Open
Abstract
The gastrointestinal tract (GIT) is exposed to xenobiotics, including drugs, through both: local (oral) and systemic routes. Despite the advances in drug discovery and in vitro pre-clinical models, there is a lack of appropriate translational models to distinguish the impact of these routes of exposure. Changes in intestinal permeability has been observed in different gastrointestinal and systemic diseases. This study utilized one such xenobiotic, arsenic, to which more than 200 million people around the globe are exposed via their food, drinking water, work environment, soil, and air. The purpose of this study was to establish an in vitro model to mimic gastrointestinal tract exposure to xenobiotics via oral or intravenous routes. To achieve this, we compared the route (mimicking oral and intravenous exposure to GIT and the dose response (using threshold approach) of trivalent and pentavalent inorganic arsenic species on the permeability of in vitro cultured polarized T84 cells, an example of intestinal epithelial cells. Arsenic treatment to polarized T84 cells via the apical and basolateral compartment of the trans-well system reflected oral or intravenous routes of exposure in vivo, respectively. Sodium arsenite, sodium arsenate, dimethyl arsenic acid sodium salt (DMAV), and disodium methyl arsonate hydrate (MMAV) were assessed for their effects on intestinal permeability by measuring the change in trans-epithelial electrical resistance (TEER) of T-84 cells. Polarized T-84 cells exposed to 12.8 µM of sodium arsenite from the basolateral side showed a marked reduction in TEER. Cytotoxicity of sodium arsenite, as measured by release of lactate dehydrogenase (LDH), was increased when cells were exposed via the basolateral side. The mRNA expression of genes related to cell junctions in T-84 cells was analyzed after exposure with sodium arsenite for 72 h. Changes in TEER correlated with mRNA expression of focal-adhesion-, tight-junction- and gap-junction-related genes (upregulation of Jam2, Itgb3 and Notch4 genes and downregulation of Cldn2, Cldn3, Gjb1, and Gjb2). Overall, exposure to sodium arsenite from the basolateral side was found to have a differential effect on monolayer permeability and on cell-junction-related genes as compared to apical exposure. Most importantly, this study established a preclinical human-relevant in vitro translational model to assess the changes in permeability and cytotoxicity during exposure, mimicking oral or intravenous routes.
Collapse
|
11
|
Arian CM, Imaoka T, Yang J, Kelly EJ, Thummel KE. Gutsy science: In vitro systems of the human intestine to model oral drug disposition. Pharmacol Ther 2022; 230:107962. [PMID: 34478775 PMCID: PMC8821120 DOI: 10.1016/j.pharmthera.2021.107962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/03/2023]
Abstract
The intestine has important gate-keeping functions that can profoundly affect the systemic blood exposure of orally administered drugs. Thus, characterizing a new molecular entity's (NME) disposition within the intestine is of utmost importance in drug development. While currently used in vitro systems, such as Ussing chamber, precision-cut intestinal slices, immortalized cell lines, and primary enterocytes provide substantial knowledge about drug absorption and the intestinal first-pass effect, they remain sub-optimal for quantitatively predicting this process and the oral bioavailability of many drugs. Use of novel in vitro systems such as intestinal organoids and intestinal microphysiological systems have provided substantial advances over the past decade, expanding our understanding of intestinal physiology, pathology, and development. However, application of these emerging in vitro systems in the pharmaceutical science is in its infancy. Preliminary work has demonstrated that these systems more accurately recapitulate the physiology and biochemistry of the intact intestine, as it relates to oral drug disposition, and thus they hold considerable promise as preclinical testing platforms of the future. Here we review currently used and emerging in vitro models of the human intestine employed in pharmaceutical science research. We also highlight aspects of these emerging tools that require further study.
Collapse
Affiliation(s)
- Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Tomoki Imaoka
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Jade Yang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Stem Cell Rev Rep 2022; 18:2137-2151. [PMID: 34181185 PMCID: PMC8237043 DOI: 10.1007/s12015-021-10205-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Intestinal dysfunction is frequently driven by abnormalities of specific genes, microbiota, or microenvironmental factors, which usually differ across individuals, as do intestinal physiology and pathology. Therefore, it's necessary to develop personalized therapeutic strategies, which are currently limited by the lack of a simulated intestine model. The mature human intestinal mucosa is covered by a single layer of columnar epithelial cells that are derived from intestinal stem cells (ISCs). The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments. However, a simulated intestine model will serve as an indispensable foundation for personalized drug screening. In this article, we review the advantages and disadvantages of conventional 2-dimensional models, intestinal organoid models, and current microfluidic intestine-on-a-chip (IOAC) models. The main technological strategies are summarized, and an advanced microfluidic primary IOAC model is proposed for personalized intestinal medicine. In this model, primary ISCs and the microbiome are isolated from individuals and co-cultured in a multi-channel microfluidic chip to establish a microengineered intestine device. The device can faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions. Moreover, the ISCs can be genetically edited before seeding, and monitoring sensors and post-analysis abilities can also be incorporated into the device to achieve high-throughput and rapid pharmaceutical studies. We also discuss the potential future applications and challenges of the microfluidic platform. The development of cell biology, biomaterials, and tissue engineering will drive the advancement of the simulated intestine, making a significant contribution to personalized medicine in the future. Graphical abstract The intestine is a primary organ for digestion, absorption, and metabolism, as well as a major site for the host-commensal microbiota interaction and mucosal immunity. The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments, though physiological 3-dimensional of the native small intestinal epithelial tissue has been well documented. An intestinal stem cells-based microfluidic intestine-on-a-chip model that faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions will make a significant contribution.
Collapse
|
13
|
Brdarić E, Soković Bajić S, Đokić J, Đurđić S, Ruas-Madiedo P, Stevanović M, Tolinački M, Dinić M, Mutić J, Golić N, Živković M. Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. Front Microbiol 2021; 12:759378. [PMID: 34790183 PMCID: PMC8591446 DOI: 10.3389/fmicb.2021.759378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/01/2021] [Indexed: 01/13/2023] Open
Abstract
Cadmium (Cd) ranks seventh on the list of most significant potential threats to human health based on its suspected toxicity and the possibility of exposure to it. It has been reported that some bacterial exopolysaccharides (EPSs) have the ability to bind heavy metal ions. We therefore investigated the capacity of eight EPS-producing lactobacilli to adsorb Cd in the present study, and Lactiplantibacillus plantarum BGAN8 was chosen as the best candidate. In addition, we demonstrate that an EPS derived from BGAN8 (EPS-AN8) exhibits a high Cd-binding capacity and prevents Cd-mediated toxicity in intestinal epithelial Caco-2 cells. Simultaneous use of EPS-AN8 with Cd treatment prevents inflammation, disruption of tight-junction proteins, and oxidative stress. Our results indicate that the EPS in question has a strong potential to be used as a postbiotic in combatting the adverse effects of Cd. Moreover, we show that higher concentrations of EPS-AN8 can alleviate Cd-induced cell damage.
Collapse
Affiliation(s)
- Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Svetlana Soković Bajić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Slađana Đurđić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Asturias, Spain
| | - Magdalena Stevanović
- Institute of Technical Sciences, Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Maja Tolinački
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milica Živković
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Ryu B, Son MY, Jung KB, Kim U, Kim J, Kwon O, Son YS, Jung CR, Park JH, Kim CY. Next-Generation Intestinal Toxicity Model of Human Embryonic Stem Cell-Derived Enterocyte-Like Cells. Front Vet Sci 2021; 8:587659. [PMID: 34604364 PMCID: PMC8481684 DOI: 10.3389/fvets.2021.587659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is the most common exposure route of xenobiotics, and intestinal toxicity can result in systemic toxicity in most cases. It is important to develop intestinal toxicity assays mimicking the human system; thus, stem cells are rapidly being developed as new paradigms of toxicity assessment. In this study, we established human embryonic stem cell (hESC)-derived enterocyte-like cells (ELCs) and compared them to existing in vivo and in vitro models. We found that hESC-ELCs and the in vivo model showed transcriptomically similar expression patterns of a total of 10,020 genes than the commercialized cell lines. Besides, we treated the hESC-ELCs, in vivo rats, Caco-2 cells, and Hutu-80 cells with quarter log units of lethal dose 50 or lethal concentration 50 of eight drugs—chloramphenicol, cycloheximide, cytarabine, diclofenac, fluorouracil, indomethacin, methotrexate, and oxytetracycline—and then subsequently analyzed the biomolecular markers and morphological changes. While the four models showed similar tendencies in general toxicological reaction, hESC-ELCs showed a stronger correlation with the in vivo model than the immortalized cell lines. These results indicate that hESC-ELCs can serve as a next-generation intestinal toxicity model.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Kwang Bo Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ohman Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Ye Seul Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - C-Yoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
15
|
Hinman SS, Huling J, Wang Y, Wang H, Bretherton RC, DeForest CA, Allbritton NL. Magnetically-propelled fecal surrogates for modeling the impact of solid-induced shear forces on primary colonic epithelial cells. Biomaterials 2021; 276:121059. [PMID: 34412014 PMCID: PMC8405591 DOI: 10.1016/j.biomaterials.2021.121059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022]
Abstract
The colonic epithelium is continuously exposed to an array of biological and mechanical stimuli as its luminal contents are guided over the epithelial surface through regulated smooth muscle contraction. In this report, the propulsion of solid fecal contents over the colonic epithelium is recapitulated through noninvasive actuation of magnetic agarose hydrogels over primary intestinal epithelial cultures, in contrast to the vast majority of platforms that apply shear forces through liquid microflow. Software-controlled magnetic stepper motors enable experimental control over the frequency and velocity of these events to match in vivo propulsive contractions, while the integration of standardized well plate spacing facilitates rapid integration into existing assay pipelines. The application of these solid-induced shear forces did not deleteriously affect cell monolayer surface coverage, viability, or transepithelial electrical resistance unless the device parameters were raised to a 50× greater contraction frequency and 4× greater fecal velocity than those observed in healthy humans. At a frequency and velocity that is consistent with average human colonic motility, differentiation of the epithelial cells into absorptive and goblet cell phenotypes was not affected. Protein secretion was modulated with a two-fold increase in luminal mucin-2 secretion and a significant reduction in basal interleukin-8 secretion. F-actin, zonula occludens-1, and E-cadherin were each present in their proper basolateral locations, similar to those of static control cultures. While cellular height was unaffected by magnetic agarose propulsion, several alterations in lateral morphology were observed including decreased circularity and compactness, and an increase in major axis length, which align with surface epithelial cell morphologies observed in vivo and may represent early markers of luminal exfoliation. This platform will be of widespread utility for the investigation of fecal propulsive forces on intestinal physiology, shedding light on how the colonic epithelium responds to mechanical cues.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Huling
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina State University, Raleigh, NC, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hao Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Dutton JS, Hinman SS, Kim R, Attayek PJ, Maurer M, Sims CS, Allbritton NL. Hyperglycemia minimally alters primary self-renewing human colonic epithelial cells while TNFα-promotes severe intestinal epithelial dysfunction. Integr Biol (Camb) 2021; 13:139-152. [PMID: 33989405 PMCID: PMC8204630 DOI: 10.1093/intbio/zyab008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/06/2021] [Accepted: 04/16/2021] [Indexed: 11/15/2022]
Abstract
Hyperglycemia is thought to increase production of inflammatory cytokines and permeability of the large intestine. Resulting intestinal inflammation is then often characterized by excess secretion of tumor necrosis factor alpha (TNFα). Thus, hyperglycemia in hospitalized patients suffering from severe trauma or disease is frequently accompanied by TNFα secretion, and the combined impact of these insults on the intestinal epithelium is poorly understood. This study utilized a simple yet elegant model of the intestinal epithelium, comprised of primary human intestinal stem cells and their differentiated progeny, to investigate the impact of hyperglycemia and inflammatory factors on the colonic epithelium. When compared to epithelium cultured under conditions of physiologic glucose, cells under hyperglycemic conditions displayed decreased mucin-2 (MUC2), as well as diminished alkaline phosphatase (ALP) activity. Conditions of 60 mM glucose potentiated secretion of the cytokine IL-8 suggesting that cytokine secretion during hyperglycemia may be a source of tissue inflammation. TNFα measurably increased secretion of IL-8 and IL-1β, which was enhanced at 60 mM glucose. Surprisingly, intestinal permeability and paracellular transport were not altered by even extreme levels of hyperglycemia. The presence of TNFα increased MUC2 presence, decreased ALP activity, and negatively impacted monolayer barrier function. When TNFα hyperglycemia and ≤30 mM glucose and were combined, MUC2 and ALP activity remained similar to that of TNFα alone, although synergistic effects were seen at 60 mM glucose. An automated image analysis pipeline was developed to assay changes in properties of the zonula occludens-1 (ZO-1)-demarcated cell boundaries. While hyperglycemia alone had little impact on cell shape and size, cell morphologic properties were extraordinarily sensitive to soluble TNFα. These results suggest that TNFα acted as the dominant modulator of the epithelium relative to glucose, and that control of inflammation rather than glucose may be key to maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Johanna S Dutton
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC, USA
| | - Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Peter J Attayek
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC, USA
| | - Mallory Maurer
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC, USA
| | - Christopher S Sims
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Parvathaneni V, Elbatanony RS, Shukla SK, Kulkarni NS, Kanabar DD, Chauhan G, Ayehunie S, Chen ZS, Muth A, Gupta V. Bypassing P-glycoprotein mediated efflux of afatinib by cyclodextrin complexation – Evaluation of intestinal absorption and anti-cancer activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Janssen AWF, Duivenvoorde LPM, Rijkers D, Nijssen R, Peijnenburg AACM, van der Zande M, Louisse J. Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells. Arch Toxicol 2020; 95:907-922. [PMID: 33263786 PMCID: PMC7904554 DOI: 10.1007/s00204-020-02953-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
Human intestinal organoids (HIOs) are a promising in vitro model consisting of different intestinal cell types with a 3D microarchitecture resembling native tissue. In the current study, we aimed to assess the expression of the most common intestinal CYP enzymes in a human induced pluripotent stem cell (hiPSC)-derived HIO model, and the suitability of that model to study chemical-induced changes in CYP expression and activity. We compared this model with the commonly used human colonic adenocarcinoma cell line Caco-2 and with a human primary intestinal epithelial cell (IEC)-based model, closely resembling in vivo tissue. We optimized an existing protocol to differentiate hiPSCs into HIOs and demonstrated that obtained HIOs contain a polarized epithelium with tight junctions consisting of enterocytes, goblet cells, enteroendocrine cells and Paneth cells. We extensively characterized the gene expression of CYPs and activity of CYP3A4/5, indicating relatively high gene expression levels of the most important intestinal CYP enzymes in HIOs compared to the other models. Furthermore, we showed that CYP1A1 and CYP1B1 were induced by β-naphtoflavone in all three models, whereas CYP3A4 was induced by phenobarbital and rifampicin in HIOs, in the IEC-based model (although not statistically significant), but not in Caco-2 cells. Interestingly, CYP2B6 expression was not induced in any of the models by the well-known liver CYP2B6 inducer phenobarbital. In conclusion, our study indicates that hiPSC-based HIOs are a useful in vitro intestinal model to study biotransformation of chemicals in the intestine.
Collapse
Affiliation(s)
- Aafke W F Janssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands.
| | - Loes P M Duivenvoorde
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Deborah Rijkers
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Rosalie Nijssen
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Ad A C M Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| |
Collapse
|
19
|
Enhanced solubility, stability, permeation and anti-cancer efficacy of Celastrol-β-cyclodextrin inclusion complex. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113936] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Araujo M, Beekman JK, Mapa MS, MacMahon S, Zhao Y, Flynn TJ, Flannery B, Mossoba ME, Sprando RL. Assessment of intestinal absorption/metabolism of 3-chloro-1,2-propanediol (3-MCPD) and three 3-MCPD monoesters by Caco-2 cells. Toxicol In Vitro 2020; 67:104887. [DOI: 10.1016/j.tiv.2020.104887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
|
21
|
Zhang H, Wolford C, Basit A, Li AP, Fan PW, Murray BP, Takahashi RH, Khojasteh SC, Smith BJ, Thummel KE, Prasad B. Regional Proteomic Quantification of Clinically Relevant Non-Cytochrome P450 Enzymes along the Human Small Intestine. Drug Metab Dispos 2020; 48:528-536. [PMID: 32350063 DOI: 10.1124/dmd.120.090738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 02/13/2025] Open
Abstract
Current challenges in accurately predicting intestinal metabolism arise from the complex nature of the intestine, leading to limited applicability of available in vitro tools as well as knowledge deficits in intestinal physiology, including enzyme abundance. In particular, information on regional enzyme abundance along the small intestine is lacking, especially for non-cytochrome P450 enzymes such as carboxylesterases (CESs), UDP-glucuronosyltransferases (UGTs), and sulfotransferases (SULTs). We used cryopreserved human intestinal mucosa samples from nine donors as an in vitro surrogate model for the small intestine and performed liquid chromatography tandem mass spectrometry-based quantitative proteomics for 17 non-cytochrome P450 enzymes using stable isotope-labeled peptides. Relative protein quantification was done by normalization with enterocyte marker proteins, i.e., villin-1, sucrase isomaltase, and fatty acid binding protein 2, and absolute protein quantification is reported as picomoles per milligram of protein. Activity assays in glucuronidations and sequential metabolisms were conducted to validate the proteomics findings. Relative or absolute quantifications are reported for CES1, CES2, five UGTs, and four SULTs along the small intestine: duodenum, jejunum, and ileum for six donors and in 10 segments along the entire small intestine (A-J) for three donors. Relative quantification using marker proteins may be beneficial in further controlling for technical variabilities. Absolute quantification data will allow for scaling factor generation and in vivo extrapolation of intestinal clearance using physiologically based pharmacokinetic modeling. SIGNIFICANCE STATEMENT: Current knowledge gaps exist in intestinal protein abundance of non-cytochrome P450 enzymes. Here, we employ quantitative proteomics to measure non-cytochrome P450 enzymes along the human small intestine in nine donors using cryopreserved human intestinal mucosa samples. Absolute and relative abundances reported here will allow better scaling of intestinal clearance.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Chris Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Albert P Li
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Peter W Fan
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Bernard P Murray
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Ryan H Takahashi
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - S Cyrus Khojasteh
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Bill J Smith
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington (H.Z., C.W., A.B., K.E.T., B.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (A.B., B.P.); In Vitro ADMET Laboratories Inc., Columbia, Maryland (A.P.L.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Boston, Massachusetts (P.W.F.); Genentech Inc., South San Francisco, California (R.H.T., S.C.K.); and Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (B.J.S., B.P.M.)
| |
Collapse
|
22
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
23
|
von Erlach T, Saxton S, Shi Y, Minahan D, Reker D, Javid F, Lee YAL, Schoellhammer C, Esfandiary T, Cleveland C, Booth L, Lin J, Levy H, Blackburn S, Hayward A, Langer R, Traverso G. Robotically handled whole-tissue culture system for the screening of oral drug formulations. Nat Biomed Eng 2020; 4:544-559. [PMID: 32341538 DOI: 10.1038/s41551-020-0545-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/05/2020] [Indexed: 01/21/2023]
Abstract
Monolayers of cancer-derived cell lines are widely used in the modelling of the gastrointestinal (GI) absorption of drugs and in oral drug development. However, they do not generally predict drug absorption in vivo. Here, we report a robotically handled system that uses large porcine GI tissue explants that are functionally maintained for an extended period in culture for the high-throughput interrogation (several thousand samples per day) of whole segments of the GI tract. The automated culture system provided higher predictability of drug absorption in the human GI tract than a Caco-2 Transwell system (Spearman's correlation coefficients of 0.906 and 0.302, respectively). By using the culture system to analyse the intestinal absorption of 2,930 formulations of the peptide drug oxytocin, we discovered an absorption enhancer that resulted in a 11.3-fold increase in the oral bioavailability of oxytocin in pigs in the absence of cellular disruption of the intestinal tissue. The robotically handled whole-tissue culture system should help advance the development of oral drug formulations and might also be useful for drug screening applications.
Collapse
Affiliation(s)
- Thomas von Erlach
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Saxton
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunhua Shi
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Minahan
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel Reker
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farhad Javid
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Young-Ah Lucy Lee
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carl Schoellhammer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tina Esfandiary
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cody Cleveland
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas Booth
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiaqi Lin
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah Levy
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie Blackburn
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison Hayward
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Giovanni Traverso
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
24
|
Hiebl V, Schachner D, Ladurner A, Heiss EH, Stangl H, Dirsch VM. Caco-2 Cells for Measuring Intestinal Cholesterol Transport - Possibilities and Limitations. Biol Proced Online 2020; 22:7. [PMID: 32308567 PMCID: PMC7149936 DOI: 10.1186/s12575-020-00120-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background The human Caco-2 cell line is a common in vitro model of the intestinal epithelial barrier. As the intestine is a major interface in cholesterol turnover and represents a non-biliary pathway for cholesterol excretion, Caco-2 cells are also a valuable model for studying cholesterol homeostasis, including cholesterol uptake and efflux. Currently available protocols are, however, either sketchy or not consistent among different laboratories. Our aim was therefore to generate a collection of optimized protocols, considering the different approaches of the different laboratories and to highlight possibilities and limitations of measuring cholesterol transport with this cell line. Results We developed comprehensive and quality-controlled protocols for the cultivation of Caco-2 cells on filter inserts in a single tight monolayer. A cholesterol uptake as well as a cholesterol efflux assay is described in detail, including suitable positive controls. We further show that Caco-2 cells can be efficiently transfected for luciferase reporter gene assays in order to determine nuclear receptor activation, main transcriptional regulators of cholesterol transporters (ABCA1, ABCB1, ABCG5/8, NPC1L1). Detection of protein and mRNA levels of cholesterol transporters in cells grown on filter inserts can pose challenges for which we highlight essential steps and alternative approaches for consideration. A protocol for viability assays with cells differentiated on filter inserts is provided for the first time. Conclusions The Caco-2 cell line is widely used in the scientific community as model for the intestinal epithelium, although with highly divergent protocols. The herein provided information and protocols can be a common basis for researchers intending to use Caco-2 cells in the context of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Verena Hiebl
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniel Schachner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Herbert Stangl
- 2Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- 1Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Establishment of a novel culture method for maintaining intestinal stem cells derived from human induced pluripotent stem cells. Biol Open 2020; 9:bio049064. [PMID: 31919043 PMCID: PMC6955217 DOI: 10.1242/bio.049064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The small intestine plays an important role in the pharmacokinetics of orally administered drugs due to the presence of drug transporters and drug-metabolizing enzymes. However, few appropriate methods exist to investigate intestinal pharmacokinetics. Induced pluripotent stem (iPS) cells can form various types of cells and represent a potentially useful tool for drug discovery. We previously reported that differentiated enterocytes from human iPS cells are useful for pharmacokinetic studies; however, the process is time and resource intensive. Here, we established a new two-dimensional culture method for maintaining human iPS-cell-derived intestinal stem cells (ISCs) with differentiation potency and evaluated their ability to differentiate into enterocytes exhibiting appropriate pharmacokinetic function. The culture method used several factors to activate signalling pathways required for maintaining stemness, followed by differentiation into enterocytes. Functional evaluation was carried out to verify epithelial-marker expression and inducibility and activity of metabolic enzymes and transporters. Our results confirmed the establishment of an ISC culture method for maintaining stemness and verified that the differentiated enterocytes from the maintained ISCs demonstrated proper pharmacokinetic function. Thus, our findings describe a time- and cost-effective approach that can be used as a general evaluation tool for evaluating intestinal pharmacokinetics.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
26
|
Speer JE, Wang Y, Fallon JK, Smith PC, Allbritton NL. Evaluation of human primary intestinal monolayers for drug metabolizing capabilities. J Biol Eng 2019; 13:82. [PMID: 31709009 PMCID: PMC6829970 DOI: 10.1186/s13036-019-0212-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The intestinal epithelium is a major site of drug metabolism in the human body, possessing enterocytes that house brush border enzymes and phase I and II drug metabolizing enzymes (DMEs). The enterocytes are supported by a porous extracellular matrix (ECM) that enables proper cell adhesion and function of brush border enzymes, such as alkaline phosphatase (ALP) and alanyl aminopeptidase (AAP), phase I DMEs that convert a parent drug to a more polar metabolite by introducing or unmasking a functional group, and phase II DMEs that form a covalent conjugate between a functional group on the parent compound or sequential metabolism of phase I metabolite. In our effort to develop an in vitro intestinal epithelium model, we investigate the impact of two previously described simple and customizable scaffolding systems, a gradient cross-linked scaffold and a conventional scaffold, on the ability of intestinal epithelial cells to produce drug metabolizing proteins as well as to metabolize exogenously added compounds. While the scaffolding systems possess a range of differences, they are most distinguished by their stiffness with the gradient cross-linked scaffold possessing a stiffness similar to that found in the in vivo intestine, while the conventional scaffold possesses a stiffness several orders of magnitude greater than that found in vivo. RESULTS The monolayers on the gradient cross-linked scaffold expressed CYP3A4, UGTs 2B17, 1A1 and 1A10, and CES2 proteins at a level similar to that in fresh crypts/villi. The monolayers on the conventional scaffold expressed similar levels of CYP3A4 and UGTs 1A1 and 1A10 DMEs to that found in fresh crypts/villi but significantly decreased expression of UGT2B17 and CES2 proteins. The activity of CYP3A4 and UGTs 1A1 and 1A10 was inducible in cells on the gradient cross-linked scaffold when the cells were treated with known inducers, whereas the CYP3A4 and UGT activities were not inducible in cells grown on the conventional scaffold. Both monolayers demonstrate esterase activity but the activity measured in cells on the conventional scaffold could not be inhibited with a known CES2 inhibitor. Both monolayer culture systems displayed similar ALP and AAP brush border enzyme activity. When cells on the conventional scaffold were incubated with a yes-associated protein (YAP) inhibitor, CYP3A4 activity was greatly enhanced suggesting that mechano-transduction signaling can modulate drug metabolizing enzymes. CONCLUSIONS The use of a cross-linked hydrogel scaffold for expansion and differentiation of primary human intestinal stem cells dramatically impacts the induction of CYP3A4 and maintenance of UGT and CES drug metabolizing enzymes in vitro making this a superior substrate for enterocyte culture in DME studies. This work highlights the influence of mechanical properties of the culture substrate on protein expression and the activity of drug metabolizing enzymes as a critical factor in developing accurate assay protocols for pharmacokinetic studies using primary intestinal cells. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Jennifer E. Speer
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607 USA
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607 USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607 USA
| |
Collapse
|
27
|
Effects of Acute and Chronic Exposure to Residual Level Erythromycin on Human Intestinal Epithelium Cell Permeability and Cytotoxicity. Microorganisms 2019; 7:microorganisms7090325. [PMID: 31489925 PMCID: PMC6780317 DOI: 10.3390/microorganisms7090325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Residual concentrations of erythromycin in food could result in gastrointestinal tract exposure that potentially poses a health-hazard to the consumer, affecting intestinal epithelial permeability, barrier function, microbiota composition, and antimicrobial resistance. We investigated the effects of erythromycin after acute (48 h single treatment with 0.03 μg/mL to 300 μg/mL) or chronic (repeated treatment with 0.3 µg/mL and 300 µg/mL erythromycin for five days) exposures on the permeability of human colonic epithelial cells, a model that mimics a susceptible intestinal surface devoid of commensal microbiota. Transepithelial electrical resistance (TER) measurements indicated that erythromycin above 0.3 µg/mL may compromise the epithelial barrier. Acute exposure increased cytotoxicity, while chronic exposure decreased the cytotoxicity. Quantitative PCR analysis revealed that only ICAM1 (intercellular adhesion molecule 1) was up-regulated during 0.3 μg/mL acute-exposure, while ICAM1, JAM3 (junctional adhesion molecule 3), and ITGA8 (integrin alpha 8), were over-expressed in the 300 μg/mL acute treatment group. However, during chronic exposure, no change in the mRNA expression was observed at 0.3 μg/mL, and only ICAM2 was significantly up-regulated after 300 μg/mL. ICAM1 and ICAM2 are known to be involved in the formation of extracellular matrices. These gene expression changes may be related to the immunoregulatory activity of erythromycin, or a compensatory mechanism of the epithelial cells to overcome the distress caused by erythromycin due to increased permeability.
Collapse
|
28
|
Jiang B, Meng L, Zou N, Wang H, Li S, Huang L, Cheng X, Wang Z, Chen W, Wang C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152967. [PMID: 31154274 DOI: 10.1016/j.phymed.2019.152967] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/20/2019] [Accepted: 05/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND β-Carboline alkaloid harmine (HAR) and harmaline (HAL) are monoamine oxidase (MAO) and acetylcholinesterase (AChE) inhibitors. However, whether HAR and HAL inhibit MAO or AChE selectively and competitively is unclear. PURPOSE The purpose of this study was to investigate the potential competition inhibition of HAR and HAL on MAO and AChE in brain endothelial cells (RBE4) and in healthy rats to provide a basis for the application of the inhibitors in the treatment of patients with depression and with Parkinson's disease or Alzheimer's disease. STUDY DESIGN/METHODS The transport properties of HAR and HAL by using blood-brain barrier models constructed with RBE4 were systematically investigated. Then, the modulation effects of HAR and HAL on CNS neurotransmitters (NTs) in healthy rat brains were determined by a microdialysis method coupled with LC-MS/MS. The competition inhibition of HAR and HAL on MAO and AChE was evaluated through real time-PCR, Western blot analysis, and molecular docking experiments. RESULTS Results showed that HAL and HAR can be detected in the blood and striatum 300 min after intravenous injection (1 mg/kg). Choline (Ch), gamma-aminobutyric acid (GABA), glutamate (Glu), and phenylalanine (Phe) levels in the striatum decreased in a time-dependent manner after the HAL treatment, with average velocities of 1.41, 0.73, 3.86, and 1.10 (ng/ml)/min, respectively. The Ch and GABA levels in the striatum decreased after the HAR treatment, with average velocities of 1.16 and 0.22 ng/ml/min, respectively. The results of the cocktail experiment using the human liver enzyme indicated that the IC50 value of HAL on MAO-A was 0.10 ± 0.08 µm and that of HAR was 0.38 ± 0.21 µm. Their IC50 values on AChE were not obtained. These findings indicated that HAL and HAR selectively acted on MAO in vitro. However, RT-PCR and Western blot analysis results showed that the AChE mRNA and protein expression decreased in a time-dependent manner in RBE4 cells after the HAR and HAL treatments. CONCLUSION NT analysis results showed that HAL and HAR selectively affect AChE in vivo. HAL and HAR may be highly and suitably developed for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China; Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liyuan Meng
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan Zou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Hanxue Wang
- Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai 200082, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Lifeng Huang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
29
|
Yamada S, Kanda Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers. J Pharmacol Sci 2019; 140:337-344. [DOI: 10.1016/j.jphs.2019.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
|
30
|
Yen CC, Liu YT, Lin YJ, Yang YC, Chen CC, Yao HT, Chen HW, Lii CK. Bioavailability of the diterpenoid 14-deoxy-11,12-didehydroandrographolide in rats and up-regulation of hepatic drug-metabolizing enzyme and drug transporter expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152841. [PMID: 31035043 DOI: 10.1016/j.phymed.2019.152841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND 14-Deoxy-11,12-didehydroandrographolide (deAND) is the second most abundant diterpenoid in Andrographis paniculata (Burm. f.) Nees, a traditional medicine used in Asia. To date, the biological activity of deAND has not been clearly investigated. PURPOSE In this study, we intended to examine the modulatory effect of deAND on hepatic drug metabolism as well as its bioavailability. STUDY DESIGN deAND prepared from A. paniculata was orally given to Sprague-Dawley rats and changes in plasma deNAD were determined by HPLC-MS. Modulation of deAND on drug-metabolizing enzyme and drug transporter expression as well as the possible mechanism involved was examined in primary rat hepatocytes. RESULTS After a single oral administration of 50 mg/kg deAND to rats, the maximum plasma concentration (Cmax), time to reach the Cmax, area under the curve (AUC0-24h), mean retention time, and half-life (t1/2) of deAND were 2.65 ± 0.68 μg/ml, 0.29 ± 0.15 h, 6.30 ± 1.66 μg/ml•h, 5.55 ± 2.52 h, and 3.56 ± 1.05 h, respectively. The oral bioavailability was 3.42%. In primary rat hepatocytes treated with up to 10 μM deAND, a dose-dependent increase was noted in the expression of cytochrome P450 (CYP) 1A1/2, CYP2C6, and CYP3A1/2; UDP-glucuronosyltransferase (UGT) 1A1, NAD(P)H:quinone oxidoreductase (NQO1), π form of GSH S-transferase (GSTP), multidrug resistance-associated protein 2, p-glycoprotein, and organic anion transporter protein 2B1. Immunoblotting assay and EMSA revealed that deAND increases the nuclear translocation and DNA binding activity of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and nuclear factor erythroid-derived 2-related factor 2 (Nrf2). Knockdown of AhR and Nrf2 expression abolished deAND induction of CYP isozymes and UGT1A1, NQO1, and GSTP expression, respectively. CONCLUSION These results indicate that deAND quickly passes through enterocytes in rats and effectively up-regulates hepatic drug-metabolizing enzyme and drug transporter expression in an AhR-, PXR-, and Nrf2-dependent manner.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yun-Ta Liu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Ying-Jyan Lin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chien-Chih Chen
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 404, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
31
|
Torreggiani E, Rossini M, Bononi I, Pietrobon S, Mazzoni E, Iaquinta MR, Feo C, Rotondo JC, Rizzo P, Tognon M, Martini F. Protocol for the long-term culture of human primary keratinocytes from the normal colorectal mucosa. J Cell Physiol 2019; 234:9895-9905. [PMID: 30740692 DOI: 10.1002/jcp.28300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
Procedures for in vitro culturing of human primary keratinocytes from normal colon mucosa specimens have not been fully feasible, thus far. The protocol described herein allows primary keratinocytes from small tissue fragments of colorectal mucosa biopsies to grow in vitro. The procedure develops in three steps: (a) the enzymatic digestion of the tissue biopsy; (b) the use of cloning rings to purify primary keratinocyte colonies, (c) a defined keratinocyte medium to grow these cells in long-term culture. Our cultural method enables normal primary keratinocytes to be obtained by simple and rapid techniques. In our culture condition, primary keratinocytes express specific epithelial markers. Colorectal mucosa keratinocyte colonies require approximately 2 weeks to grow. Compared with previous approaches, our protocol provides a valuable model of study for human primary keratinocytes from normal colorectal (NCR) mucosa both at the cellular and molecular levels. It is well known, that different mutations occurring during the multistep process of carcinogenesis in the NCR mucosa, are strictly associated to the onset/progression of the colorectal carcinoma. On this ground, normal keratinocytes grown with our protocol, may represent an innovative tool to investigate the mechanisms that lead to colorectal carcinoma and other diseases. Our innovative procedure may allow to perform comparative investigations between normal and pathological colorectal cells.
Collapse
Affiliation(s)
- Elena Torreggiani
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Marika Rossini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Feo
- Section of Clinical Surgery, Department of Morphology, Surgery, and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology, and Experimental Biology, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
32
|
Speer JE, Gunasekara DB, Wang Y, Fallon JK, Attayek PJ, Smith PC, Sims CE, Allbritton NL. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J Biol Eng 2019; 13:36. [PMID: 31061676 PMCID: PMC6487070 DOI: 10.1186/s13036-019-0165-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The luminal surface of the small intestine is composed of a monolayer of cells overlying a lamina propria comprised of extracellular matrix (ECM) proteins. The ECM provides a porous substrate critical for nutrient exchange and cellular adhesion. The enterocytes within the epithelial monolayer possess proteins such as transporters, carriers, pumps and channels that participate in the movement of drugs, metabolites, ions and amino acids and whose function can be regulated or altered by the properties of the ECM. Here, we characterized expression and function of proteins involved in transport across the human small intestinal epithelium grown on two different culture platforms. One strategy employs a conventional scaffolding method comprised of a thin ECM film overlaying a porous membrane while the other utilizes a thick ECM hydrogel placed on a porous membrane. The thick hydrogel possesses a gradient of chemical cross-linking along its length to provide a softer substrate than that of the ECM film-coated membrane while maintaining mechanical stability. RESULTS The monolayers on both platforms possessed goblet cells and abundant enterocytes and were impermeable to Lucifer yellow and fluorescein-dextran (70 kD) indicating high barrier integrity. Multiple transporter proteins were present in both primary-cell culture formats at levels similar to those present in freshly isolated crypts/villi; however, expression of breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the monolayers on the conventional scaffold was substantially less than that on the gradient cross-linked scaffold and freshly isolated crypts/villi. Monolayers on the conventional scaffold failed to transport the BCRP substrate prazosin while cells on the gradient cross-linked scaffold successfully transported this drug to better mimic the properties of in vivo small intestine. CONCLUSIONS The results of this comparison highlight the need to create in vitro intestinal transport platforms whose characteristics mimic the in vivo lamina propria in order to accurately recapitulate epithelial function. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Jennifer E. Speer
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Dulan B. Gunasekara
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27599 USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Peter J. Attayek
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27599 USA
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599 USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27599 USA
| |
Collapse
|
33
|
Bryniarski MA, Hamarneh F, Yacoub R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Exp Biol Med (Maywood) 2019; 244:514-525. [PMID: 30682892 PMCID: PMC6547008 DOI: 10.1177/1535370219826526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Negative alterations, or dysbiosis, in the intestinal microbial community balance in response to chronic kidney disease is emerging as a substantial and important factor in inducing and exacerbating multiple comorbid conditions. Patients with renal insufficiency experience a substantial increase in cardiovascular risk, and recent evidence is shedding light on the close interaction between microbiome dysbiosis and increased cardiovascular events in this population. Previous association and recent causality studies utilizing experimental animal models have enriched our understanding and confirmed the impact of microbial community imbalance on cardiac health in both the general population and in patients with renal impairment.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Fares Hamarneh
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
34
|
Human cathelicidin improves colonic epithelial defenses against Salmonella typhimurium by modulating bacterial invasion, TLR4 and pro-inflammatory cytokines. Cell Tissue Res 2019; 376:433-442. [PMID: 30788579 DOI: 10.1007/s00441-018-02984-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
The intestinal mucosa contributes to frontline gut defenses by forming a barrier (physical and biochemical) and preventing the entry of pathogenic microbes. One innate role of the human colonic epithelium is to secrete cathelicidin, a peptide with broad antimicrobial and immunomodulatory functions. In this study, the effect of cathelicidin in the maintenance of epithelial integrity, Toll-like receptor recognition, bacterial invasion and initiation of inflammatory response against Salmonella typhimurium is investigated in cultured human colonic epithelium. We found exogenous human cathelicidin restores the epithelial integrity in S. typhimurium-infected colonic epithelial (T84) cells by mostly post-translational effects associated with reorganization of zonula occludens (ZO)-1 tight junction proteins. Endogenous cathelicidin prevents S. typhimurium internalization as shown in colonic epithelial cells genetically deficient in the only human cathelicidin, LL-37 (shLL-37). Moreover, supplementation of shLL-37 cells with synthetic LL-37 reduces the grade of S. typhimurium internalization in a dose-dependent manner. Mechanistically, shLL-37 cells have lower gene expression of TLR4 and pro-inflammatory cytokine IL-1β in response to S. typhimurium. Thus, human cathelicidin aids in the early colonic epithelial defenses against enteric S. typhimurium by preventing bacterial invasion and maintaining epithelial barrier integrity, likely to occur due to the production of sensing TLR4 and pro-inflammatory cytokines.
Collapse
|
35
|
Gunasekara DB, Speer J, Wang Y, Nguyen DL, Reed MI, Smiddy NM, Parker JS, Fallon JK, Smith PC, Sims CE, Magness ST, Allbritton NL. A Monolayer of Primary Colonic Epithelium Generated on a Scaffold with a Gradient of Stiffness for Drug Transport Studies. Anal Chem 2018; 90:13331-13340. [PMID: 30350627 PMCID: PMC6339567 DOI: 10.1021/acs.analchem.8b02845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Animal models are frequently used for in vitro physiologic and drug transport studies of the colon, but there exists significant pressure to improve assay throughput as well as to achieve tighter control of experimental variables than can be achieved with animals. Thus, development of a primary in vitro colonic epithelium cultured as high resistance with transport protein expression and functional behavior similar to that of a native colonic would be of enormous value for pharmaceutical research. A collagen scaffold, in which the degree of collagen cross-linking was present as a gradient, was developed to support the proliferation of primary colonic cells. The gradient of cross-linking created a gradient in stiffness across the scaffold, enabling the scaffold to resist deformation by cells. mRNA expression and quantitative proteomic mass spectrometry of cells growing on these surfaces as a monolayer suggested that the transporters present were similar to those in vivo. Confluent monolayers acted as a barrier to small molecules so that drug transport studies were readily performed. Transport function was evaluated using atenolol (a substrate for passive paracellular transport), propranolol (a substrate for passive transcellular transport), rhodamine 123 (Rh123, a substrate for P-glycoprotein), and riboflavin (a substrate for solute carrier transporters). Atenolol was poorly transported with an apparent permeability ( Papp) of <5 × 10-7 cm s-1, while propranolol demonstrated a Papp of 9.69 × 10-6 cm s-1. Rh123 was transported in a luminal direction ( Papp,efflux/ Papp,influx = 7) and was blocked by verapamil, a known inhibitor of P-glycoprotein. Riboflavin was transported in a basal direction, and saturation of the transporter was observed at high riboflavin concentrations as occurs in vivo. It is anticipated that this platform of primary colonic epithelium will find utility in drug development and physiological studies, since the tissue possesses high integrity and active transporters and metabolism similar to that in vivo.
Collapse
Affiliation(s)
- Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel L. Nguyen
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Mark I. Reed
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Nicole M. Smiddy
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Joel S. Parker
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27514, USA
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
36
|
Sawant-Basak A, Rodrigues AD, Lech M, Doyonnas R, Kasaian M, Prasad B, Tsamandouras N. Physiologically Relevant, Humanized Intestinal Systems to Study Metabolism and Transport of Small Molecule Therapeutics. Drug Metab Dispos 2018; 46:1581-1587. [PMID: 30126862 DOI: 10.1124/dmd.118.082784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023] Open
Abstract
Intestinal disposition of small molecules involves interplay of drug metabolizing enzymes (DMEs), transporters, and host-microbiome interactions, which has spurred the development of in vitro intestinal models derived from primary tissue sources. Such models have been bioengineered from intestinal crypts, mucosal extracts, induced pluripotent stem cell (iPSC)-derived organoids, and human intestinal tissue. This minireview discusses the utility and limitations of these human-derived models in support of small molecule drug metabolism and disposition. Enteroids from human intestinal crypts, organoids derived from iPSCs using growth factors or small molecule compounds, and enterocytes extracted from mucosal scrapings show key absorptive cell morphology while are limited in quantitative applications due to the lack of accessibility to the apical compartment, the lack of monolayers, or low expression of key DMEs, transporters, and nuclear hormone receptors. Despite morphogenesis to epithelial cells, similar challenges have been reported by more advanced technologies that have explored the impact of flow and mechanical stretch on proliferation and differentiation of Caco-2 cells. Most recently, bioengineered human intestinal epithelial or ileal cells have overcome many of the challenges, as the DME and transporter expression pattern resembles that of native intestinal tissue. Engineering advances may improve such models to support longer-term applications and meet end-user needs. Biochemical characterization and transcriptomic, proteomic, and functional endpoints of emerging novel intestinal models, when referenced to native human tissue, can provide greater confidence and increased utility in drug discovery and development.
Collapse
Affiliation(s)
- Aarti Sawant-Basak
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.).
| | - A David Rodrigues
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Matthew Lech
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Regis Doyonnas
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Marion Kasaian
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Bhagwat Prasad
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| | - Nikolaos Tsamandouras
- Pfizer Worldwide Research & Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (A.S.-B.); Pfizer Worldwide Research & Development, PDM, Eastern Point Road, Groton, 06340 (A.D.R.); Pfizer Worldwide Research & Development, Inflammation and Immunology, 1 Portland Street, Cambridge, MA 02139 (M.L., M.K.); Pfizer Worldwide Research & Development, Discovery Sciences, Eastern Point Road, Groton, 06340 (R.D.); Assistant Professor, Department of Pharmaceutics, UWRAPT H268, Health Science Building, Seattle (B.P.); Pfizer Worldwide Research & Development, Early Clinical Development, Clinical Pharmacology, 1 Portland Street, Cambridge, MA 02139 (N.T.)
| |
Collapse
|
37
|
Flynn TJ, Vohra SN. Simultaneous determination of intestinal permeability and potential drug interactions of complex mixtures using Caco-2 cells and high-resolution mass spectrometry: Studies with Rauwolfia serpentina extract. Chem Biol Interact 2018; 290:37-43. [PMID: 29782822 DOI: 10.1016/j.cbi.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 01/07/2023]
Abstract
Caco-2 cells are a commonly used model for estimating the intestinal bioavailability of single chemical entity pharmaceuticals. Caco-2 cells, when induced with calcitriol, also express other biological functions such as phase I (CYP) and phase II (glucuronosyltransferases) drug metabolizing enzymes which are relevant to drug-supplement interactions. Intestinal bioavailability is an important factor in the overall safety assessment of products consumed orally. Foods, including herbal dietary supplements, are complex substances with multiple chemical components. Because of potential interactions between components of complex mixtures, more reliable safety assessments can be obtained by studying the commercial products "as consumed" rather than by testing individual chemical components one at a time. The present study evaluated the apparent intestinal permeability (Papp) of a model herbal extract, Rauwolfia serpentina, using both whole plant extracts and the individual purified Rauwolfia alkaloids. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The Papp values for individual Rauwolfia alkaloids were comparable whether measured individually or as components of the complete extract. Both Rauwolfia extract and all individual Rauwolfia alkaloids except yohimbine inhibited CYP3A4 activity (midazolam 1'-hydroxylation). Both Rauwolfia extract and all individual Rauwolfia alkaloids except corynanthine and reserpic acid significantly increased glucuronosyltransferase activity (glucuronidation of 4-methylumbelliferone). The positive control, ketoconazole, significantly inhibited both CYP3A4 and glucuronosyltransferase activities. These findings suggest that the Caco-2 assay is capable of simultaneously identifying both bioavailability and potentially hazardous intestinal drug-supplement interactions in complex mixtures.
Collapse
Affiliation(s)
- Thomas J Flynn
- Division of Applied Regulatory Toxicology, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Sanah N Vohra
- Division of Applied Regulatory Toxicology, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| |
Collapse
|
38
|
Madden LR, Nguyen TV, Garcia-Mojica S, Shah V, Le AV, Peier A, Visconti R, Parker EM, Presnell SC, Nguyen DG, Retting KN. Bioprinted 3D Primary Human Intestinal Tissues Model Aspects of Native Physiology and ADME/Tox Functions. iScience 2018; 2:156-167. [PMID: 30428372 PMCID: PMC6135981 DOI: 10.1016/j.isci.2018.03.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/28/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023] Open
Abstract
The human intestinal mucosa is a critical site for absorption, distribution, metabolism, and excretion (ADME)/Tox studies in drug development and is difficult to recapitulate in vitro. Using bioprinting, we generated three-dimensional (3D) intestinal tissue composed of human primary intestinal epithelial cells and myofibroblasts with architecture and function to model the native intestine. The 3D intestinal tissue demonstrates a polarized epithelium with tight junctions and specialized epithelial cell types and expresses functional and inducible CYP450 enzymes. The 3D intestinal tissues develop physiological barrier function, distinguish between high- and low-permeability compounds, and have functional P-gp and BCRP transporters. Biochemical and histological characterization demonstrate that 3D intestinal tissues can generate an injury response to compound-induced toxicity and inflammation. This model is compatible with existing preclinical assays and may be implemented as an additional bridge to clinical trials by enhancing safety and efficacy prediction in drug development. Bioprinted 3D human intestinal tissues enable complex modeling of ADME/Tox in vitro 3D intestinal tissues develop barrier function and polarized transporter expression Key cytochrome P450 enzymes are expressed, metabolically active, and inducible GI toxicants can trigger barrier disruption and cytotoxicity in 3D intestinal tissues
Collapse
Affiliation(s)
| | - Theresa V Nguyen
- Department of Pharmacokinetics, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | - Alex V Le
- Organovo, Inc., San Diego, CA 92121, USA
| | - Andrea Peier
- Department of Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Richard Visconti
- Department of Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Eric M Parker
- Department of Pharmacology, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | | | | |
Collapse
|
39
|
Bhatt AP, Gunasekara DB, Speer J, Reed MI, Peña AN, Midkiff BR, Magness ST, Bultman SJ, Allbritton NL, Redinbo MR. Nonsteroidal Anti-Inflammatory Drug-Induced Leaky Gut Modeled Using Polarized Monolayers of Primary Human Intestinal Epithelial Cells. ACS Infect Dis 2018; 4:46-52. [PMID: 29094594 DOI: 10.1021/acsinfecdis.7b00139] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium provides a critical barrier that separates the gut microbiota from host tissues. Nonsteroidal anti-inflammatory drugs (NSAIDs) are efficacious analgesics and antipyretics and are among the most frequently used drugs worldwide. In addition to gastric damage, NSAIDs are toxic to the intestinal epithelium, causing erosions, perforations, and longitudinal ulcers in the gut. Here, we use a unique in vitro human primary small intestinal cell monolayer system to pinpoint the intestinal consequences of NSAID treatment. We found that physiologically relevant doses of the NSAID diclofenac (DCF) are cytotoxic because they uncouple mitochondrial oxidative phosphorylation and generate reactive oxygen species. We also find that DCF induces intestinal barrier permeability, facilitating the translocation of compounds from the luminal to the basolateral side of the intestinal epithelium. The results we outline here establish the utility of this novel platform, representative of the human small intestinal epithelium, to understand NSAID toxicity, which can be applied to study multiple aspects of gut barrier function including defense against infectious pathogens and host-microbiota interactions.
Collapse
Affiliation(s)
- Aadra P. Bhatt
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
| | - Dulan B. Gunasekara
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
| | - Jennifer Speer
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
| | - Mark I. Reed
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
| | - Alexis N. Peña
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
| | - Bentley R. Midkiff
- Translational Pathology Laboratory, Lineberger
Comprehensive Cancer Center, University of North Carolina, 160
North Medical Drive, Chapel Hill, North Carolina 27599-7525, United States
| | - Scott T. Magness
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
- Departments of Medicine, Cell Biology and
Physiology, University of North Carolina, 111 Mason Farm Road, Chapel Hill, North Carolina 27599-7032, United States
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel
Hill, North Carolina 27599-7264, United States
- Lineberger
Comprehensive Cancer Center, University of North Carolina, 450
West Drive, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
- Lineberger
Comprehensive Cancer Center, University of North Carolina, 450
West Drive, Chapel Hill, North Carolina 27599, United States
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina, 250 Bell Tower Drive, Chapel
Hill, North Carolina 27599-3290, United States
- Lineberger
Comprehensive Cancer Center, University of North Carolina, 450
West Drive, Chapel Hill, North Carolina 27599, United States
- Departments of Biochemistry and Biophysics,
and Microbiology and Immunology, and the Integrated Program for Biological
and Genome Science, University of North Carolina, 250 Bell Tower
Drive, Chapel Hill, North
Carolina 27599-3290, United States
| |
Collapse
|
40
|
Schweinlin M, Wilhelm S, Schwedhelm I, Hansmann J, Rietscher R, Jurowich C, Walles H, Metzger M. Development of an Advanced Primary Human In Vitro Model of the Small Intestine. Tissue Eng Part C Methods 2016; 22:873-83. [PMID: 27481569 DOI: 10.1089/ten.tec.2016.0101] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intestinal in vitro models are valuable tools in drug discovery and infection research. Despite several advantages, the standard cell line-based Transwell(®) models based for example on colonic epithelial Caco-2 cells, lack the cellular complexity and transport activity associated with native small intestinal tissue. An additional experimental set-back arises from the most commonly used synthetic membranes, on which the cells are routinely cultured. These can lead to an additional barrier activity during in vitro testing. To overcome these limitations, we developed an alternative primary human small intestinal tissue model. This novel approach combines previously established gut organoid technology with a natural extracellular matrix (ECM) based on porcine small intestinal scaffold (SIS). Intestinal crypts from healthy human small intestine were expanded as gut organoids and seeded as single cells on SIS in a standardized Transwell-like setting. After only 7 days on the ECM scaffold, the primary cells formed an epithelial barrier while a subpopulation differentiated into intestinal specific cell types such as mucus-producing goblet cells or hormone-secreting enteroendocrine cells. Furthermore, we tested the influence of subepithelial fibroblasts and dynamic culture conditions on epithelial barrier function. The barrier integrity was stabilized by coculture in the presence of gut-derived fibroblasts. Compared to static or dynamic culture on an orbital shaker, dynamic culture in a defined perfusion bioreactor had an additional significant impact on epithelial cell differentiation, indicated by high prismatic cell morphology and upregulation of CYP3A4 enzyme and Mdr1 transporter activity. In summary, more physiological tissue models as presented in our study might be useful tools in preclinical research and development.
Collapse
Affiliation(s)
- Matthias Schweinlin
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Sabine Wilhelm
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Ivo Schwedhelm
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Jan Hansmann
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany
| | - Rene Rietscher
- 2 Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University , Saarbrücken, Germany
| | - Christian Jurowich
- 3 Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital of Würzburg , Würzburg, Germany
| | - Heike Walles
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany .,4 Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases" (TZKME), Würzburg Branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB) , Würzburg, Germany
| | - Marco Metzger
- 1 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg , Würzburg, Germany .,4 Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases" (TZKME), Würzburg Branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB) , Würzburg, Germany
| |
Collapse
|