1
|
Drees A, Nassiri V, Tabernilla A, Serroyen J, Gustin E, Dos Santos Rodrigues B, Moss DM, De Smedt A, Vinken M, Van Goethem F, Sanz-Serrano J. Optimization of the drug-induced cholestasis index based on advanced modeling for predicting liver toxicity. Toxicology 2025; 514:154119. [PMID: 40107378 DOI: 10.1016/j.tox.2025.154119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Cholestatic drug-induced liver injury (cDILI) is a frequent reason for drug failure and withdrawal during premarketing and postmarketing stages of drug development. Strategies for reliable detection of cDILI in early drug development are therefore urgently needed. The drug-induced cholestasis index (DICI) concept was previously introduced as a tool for assessing the cholestatic potential of drug candidates. DICI is calculated as the ratio between the viability values obtained in drug-treated liver cells in the presence and absence of bile acids. The present in vitro study was set up to investigate the applicability of DICI in a novel high-throughput and large sample setting. Furthermore, the improvement of the predictivity of the DICI by introduction of advanced modeling was explored. Fifty-eight well-documented drugs were selected and categorized as drugs inducing cDILI, non-cholestatic DILI (ncDILI), and not inducing DILI (non-DILI). Cultures of human hepatoma HepaRG cells in 3D spheroid configuration were exposed to 9 half-log concentrations of each drug for 1, 3 and 7 days in the absence or presence of a concentrated mixture of human bile acids. The highest concentration of each drug was based on solubility and the maximum concentrations in human plasma (total Cmax). DICI values were computed for all drugs and time points. In addition, the area under the curve ratio and the occurrence of a trend in the cytotoxicity profiles were included as modeling descriptors. As such, 3 time-related scenarios were considered upon modeling, while categories were modeled on a nominal or an ordinal scale. Applying DICI with a cut-off value of 0.8 resulted in a high sensitivity for the cDILI class, but in turn, a low sensitivity for the non- DILI class. From the 28 predictive models generated, the best performing models integrated all descriptors and the ordinal scale for either the 7-day time point from a 3-time-point model or the 3-day time point. While these models were unable to accurately identify ncDILI drugs, the 7-day time point identified 84 % of the cDILI drugs and the 3-day time point correctly identified 94 % of non-DILI drugs. Based on the obtained results, it can be concluded that the reported DICI modeling provides an optimized approach that could be applied in an integrated DILI testing strategy.
Collapse
Affiliation(s)
- Annika Drees
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium
| | | | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium
| | - Jan Serroyen
- Janssen R&D, Statistics & Decision Sciences, Belgium
| | | | | | | | - Ann De Smedt
- Janssen R&D, Preclinical Sciences and Translational Safety, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium
| | - Freddy Van Goethem
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium; Janssen R&D, Preclinical Sciences and Translational Safety, Belgium
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Belgium.
| |
Collapse
|
2
|
Zhou Y, Zhong Y, Lauschke VM. Evaluating the synergistic use of advanced liver models and AI for the prediction of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2025; 21:563-577. [PMID: 39893552 DOI: 10.1080/17425255.2025.2461484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Hepatotoxicity typically occurs only in a subset of individuals after prolonged exposure and constitutes a major risk factor for the termination of drug development projects. AREAS COVERED We provide an overview of available human liver models for DILI research and discuss how they have been used to aid in early risk assessments and to mitigate the risk of project closures due to DILI in clinical stages. We summarize the different data that can be provided by such models and illustrate how these diverse data types can be interfaced with machine learning strategies to improve predictions of liver safety liabilities. EXPERT OPINION Advanced human liver models closely mimic human liver phenotypes and functions for many weeks, allowing for the recapitulation of hepatotoxicity events in vitro. Integration of the biochemical, histological, and toxicogenomic output data from these models with physicochemical compound properties using different machine learning architectures holds promise to enhance preclinical DILI predictions. However, to realize this aim, it is important to benchmark the available liver models on test sets of DILI positive and negative compounds and to carefully annotate and share the resulting data.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yi Zhong
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Fardel O, Moreau A, Jouan E, Denizot C, Le Vée M, Parmentier Y. Human liver cell-based assays for the prediction of hepatic bile acid efflux transporter inhibition by drugs. Expert Opin Drug Metab Toxicol 2025; 21:463-480. [PMID: 39799554 DOI: 10.1080/17425255.2025.2453486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Drug-mediated inhibition of bile salt efflux transporters may cause liver injury. In vitro prediction of drug effects toward canalicular and/or sinusoidal efflux of bile salts from human hepatocytes is therefore a major issue, which can be addressed using liver cell-based assays. AREA COVERED This review, based on a thorough literature search in the scientific databases PubMed and Web of Science, provides key information about hepatic transporters implicated in bile salt efflux, the human liver cell models available for investigating functional inhibition of bile salt efflux, the different methodologies used for this purpose, and the modes of expression of the results. Applications of the assays to drugs are summarized, with special emphasis to the performance values of some assays for predicting hepatotoxicity/cholestatic effects of drugs. EXPERT OPINION Human liver cell-based assays for evaluating drug-mediated inhibition of bile acid efflux transporters face various limitations, such as the lack of method standardization and validation, the present poor adaptability to high throughput approaches, and some pitfalls with respect to interpretation of bile acid biliary excretion indexes. Hepatotoxicity of drugs is additionally likely multifactorial, highlighting that inhibition of hepatic bile salt efflux by drugs provides important, but not full, information about potential drug hepatotoxicity.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | | |
Collapse
|
4
|
Miyagawa-Hayashino A, Imura T, Takezawa T, Hirai M, Shibata S, Ogi H, Tsujikawa T, Konishi E. Activation of S1PR2 on macrophages and the hepatocyte S1PR2/RhoA/ROCK1/MLC2 pathway in vanishing bile duct syndrome. PLoS One 2025; 20:e0317568. [PMID: 39854311 PMCID: PMC11760576 DOI: 10.1371/journal.pone.0317568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks. Multiplex immunohistochemistry revealed increased numbers of S1PR2+CD45+CD68+FCN1+ inflammatory macrophages and S1PR2+CD45+CD68+MARCO+ Kupffer cells in liver tissues showing ductopenia due to graft-versus-host disease and rejection post-liver transplant compared with normal liver. Macrophage expression of proinflammatory cytokines, including MCP1, was reduced following S1PR2 inhibition. Taurocholic acid and S1P2 agonist induced hepatocyte S1PR2 and reduced RhoA/ROCK1 expression, resulting in bile canaliculi dilatation. S1PR2 inhibition reversed the effect on RhoA/ROCK1 expression, resulting in maintenance of bile canaliculi through myosin light chain 2 (MLC2) phosphorylation. Activation of S1PR2 on macrophages and S1PR2 on hepatocytes may disrupt bile canaliculi dynamics in VBDS under regulation by RhoA/ROCK1 through MLC2 phosphorylation.
Collapse
Affiliation(s)
- Aya Miyagawa-Hayashino
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Imura
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Maki Hirai
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Saya Shibata
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology–Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Callewaert E, Louisse J, Kramer N, Sanz-Serrano J, Vinken M. Adverse Outcome Pathways Mechanistically Describing Hepatotoxicity. Methods Mol Biol 2025; 2834:249-273. [PMID: 39312169 DOI: 10.1007/978-1-0716-4003-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. In the field of computational toxicology, AOPs can potentially facilitate the design and development of in silico prediction models for hazard identification. Various AOPs have been introduced for several types of hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology.
Collapse
Affiliation(s)
- Ellen Callewaert
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Julen Sanz-Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
6
|
Uzu M, Takezawa T. Potential of connexin 32 as a predictive marker for drug-induced cholestatic liver injury in a collagen vitrigel-culture model of HepG2-NIAS cells, a new subline of HepG2 cells, with bile canaliculus-like structures. J Toxicol Sci 2025; 50:135-145. [PMID: 40024757 DOI: 10.2131/jts.50.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Cholestatic drug-induced liver injury (DILI) is caused by the aberrant excretion of bile acids (BAs) from hepatocytes via bile canaliculus-like structures (BCLSs) into the bile ducts. The precise in vitro evaluation method for cholestatic DILI has not been established due to a lack of specific markers and cell resources. We previously reported that HepG2-NIAS cells cultured on a collagen vitrigel (CV) membrane formed BCLSs with high protein expression of transporters involved in the excretion of BAs, including bile salt export pump (BSEP). In this study, the potential of connexin (Cx) 32, a component of gap junction, as a predictive marker for cholestatic DILI was investigated using a CV-culture model of HepG2-NIAS cells. The cells were treated with 7 drugs with different DILI-risk levels, and cell toxicity and Cx32 expression were evaluated. Cell toxicity was significantly increased not only by high DILI-risk drugs (troglitazone and cyclosporine A) but also by chlorpromazine with low DILI-risk. Furthermore, cell toxicity of troglitazone was not enhanced by a co-treatment with taurocholate, suggesting the low involvement of inhibition of BA excretion via BSEP in cholestatic DILI. In contrast, the total protein expression of Cx32 and co-localization of Cx32 and F-actin, which is composed of BCLSs, were significantly increased only by high DILI-risk drugs. Treatment with high DILI-risk drugs also induced the increased protein expression of zonula occludens (ZO)-1, which supports BCLSs concerted with Cx32. These results suggest that Cx32 expression in the CV-culture model of HepG2-NIAS cells may be a prominent predictive marker for cholestatic DILI.
Collapse
Affiliation(s)
- Miaki Uzu
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Toshiaki Takezawa
- Laboratory of Tissue Regeneration and In Vitro Assay, Graduate School of Pharmaceutical Sciences, Chiba Institute of Science
| |
Collapse
|
7
|
Kang SY, Kimura M, Shrestha S, Lewis P, Lee S, Cai Y, Joshi P, Acharya P, Liu J, Yang Y, Sanchez JG, Ayyagari S, Alsberg E, Wells JM, Takebe T, Lee MY. A Pillar and Perfusion Plate Platform for Robust Human Organoid Culture and Analysis. Adv Healthc Mater 2024; 13:e2302502. [PMID: 37616035 PMCID: PMC10891301 DOI: 10.1002/adhm.202302502] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Human organoids have the potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo. This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by the lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, these challenges are overcome by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing, and encapsulation techniques are demonstrated on a pillar plate, which is coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels are differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.
Collapse
Affiliation(s)
- Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Phillip Lewis
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, TX, 75234, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - J Guillermo Sanchez
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sriramya Ayyagari
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Departments of Orthopedics, Pharmacology, and Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
- Bioprinting Laboratories Inc., Dallas, TX, 75234, USA
| |
Collapse
|
8
|
Takeuchi K, Yasuhiko O. Non-invasive Visualization and Characterization of Bile Canaliculus Formation Using Refractive Index Tomography. Biol Pharm Bull 2024; 47:1163-1171. [PMID: 38880624 DOI: 10.1248/bpb.b24-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The vital role of bile canaliculus (BC) in liver function is closely related to its morphology. Electron microscopy has contributed to understanding BC morphology; however, its invasiveness limits its use in living specimens. Here, we report non-invasive characterization of BC formation using refractive index (RI) tomography. First, we investigated and characterized the RI distribution of BCs in two-dimensional (2D) cultured HepG2 cells. BCs were identified based on their distinct morphology and functionality, as confirmed using a fluorescence-labeled bile acid analog. The RI distribution of BCs exhibited three common features: (1) luminal spaces with a low RI between adjacent hepatocytes; (2) luminal spaces surrounded by a membranous structure with a high RI; and (3) multiple microvillus structures with a high RI within the lumen. Second, we demonstrated the characterization of BC structures in a three-dimensional (3D) culture model, which is more relevant to the in vivo environment but more difficult to evaluate than 2D cultures. Various BC structures were identified inside HepG2 spheroids with the three features of RI distribution. Third, we conducted comparative analyses and found that the BC lumina of spheroids had higher circularity and lower RI standard deviation than 2D cultures. We also addressed comparison of BC and intracellular lumen-like structures within a HepG2 spheroid, and found that the BC lumina had higher RI and longer perimeter than intracellular lumen-like structures. Our demonstration of the non-destructive, label-free visualization and quantitative characterization of living BC structures will be a basis for various hepatological and pharmaceutical applications.
Collapse
Affiliation(s)
- Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K
| | | |
Collapse
|
9
|
Malečková A, Mik P, Liška V, Pálek R, Rosendorf J, Witter K, Grajciarová M, Tonar Z. Periphery of porcine hepatic lobes has the smallest length density of hepatic sinusoids and bile canaliculi: A stereological histological study with implications for liver biopsies. Ann Anat 2023; 250:152157. [PMID: 37666463 DOI: 10.1016/j.aanat.2023.152157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Porcine liver is widely used in hepatologic research as a large animal model with many anatomical and physiological similarities with humans. However, only limited information on porcine liver spatial microstructure has been published, especially regarding the hepatic sinusoids and bile canaliculi. The aim of our study was to quantify the sinusoidal and bile canalicular network in healthy male and female porcine livers and to map the variability of these structures with heterogenous distribution to improve the evaluability of liver biopsy samples. METHODS Livers from 12 healthy piglets (6 females and 6 neutered males) were sampled into 36 tissue samples per organ, representing six hepatic lobes and three different regions related to the hepatic vasculature (peripheral, paracaval and paraportal region). Histological sections were processed with a random orientation of the cutting plane. The endothelium and the bile canaliculi were stained using Ricinus communis agglutinin I lectin histochemistry. The length densities of hepatic sinusoids LV(sinusoids,liver), of bile canaliculi LV(bile canaliculi,liver) and volume fraction VV(sinusoids,liver) and surface density SV(sinusoids,liver) of sinusoids were estimated using stereological methods. The newly acquired morphometric data were compared with previously published data on density of porcine hepatocytes and fractions of connective tissue. RESULTS The peripheral region had smallest LV(sinusoids,liver), smallest LV(bile canaliculi,liver) and greatest VV(sinusoids,liver). The six hepatic lobes had statistically comparable length densities of both sinusoids and bile canaliculi, but the left lateral lobe had smallest VV(sinusoids,liver). Regions with greater LV(sinusoids,liver) had also greater LV(bile canaliculi,liver) and SV(sinusoids,liver) and were accompanied by greater density of smaller hepatocytes. Regions with smaller LV(sinusoids,liver) and LV(bile canaliculi,liver) contained a greater fraction of interlobular connective tissue. CONCLUSIONS The length density of hepatic sinusoids is smaller in the peripheral regions of the porcine liver than in other regions related to the hepatic vasculature - paracaval and paraportal regions, and smaller in castrated males than in females. Greater length density of liver sinusoids was linked with greater local density of bile canaliculi, with local increase in the density of smaller hepatocytes and, simultaneously, with smaller fractions of hepatic connective tissue. The intrahepatic and inter-sexual variability of the porcine liver morphology needs to be taken into account when designing and interpreting experiments involving the histological quantification of the microvascular network. The complete primary morphometric data describing the distribution of morphometric parameters within porcine liver were made available in a form facilitating the power analysis to justify the minimal number of tissue samples or animals required when designing further histological evaluation studies. The macroscopic map of microvessels and bile canaliculi variability facilitates their assessment in liver biopsies in the pig.
Collapse
Affiliation(s)
- Anna Malečková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| | - Patrik Mik
- Department of Anatomy and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jáchym Rosendorf
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Kirsti Witter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
10
|
van Ertvelde J, Verhoeven A, Maerten A, Cooreman A, Santos Rodrigues BD, Sanz-Serrano J, Mihajlovic M, Tripodi I, Teunis M, Jover R, Luechtefeld T, Vanhaecke T, Jiang J, Vinken M. Optimization of an adverse outcome pathway network on chemical-induced cholestasis using an artificial intelligence-assisted data collection and confidence level quantification approach. J Biomed Inform 2023; 145:104465. [PMID: 37541407 DOI: 10.1016/j.jbi.2023.104465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Adverse outcome pathway (AOP) networks are versatile tools in toxicology and risk assessment that capture and visualize mechanisms driving toxicity originating from various data sources. They share a common structure consisting of a set of molecular initiating events and key events, connected by key event relationships, leading to the actual adverse outcome. AOP networks are to be considered living documents that should be frequently updated by feeding in new data. Such iterative optimization exercises are typically done manually, which not only is a time-consuming effort, but also bears the risk of overlooking critical data. The present study introduces a novel approach for AOP network optimization of a previously published AOP network on chemical-induced cholestasis using artificial intelligence to facilitate automated data collection followed by subsequent quantitative confidence assessment of molecular initiating events, key events, and key event relationships. METHODS Artificial intelligence-assisted data collection was performed by means of the free web platform Sysrev. Confidence levels of the tailored Bradford-Hill criteria were quantified for the purpose of weight-of-evidence assessment of the optimized AOP network. Scores were calculated for biological plausibility, empirical evidence, and essentiality, and were integrated into a total key event relationship confidence value. The optimized AOP network was visualized using Cytoscape with the node size representing the incidence of the key event and the edge size indicating the total confidence in the key event relationship. RESULTS This resulted in the identification of 38 and 135 unique key events and key event relationships, respectively. Transporter changes was the key event with the highest incidence, and formed the most confident key event relationship with the adverse outcome, cholestasis. Other important key events present in the AOP network include: nuclear receptor changes, intracellular bile acid accumulation, bile acid synthesis changes, oxidative stress, inflammation and apoptosis. CONCLUSIONS This process led to the creation of an extensively informative AOP network focused on chemical-induced cholestasis. This optimized AOP network may serve as a mechanistic compass for the development of a battery of in vitro assays to reliably predict chemical-induced cholestatic injury.
Collapse
Affiliation(s)
- Jonas van Ertvelde
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anouk Verhoeven
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruna Dos Santos Rodrigues
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Milos Mihajlovic
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Marc Teunis
- Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Ramiro Jover
- Joint Research Unit in Experimental Hepatology, University of Valencia, Health Research Institute Hospital La Fe & CIBER of Hepatic and Digestive Diseases, Spain
| | | | - Tamara Vanhaecke
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jian Jiang
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
11
|
Gupta K. A modular analysis of bile canalicular function and its implications for cholestasis. Am J Physiol Gastrointest Liver Physiol 2023; 325:G14-G22. [PMID: 37192193 PMCID: PMC10259850 DOI: 10.1152/ajpgi.00165.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Hepatocytes produce bile components and secrete them into a lumen, known as a bile canaliculus, that is formed by the apical membranes of adjoining hepatocytes. Bile canaliculi merge to form tubular structures that subsequently connect to the canal of Hering and larger intra- and extrahepatic bile ducts formed by cholangiocytes, which modify bile and enable flow through the small intestine. The major functional requirements for bile canaliculi are the maintenance of canalicular shape to preserve the blood-bile barrier and regulation of bile flow. These functional requirements are mediated by functional modules, primarily transporters, the cytoskeleton, cell-cell junctions, and mechanosensing proteins. I propose here that bile canaliculi behave as robust machines whereby the functional modules act in a coordinated manner to perform the multistep task of maintaining canalicular shape and bile flow. Cholestasis, the general term for aberrant bile flow, stems from drug/toxin-induced or genetic dysregulation of one or more of the protein components in the functional modules. Here, I discuss the interactions between components of the various functional modules in bile canaliculi and describe how these functional modules regulate canalicular morphology and function. I use this framework to provide a perspective on recent studies of bile canalicular dynamics.
Collapse
Affiliation(s)
- Kapish Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Center for Engineering MechanoBiology, The University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
12
|
Kang SY, Kimura M, Shrestha S, Lewis P, Lee S, Cai Y, Joshi P, Acharya P, Liu J, Yang Y, Sanchez JG, Ayyagari S, Alsberg E, Wells JM, Takebe T, Lee MY. A Pillar and Perfusion Plate Platform for Robust Human Organoid Culture and Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532210. [PMID: 36993405 PMCID: PMC10055006 DOI: 10.1101/2023.03.11.532210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human organoids have potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo . This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, we overcome these challenges by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing and encapsulation techniques were demonstrated on a pillar plate, which was coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels were differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.
Collapse
Affiliation(s)
- Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas
| | - Phillip Lewis
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Sangjoon Lee
- Department of Biomedical Engineering, University of North Texas
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
| | | | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas
| | - J Guillermo Sanchez
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Sriramya Ayyagari
- Department of Biomedical Engineering, University of Illinois at Chicago
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago
- Departments of Orthopedics, Pharmacology, and Mechanical and Industrial Engineering, University of Illinois at Chicago
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas
- Bioprinting Laboratories Inc
| |
Collapse
|
13
|
Chen D, Zhao X, Xu H, Ren H, Liu T, Wang Y, Yang D, Yang Z. Noninvasive Assessment of APAP (N-acetyl-p-aminophenol)-Induced Hepatotoxicity Using Multiple MRI Parameters in an Experimental Rat Model. J Magn Reson Imaging 2022; 56:1809-1817. [PMID: 35420237 DOI: 10.1002/jmri.28203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Early detection and accurate assessment of N-acetyl-p-aminophenol (APAP)-induced hepatotoxicity can prevent further aggravation of liver injury and reduce the incidence of liver failure. PURPOSE To evaluate the potential of multiple MRI parameters for assessing APAP-induced hepatotoxicity in an experimental rat model. STUDY TYPE Prospective. ANIMAL MODEL Twenty-one APAP-treated rats and 12 control rats. FIELD STRENGTH/SEQUENCE A 3 T, T1 mapping, Gd-EOB-DTPA-enhanced MRI, and intravoxel incoherent motion (IVIM). ASSESSMENT The severity of histological changes was assessed by a liver pathologist. Rat livers were pathologically classified into three groups: normal (n = 12), mild necrosis (n = 13), and moderate necrosis (n = 8). T1 relaxation time (T1) and diffusion parameters were measured. The reduction rate of T1 (ΔT1%) at different time points, the maximum value of ΔT1%, time period to the maximum value of ΔT1%, and time period from ΔT1max (%) to 2/3 value of ΔT1max (%) (ΔT1-T2/3) were calculated. Transporters activities like organic anion-transporting polypeptide 1 (oatp1) and multidrug resistance-associated protein 2 (mrp2) were compared among different necrotic groups. STATISTICAL TESTS ANOVA/Kruskal-Wallis. Pearson/Spearman correlation. P < 0.05 was considered statistical significance. RESULTS T1 Precontrast and ΔT1-T2/3 were strongly correlated with the severity of necrosis (r = 0.9094; r = 0.7978, respectively) and showed significant differences between the two groups. The apparent diffusion coefficient (ADC) and tissue diffusivity (D) values were significantly lower in the moderate necrosis group than in the normal and mild necrosis groups. The oatp1 activity of the necrosis groups was significantly reduced compared to that of the normal group, but the differences between normal and mild (P = 0.21), normal and moderate group (P = 0.56) were not significant. Meanwhile, enlargement of bile canaliculi and sparse microvilli was observed in the necrotic groups. CONCLUSION MRI parameters such as precontrast T1 and ΔT1-T2/3 had promising potential in assessing the severity of early-stage hepatotoxicity in an APAP overdose rat model. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dan Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China.,Department of Radiology, Weihai Municipal Hospital, Heping Road 70, Huancui District, Weihai, 264200, China
| | - Xinyan Zhao
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hao Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Tianhui Liu
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Yu Wang
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| |
Collapse
|
14
|
Le Vée M, Moreau A, Jouan E, Denizot C, Parmentier Y, Fardel O. Inhibition of canalicular and sinusoidal taurocholate efflux by cholestatic drugs in human hepatoma HepaRG cells. Biopharm Drug Dispos 2022; 43:265-271. [PMID: 36195987 PMCID: PMC10092305 DOI: 10.1002/bdd.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
HepaRG cells are highly-differentiated human hepatoma cells, which are increasingly recognized as a convenient cellular model for in vitro evaluation of hepatic metabolism, transport, and/or toxicity of drugs. The present study was designed to evaluate whether HepaRG cells can also be useful for studying drug-mediated inhibition of canalicular and/or sinusoidal hepatic efflux of bile acids, which constitutes a major mechanism of drug-induced liver toxicity. For this purpose, HepaRG cells, initially loaded with the bile acid taurocholate (TC), were reincubated in TC-free transport assay medium, in the presence or absence of calcium or drugs, before analysis of TC retention. This method allowed us to objectivize and quantitatively measure biliary and sinusoidal efflux of TC from HepaRG cells, through distinguishing cellular and canalicular compartments. In particular, time-course analysis of the TC-free reincubation period of HepaRG cells, that is, the efflux period, indicated that a 20 min-efflux period allowed reaching biliary and sinusoidal excretion indexes for TC around 80% and 60%, respectively. Addition of the prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide, or troglitazone during the TC-free efflux phase period was demonstrated to markedly inhibit canalicular and sinusoidal secretion of TC, whereas, by contrast, incubation with the noncholestatic compounds salicylic acid or flumazenil was without effect. Such data therefore support the use of human HepaRG cells for in vitro predicting drug-induced liver toxicity (DILI) due to the inhibition of hepatic bile acid secretion, using a biphasic TC loading/efflux assay.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, Orléans, France
| | - Elodie Jouan
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, Orléans, France
| | | | - Olivier Fardel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| |
Collapse
|
15
|
Sonoi R, Hagihara Y. Quantitative understanding of HepaRG cells during drug-induced intrahepatic cholestasis through changes in bile canaliculi dynamics. Pharmacol Res Perspect 2022; 10:e00960. [PMID: 35621230 PMCID: PMC9137115 DOI: 10.1002/prp2.960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
An understanding of the quantitative relationship between bile canaliculus (BC) dynamics and the disruption of tight junctions (TJs) during drug-induced intrahepatic cholestasis may lead to new strategies aimed at drug development and toxicity testing. To investigate the relationship between BC dynamics and TJ disruption, we retrospectively analyzed the extent of TJ disruption in response to changes in the dynamics of BCs cultured with entacapone (ENT). Three hours after adding ENT, the ZO-1-negative BC surface area ratio became significantly higher (4.1-fold) than those of ZO-1-positive BCs. Based on these data, we calculated slopes of surface area changes, m, of each ZO-1-positive and ZO-1-negative BC. BCs with m ≤ 15 that fell within the 95% confidence interval of ZO-1-positive BCs were defined as ZO-1-positive. To validate this method, we compared the frequency of ZO-1-positive BCs, FZ , with that of BCs with m ≤ 15, FT , in culture using drugs that regulate TJ, or induce intrahepatic cholestasis. FT values were correlated with FZ under all culture conditions (R2 = .99). Our results indicate that the magnitude of BC surface area changes is a factor affecting TJ disruption, suggesting that maintaining TJ integrity by slowing BC dilation inhibits cell death.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka, Japan
| |
Collapse
|
16
|
MRCK-Alpha and Its Effector Myosin II Regulatory Light Chain Bind ABCB4 and Regulate Its Membrane Expression. Cells 2022; 11:cells11040617. [PMID: 35203270 PMCID: PMC8870398 DOI: 10.3390/cells11040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
ABCB4, is an adenosine triphosphate-binding cassette (ABC) transporter localized at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine secretion into bile. Gene variations of ABCB4 cause different types of liver diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3). The molecular mechanisms underlying the trafficking of ABCB4 to and from the canalicular membrane are still unknown. We identified the serine/threonine kinase Myotonic dystrophy kinase-related Cdc42-binding kinase isoform α (MRCKα) as a novel partner of ABCB4. The role of MRCKα was explored, either by expression of dominant negative mutant or by gene silencing using the specific RNAi and CRISPR-cas9 strategy in cell models. The expression of a dominant-negative mutant of MRCKα and MRCKα inhibition by chelerythrine both caused a significant increase in ABCB4 steady-state expression in primary human hepatocytes and HEK-293 cells. RNA interference and CRISPR-Cas9 knockout of MRCKα also caused a significant increase in the amount of ABCB4 protein expression. We demonstrated that the effect of MRCKα was mediated by its downstream effector, the myosin II regulatory light chain (MRLC), which was shown to also bind ABCB4. Our findings provide evidence that MRCKα and MRLC bind to ABCB4 and regulate its cell surface expression.
Collapse
|
17
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
18
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
19
|
Esmail MM, Saeed NM, Michel HE, El-Naga RN. The ameliorative effect of niclosamide on bile duct ligation induced liver fibrosis via suppression of NOTCH and Wnt pathways. Toxicol Lett 2021; 347:23-35. [PMID: 33961984 DOI: 10.1016/j.toxlet.2021.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is the conjoint consequence of almost all chronic liver diseases. Cholestatic liver injury is a significant stimulus for fibrotic liver. This study was conducted to investigate the hepatoprotective effect of niclosamide as a NOTCH inhibitor and on the Wnt pathway against cholestatic liver fibrosis (CLF) which was experimentally induced by bile duct ligation (BDL). Rats were randomly divided into five main groups (6 per group): sham, BDL, BDL/niclosamide 5, BDL/niclosamide 10 and niclosamide 10 only group. Niclosamide was administered intraperitoneally (i.p.) for 4 weeks starting at the same day of surgery at doses 5 and 10 mg/kg. Liver function, cholestasis, oxidative stress, inflammation, liver fibrosis, NOTCH signaling pathway and Wnt pathway markers were assessed. Niclosamide (5 and 10 mg/kg) significantly reduced liver enzymes levels, oxidative stress, inflammation and phosphorylated signal transducer and activator of transcription3 (p-STAT3). Niclosamide (5 and 10 mg/kg) also significantly reduced NOTCH pathway (Jagged1, NOTCH2, NOTCH3, HES1, SOX9), Wnt pathway (Wnt5B, and Wnt10A), and fibrosis (transforming growth factor-beta1 (TGF-β1), alpha smooth muscle actin (α-SMA) and collagen deposition with more prominent effect of the higher dose 10 mg/kg. So, this study presents nicloamide as a promising antifibrotic agent in CLF through inhibition of NOTCH and Wnt pathways.
Collapse
Affiliation(s)
- Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Noha M Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt.
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
20
|
Triggers of benign recurrent intrahepatic cholestasis and its pathophysiology: a review of literature. Acta Gastroenterol Belg 2021; 84:477-486. [PMID: 34599573 DOI: 10.51821/84.3.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benign recurrent intrahepatic cholestasis (BRIC) is a rare genetic disorder that is characterized by episodes of cholestasis followed by complete resolution. The episodic nature of BRIC raises concerns about its possible trigger factors. Indeed, case reports of this orphan disease have associated BRIC to some triggers. In the absence of any reviews, we reviewed BRIC trigger factors and its pathophysiology. The study consisted of a systematic search for case reports using PubMed. Articles describing a clear case of BRIC associated with a trigger were included resulting in 22 articles that describe 35 patients. Infection was responsible for 54.3% of triggered episodes, followed by hormonal, drugs, and miscellaneous causes reporting as 30%, 10%, and 5.7% respectively. Females predominated with 62.9%. The longest episode ranged between 3 months to 2 years with a mean of 32.37 weeks. The mean age of the first episode was 14.28 ranging between 3 months to 48 years. Winter and autumn were the major seasons during which episodes happened. Hence, BRIC is potentially triggered by infection, which is most commonly a viral infection, hormonal disturbances as seen in oral contraceptive pills and pregnancy state, and less commonly by certain drugs and other causes. The appearance of cholestasis during the first two trimesters of pregnancy compared to intrahepatic cholestasis of pregnancy could help to differentiate between the two conditions. The possible mechanism of BRIC induction implicates a role of BSEP and ATP8B1. While estrogen, drugs, and cytokines are known to affect BSEP, less is known about their action on ATP8B1.
Collapse
|
21
|
Sonoi R, Hagihara Y. Tight junction stabilization prevents HepaRG cell death in drug-induced intrahepatic cholestasis. Biol Open 2021; 10:269189. [PMID: 34151938 PMCID: PMC8272035 DOI: 10.1242/bio.058606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Entacapone (ENT), a catechol-O-methyltransferase inhibitor, causes liver injury by inducing bile canaliculi (BC) dilation through inhibition of the myosin light kinase pathway. Loss of tight junctions (TJs) induces hepatocyte depolarization, which causes bile secretory failure, leading to liver damage. To understand the influence of TJ structural changes as a consequence of BC dynamics, we compared the datasets of time-lapse and immunofluorescence images for TJ protein ZO-1 in hepatocytes cultured with ENT, forskolin (FOR), ENT/FOR, and those cultured without any drugs. Retrospective analysis revealed that the drastic change in BC behaviors caused TJ disruption and apoptosis in cells cultured with ENT. Exposure to FOR or sodium taurocholate facilitated TJ formation in the cells cultured with ENT and suppressed BC dynamic changes, leading to the inhibition of TJ disruption and apoptosis. Our findings clarify that hepatocyte TJ stabilization protects against cell death induced by BC disruption.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
22
|
Hafey MJ, Houle R, Tanis KQ, Knemeyer I, Shang J, Chen Q, Baudy A, Monroe J, Sistare FD, Evers R. A Two-Tiered In Vitro Approach to De-Risk Drug Candidates for Potential Bile Salt Export Pump Inhibition Liabilities in Drug Discovery. Drug Metab Dispos 2020; 48:1147-1160. [PMID: 32943412 DOI: 10.1124/dmd.120.000086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 μM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5μM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.
Collapse
Affiliation(s)
- Michael J Hafey
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Robert Houle
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Keith Q Tanis
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Ian Knemeyer
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Jackie Shang
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Qing Chen
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Andreas Baudy
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - James Monroe
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Frank D Sistare
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| | - Raymond Evers
- Departments of Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM) (M.J.H., R.H., I.K., J.S., Q.C., R.E.), Genetics and Pharmacogenomics (K.Q.T.), and Safety Assessment and Laboratory Animal Resources (SALAR) (A.B., J.M., F.D.S.), Merck & Co., Inc., Kenilworth, New Jersey
| |
Collapse
|
23
|
Javitt NB. Hepatic bile formation: bile acid transport and water flow into the canalicular conduit. Am J Physiol Gastrointest Liver Physiol 2020; 319:G609-G618. [PMID: 32935994 DOI: 10.1152/ajpgi.00078.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Advances in molecular biology identifying the many carrier-mediated organic anion transporters and advances in microscopy that have provided a more detailed anatomy of the canalicular conduit make updating the concept of osmotically determined canalicular flow possible. For the most part water flow is not transmembrane but via specific pore proteins in both the hepatocyte and the tight junction. These pores independently regulate the rate at which water flows in response to an osmotic gradient and therefore are determinants of canalicular bile acid concentration. Review of the literature indicates that the initial effect on hepatic bile flow of cholestatic agents such as Thorazine and estradiol 17β-glucuronide are on water flow and not bile salt export pump-mediated bile acid transport and thus provides new approaches to the pathogenesis of drug-induced liver injury. Attaining a micellar concentration of bile acids in the canaliculus is essential to the formation of cholesterol-lecithin vesicles, which mostly occur in the periportal region of the canalicular conduit. The other regions, midcentral and pericentral, may transport lesser amounts of bile acid but augment water flow. Broadening the concept of how hepatic bile flow is initiated, provides new insights into the pathogenesis of canalicular cholestasis.
Collapse
Affiliation(s)
- Norman B Javitt
- Division of Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
24
|
Sonoi R, Hagihara Y. Switching of cell fate through the regulation of cell growth during drug-induced intrahepatic cholestasis. J Biosci Bioeng 2020; 130:659-665. [PMID: 32868186 DOI: 10.1016/j.jbiosc.2020.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Understanding the fundamental mechanisms that govern the fate of cells during drug-induced intrahepatic cholestasis provides strategies for the establishment of evaluation methods for drug screening. In the present study, the aggregates of a differentiated human hepatic cell line, HepaRG, were incubated in medium with Y27632 or bosentan to clarify the changes in the behavior of bile canaliculi (BC) with the growth of cells during drug-induced intrahepatic cholestasis. With elapsed exposure time, the aggregates in the culture with bosentan caused the dilation of BC, and the hepatocytes ultimately exhibited apoptotic death after the disruption of BC. Y27632 caused the disruption of BC in the aggregates after dilation. However, there was no change in the number of cells within the aggregates in the culture with Y27632, in spite of its cytotoxicity. After 144 h from the start of Y27632 exposure, the aggregates showed the rearrangement of BC. To inhibit cell division, the aggregates exposed to Y27632, which exhibited disruption of BC, were treated with mitomycin C for 2 h and continuously exposed to Y27632. The inhibition of cell division could not induce the rearrangement of BC within these aggregates, which was similar to the phenomenon observed in the aggregates exposed to bosentan. These findings indicate that growth is an important factor that influences the switching of cell fate toward survival or death in drug-induced intrahepatic cholestasis process. Thus, the autoregulation of growth is a major contributor to the rearrangement of BC within aggregates.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
25
|
Bile canaliculi contract autonomously by releasing calcium into hepatocytes via mechanosensitive calcium channel. Biomaterials 2020; 259:120283. [PMID: 32827796 DOI: 10.1016/j.biomaterials.2020.120283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Drug-induced hepatocellular cholestasis leads to altered bile flow. Bile is propelled along the bile canaliculi (BC) by actomyosin contractility, triggered by increased intracellular calcium (Ca2+). However, the source of increased intracellular Ca2+ and its relationship to transporter activity remains elusive. We identify the source of the intracellular Ca2+ involved in triggering BC contractions, and we elucidate how biliary pressure regulates Ca2+ homeostasis and associated BC contractions. Primary rat hepatocytes were cultured in collagen sandwich. Intra-canalicular Ca2+ was measured with fluo-8; and intra-cellular Ca2+ was measured with GCaMP. Pharmacological modulators of canonical Ca2+-channels were used to study the Ca2+-mediated regulation of BC contraction. BC contraction correlates with cyclic transfer of Ca2+ from BC to adjacent hepatocytes, and not with endoplasmic reticulum Ca2+. A mechanosensitive Ca2+ channel (MCC), Piezo-1, is preferentially localized at BC membranes. The Piezo-1 inhibitor GsMTx-4 blocks the Ca2+ transfer, resulting in cholestatic generation of BC-derived vesicles whereas Piezo-1 hyper-activation by Yoda1 increases the frequency of Ca2+ transfer and BC contraction cycles. Yoda1 can recover normal BC contractility in drug-induced hepatocellular cholestasis, supporting that Piezo-1 regulates BC contraction cycles. Finally, we show that hyper-activating Piezo-1 can be exploited to normalize bile flow in drug-induced hepatocellular cholestasis.
Collapse
|
26
|
Li Y, Evers R, Hafey MJ, Cheon K, Duong H, Lynch D, LaFranco-Scheuch L, Pacchione S, Tamburino AM, Tanis KQ, Geddes K, Holder D, Zhang NR, Kang W, Gonzalez RJ, Galijatovic-Idrizbegovic A, Pearson KM, Lebron JA, Glaab WE, Sistare FD. Use of a Bile Salt Export Pump Knockdown Rat Susceptibility Model to Interrogate Mechanism of Drug-Induced Liver Toxicity. Toxicol Sci 2020; 170:180-198. [PMID: 30903168 DOI: 10.1093/toxsci/kfz079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) may be associated with clinical drug-induced liver injury, but is poorly predicted by preclinical animal models. Here we present the development of a novel rat model using siRNA knockdown (KD) of Bsep that displayed differentially enhanced hepatotoxicity to 8 Bsep inhibitors and not to 3 Bsep noninhibitors when administered at maximally tolerated doses for 7 days. Bsep KD alone resulted in 3- and 4.5-fold increases in liver and plasma levels, respectively, of the sum of the 3 most prevalent taurine conjugated bile acids (T3-BA), approximately 90% decrease in plasma and liver glycocholic acid, and a distinct bile acid regulating gene expression pattern, without resulting in hepatotoxicity. Among the Bsep inhibitors, only asunaprevir and TAK-875 resulted in serum transaminase and total bilirubin increases associated with increases in plasma T3-BA that were enhanced by Bsep KD. Benzbromarone, lopinavir, and simeprevir caused smaller increases in plasma T3-BA, but did not result in hepatotoxicity in Bsep KD rats. Bosentan, cyclosporine A, and ritonavir, however, showed no enhancement of T3-BA in plasma in Bsep KD rats, as well as Bsep noninhibitors acetaminophen, MK-0974, or clarithromycin. T3-BA findings were further strengthened through monitoring TCA-d4 converted from cholic acid-d4 overcoming interanimal variability in endogenous bile acids. Bsep KD also altered liver and/or plasma levels of asunaprevir, TAK-875, TAK-875 acyl-glucuronide, benzbromarone, and bosentan. The Bsep KD rat model has revealed differences in the effects on bile acid homeostasis among Bsep inhibitors that can best be monitored using measures of T3-BA and TCA-d4 in plasma. However, the phenotype caused by Bsep inhibition is complex due to the involvement of several compensatory mechanisms.
Collapse
Affiliation(s)
- Yutai Li
- Safety Assessment and Laboratory Animal Resources
| | - Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism
| | | | | | - Hong Duong
- Safety Assessment and Laboratory Animal Resources
| | - Donna Lynch
- Safety Assessment and Laboratory Animal Resources
| | | | | | | | - Keith Q Tanis
- Genetics and Pharmacogenomics, MRL, West Point, PA 19486
| | | | | | | | - Wen Kang
- Safety Assessment and Laboratory Animal Resources
| | | | | | | | | | | | | |
Collapse
|
27
|
Vilas-Boas V, Gijbels E, Jonckheer J, De Waele E, Vinken M. Cholestatic liver injury induced by food additives, dietary supplements and parenteral nutrition. ENVIRONMENT INTERNATIONAL 2020; 136:105422. [PMID: 31884416 DOI: 10.1016/j.envint.2019.105422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Cholestasis refers to the accumulation of toxic levels of bile acids in the liver due to defective bile secretion. This pathological situation can be triggered by drugs, but also by ingredients contained in food, food supplements and parenteral nutrition. This paper provides an overview of the current knowledge on cholestatic injury associated with such ingredients, with particular emphasis on the underlying mechanisms of toxicity.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joop Jonckheer
- Department of Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Elisabeth De Waele
- Department of Intensive Care, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
28
|
Mosedale M, Watkins PB. Understanding Idiosyncratic Toxicity: Lessons Learned from Drug-Induced Liver Injury. J Med Chem 2020; 63:6436-6461. [PMID: 32037821 DOI: 10.1021/acs.jmedchem.9b01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Idiosyncratic adverse drug reactions (IADRs) encompass a diverse group of toxicities that can vary by drug and patient. The complex and unpredictable nature of IADRs combined with the fact that they are rare makes them particularly difficult to predict, diagnose, and treat. Common clinical characteristics, the identification of human leukocyte antigen risk alleles, and drug-induced proliferation of lymphocytes isolated from patients support a role for the adaptive immune system in the pathogenesis of IADRs. Significant evidence also suggests a requirement for direct, drug-induced stress, neoantigen formation, and stimulation of an innate response, which can be influenced by properties intrinsic to both the drug and the patient. This Perspective will provide an overview of the clinical profile, mechanisms, and risk factors underlying IADRs as well as new approaches to study these reactions, focusing on idiosyncratic drug-induced liver injury.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| | - Paul B Watkins
- Institute for Drug Safety Sciences and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Catharmus tinctorius volatile oil promote the migration of mesenchymal stem cells via ROCK2/Myosin light chain signaling. Chin J Nat Med 2020; 17:506-516. [PMID: 31514982 DOI: 10.1016/s1875-5364(19)30072-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 12/24/2022]
Abstract
MSC transplantation has been explored as a new clinical approach to stem cell-based therapies for bone diseases in regenerative medicine due to their osteogenic capability. However, only a small population of implanted MSC could successfully reach the injured areas. Therefore, enhancing MSC migration could be a beneficial strategy to improve the therapeutic potential of cell transplantation. Catharmus tinctorius volatile oil (CTVO) was found to facilitate MSC migration. Further exploration of the underlying molecular mechanism participating in the pro-migratory ability may provide a novel strategy to improve MSC transplantation efficacy. This study indicated that CTVO promotes MSC migration through enhancing ROCK2 mRNA and protein expressions. MSC migration induced by CTVO was blunted by ROCK2 inhibitor, which also decreased myosin light chain (MLC) phosphorylation. Meanwhile, the siRNA for ROCK2 inhibited the effect of CTVO on MSC migration ability and attenuated MLC phosphorylation, suggesting that CTVO may promote BMSC migration via the ROCK2/MLC signaling. Taken together, this study indicates that C. tinctorius volatile oil could enhance MSC migration via ROCK2/MLC signaling in vitro. C. tinctorius volatile oil-targeted therapy could be a beneficial strategy to improve the therapeutic potential of cell transplantation for bone diseases in regenerative medicine.
Collapse
|
30
|
Baudy AR, Otieno MA, Hewitt P, Gan J, Roth A, Keller D, Sura R, Van Vleet TR, Proctor WR. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. LAB ON A CHIP 2020; 20:215-225. [PMID: 31799979 DOI: 10.1039/c9lc00768g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.
Collapse
Affiliation(s)
| | - Monicah A Otieno
- Janssen Pharmaceutical Research and Development, Spring House, PA, USA
| | | | - Jinping Gan
- Bristol-Myers Squibb, New York City, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Weaver RJ, Valentin JP. Today's Challenges to De-Risk and Predict Drug Safety in Human "Mind-the-Gap". Toxicol Sci 2020; 167:307-321. [PMID: 30371856 DOI: 10.1093/toxsci/kfy270] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Current gaps in drug safety sciences can result from the inability (1) to identify hazard across multiple target organs, (2) to predict and risk assess with certainty against drug safety liabilities for the major target organs, (3) to optimally manage and mitigate against drug safety liabilities, and (4) to apply principles of governance on the generation, integration, and use of experimental data. Translational safety assessment to evaluate several target-organ drug toxicities can only be partially achieved by use of current in vitro and in vivo test systems. What remains to be tackled necessitates the deployment of in vitro-human-relevant test systems to address human specific or selective forms of toxicities. Nevertheless, such models may only address in part some of the requirements in today's armament of biomedical tools essential for improving the discovery of drug candidates. Refinement of in silico tools, Target Safety Assessment and a greater understanding of mechanistic insights of toxicities might provide future opportunities to better identify drug safety liabilities. The increasing diversity of drug modalities present further challenges for nonclinical and clinical development requiring further research to develop suitable test systems and technologies. Our ability to optimally manage and mitigate safety risk will come from the greater refinement of safety margin estimates, provision and use of human-relevant safety biomarkers, and understanding of the translation from in silico, in vitro, and in vivo studies to human. An improvement of governance frameworks and standards at all levels within organizations, national, and international, can only help facilitate drug discovery and development programs.
Collapse
Affiliation(s)
| | - Jean-Pierre Valentin
- Investigative Toxicology, Development Science, UCB Biopharma SPRL, B-1420 Braine-l'Alleud, Belgium
| |
Collapse
|
32
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
33
|
Deferm N, De Vocht T, Qi B, Van Brantegem P, Gijbels E, Vinken M, de Witte P, Bouillon T, Annaert P. Current insights in the complexities underlying drug-induced cholestasis. Crit Rev Toxicol 2019; 49:520-548. [PMID: 31589080 DOI: 10.1080/10408444.2019.1635081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cholestasis (DIC) poses a major challenge to the pharmaceutical industry and regulatory agencies. It causes both drug attrition and post-approval withdrawal of drugs. DIC represents itself as an impaired secretion and flow of bile, leading to the pathological hepatic and/or systemic accumulation of bile acids (BAs) and their conjugate bile salts. Due to the high number of mechanisms underlying DIC, predicting a compound's cholestatic potential during early stages of drug development remains elusive. A profound understanding of the different molecular mechanisms of DIC is, therefore, of utmost importance. Although many knowledge gaps and caveats still exist, it is generally accepted that alterations of certain hepatobiliary membrane transporters and changes in hepatocellular morphology may cause DIC. Consequently, liver models, which represent most of these mechanisms, are valuable tools to predict human DIC. Some of these models, such as membrane-based in vitro models, are exceptionally well-suited to investigate specific mechanisms (i.e. transporter inhibition) of DIC, while others, such as liver slices, encompass all relevant biological processes and, therefore, offer a better representation of the in vivo situation. In the current review, we highlight the principal molecular mechanisms associated with DIC and offer an overview and critical appraisal of the different liver models that are currently being used to predict the cholestatic potential of drugs.
Collapse
Affiliation(s)
- Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Tom De Vocht
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Bing Qi
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Eva Gijbels
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Bouillon
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Penman SL, Sharma P, Aerts H, Park BK, Weaver RJ, Chadwick AE. Differential toxic effects of bile acid mixtures in isolated mitochondria and physiologically relevant HepaRG cells. Toxicol In Vitro 2019; 61:104595. [PMID: 31288073 PMCID: PMC6853172 DOI: 10.1016/j.tiv.2019.104595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Bile acids (BAs) are recognised as the causative agents of toxicity in drug-induced cholestasis (DIC). Research in isolated mitochondria and HepG2 cells have demonstrated BA-mediated mitochondrial dysfunction as a key mechanism of toxicity in DIC. However, HepG2 cells are of limited suitability for DIC studies as they do not express the necessary physiological characteristics. In this study, the mitotoxic potentials of BA mixtures were assessed in isolated mitochondria and a better-suited hepatic model, HepaRG cells. BAs induced structural alterations and a loss of mitochondrial membrane potential (MMP) in isolated mitochondria however, this toxicity did not translate to HepaRG cells. There were no changes in oxygen consumption rate, MMP or ATP levels in glucose and galactose media, indicating that there was no direct mitochondrial toxicity mediated via electron transport chain dysfunction in HepaRG cells. Assessment of key biliary transporters revealed that there was a time-dependent reduction in the expression and activity of multi-drug resistance protein 2 (MRP2), which was consistent with the induction of cytotoxicity in HepaRG cells. Overall, the findings from this study have demonstrated that mitochondrial dysfunction is not a mechanism of BA-induced toxicity in HepaRG cells. HepaRG cells are a better suited in vitro model for cholestatic studies than HepG2 cell. Bile acids cause mitochondrial toxicity in isolated mitochondria but not in HepaRG cells. Time-dependent alterations in biliary transporters are consistent with the cytotoxicity of bile acid mixtures. There are important mechanistic differences when bile acids interact at the organelle level versus the whole cell.
Collapse
Affiliation(s)
- Sophie L Penman
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Parveen Sharma
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Hélène Aerts
- Biologie Servier, 905 Rue de Saran, 45520 Gidy, France
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Richard J Weaver
- Institute de Recherches Internationales Servier, Biopharmacy, rue Carnot, 92284 Suresnes, France
| | - Amy E Chadwick
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
35
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
36
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
37
|
Burban A, Sharanek A, Humbert L, Eguether T, Guguen-Guillouzo C, Rainteau D, Guillouzo A. Predictive Value of Cellular Accumulation of Hydrophobic Bile Acids As a Marker of Cholestatic Drug Potential. Toxicol Sci 2019; 168:474-485. [DOI: 10.1093/toxsci/kfz009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Audrey Burban
- INSERM U1241, Numecan, Rennes, France
- University of Rennes 1, Rennes, France
| | - Ahmad Sharanek
- INSERM U1241, Numecan, Rennes, France
- University of Rennes 1, Rennes, France
| | - Lydie Humbert
- ERL INSERM U1157/UMR7203, Faculty of Medicine Pierre et Marie Curie Saint Antoine, Paris, France
| | - Thibaut Eguether
- ERL INSERM U1157/UMR7203, Faculty of Medicine Pierre et Marie Curie Saint Antoine, Paris, France
| | | | - Dominique Rainteau
- ERL INSERM U1157/UMR7203, Faculty of Medicine Pierre et Marie Curie Saint Antoine, Paris, France
| | - André Guillouzo
- INSERM U1241, Numecan, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
38
|
Abstract
Cholestasis can be defined as any situation of impaired bile secretion with concomitant accumulation of bile acids in the liver or in the systemic circulation. A variety of factors may evoke cholestasis, including genetic disorders, metabolic pathologies, infectious diseases, immunogenic stimuli, and drugs. Drug-induced cholestasis is a mechanistically complex process. At least three triggering factors of drug-induced cholestasis have been described, including effects on drug transporters, various hepatocellular changes, and altered bile canaliculi dynamics. These stimuli induce two cellular responses, each typified by a number of key events, namely a deteriorative response activated by bile acid accumulation and an adaptive response aimed at decreasing the uptake and increasing the export of bile acids into and from the liver, respectively. The mechanistic scenario of drug-induced cholestasis is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
39
|
Mayati A, Moreau A, Le Vée M, Bruyère A, Jouan E, Denizot C, Parmentier Y, Fardel O. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Sci Rep 2018; 8:16115. [PMID: 30382126 PMCID: PMC6208432 DOI: 10.1038/s41598-018-34421-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 02/04/2023] Open
Abstract
HepaRG is an original human hepatoma cell line, acquiring highly differentiated hepatic features when exposed to dimethylsulfoxide (DMSO). To search alternatives to DMSO, which may exert some toxicity, we have analyzed the effects of forskolin (FSK), a cAMP-generating agent known to favor differentiation of various cell types. FSK used at 50 µM for 3 days was found to promote polarization of high density-plated HepaRG cells, i.e., it markedly enhanced the formation of functional biliary canaliculi structures. It also increased expressions of various hepatic markers, including those of cytochrome P-450 (CYP) 3A4, of drug transporters like NTCP, OATP2B1 and BSEP, and of metabolism enzymes like glucose 6-phosphatase. In addition, FSK-treated HepaRG cells displayed enhanced activities of CYP3A4, NTCP and OATPs when compared to untreated cells. These polarizing/differentiating effects of FSK were next shown to reflect not only the generation of cAMP, but also the activation of the xenobiotic sensing receptors PXR and FXR by FSK. Co-treatment of HepaRG cells by the cAMP analog Sp-5,6-DCl-cBIMPS and the reference PXR agonist rifampicin reproduced the polarizing effects of FSK. Therefore, FSK may be considered as a relevant alternative to DMSO for getting polarized and differentiated HepaRG cells, notably for pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Amélie Moreau
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Claire Denizot
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Yannick Parmentier
- Centre de Recherche en Pharmacocinétique, Technologie Servier, F-45000, Orléans, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France. .,Pôle Biologie, Centre Hospitalier Universitaire, F-35033, Rennes, France.
| |
Collapse
|
40
|
Efficient functional cyst formation of biliary epithelial cells using microwells for potential bile duct organisation in vitro. Sci Rep 2018; 8:11086. [PMID: 30038407 PMCID: PMC6056467 DOI: 10.1038/s41598-018-29464-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
Establishing a bile duct in vitro is valuable to obtain relevant hepatic tissue culture systems for cell-based assays in chemical and drug metabolism analyses. The cyst constitutes the initial morphogenesis for bile duct formation from biliary epithelial cells (BECs) and serves the main building block of bile duct network morphogenesis from the ductal plate during embryogenesis in rodents. Cysts have been commonly cultured via Matrigel-embedded culture, which does not allow structural organisation and restricts the productivity and homogeneity of cysts. In this study, we propose a new method utilising oxygen permeable honeycomb microwells for efficient cyst establishment. Primary mouse BECs were seeded on four sizes of honeycomb microwell (46, 76, 126, and 326 µm-size in diameter). Matrigel in various concentrations was added to assist in cyst formation. The dimension accommodated by microwells was shown to play an important role in effective cyst formation. Cytological morphology, bile acid transportation, and gene expression of the cysts confirmed the favourable basic bile duct function compared to that obtained using Matrigel-embedded culture. Our method is expected to contribute to engineered in vitro liver tissue formation for cell-based assays.
Collapse
|
41
|
Vinken M. In vitro prediction of drug-induced cholestatic liver injury: a challenge for the toxicologist. Arch Toxicol 2018; 92:1909-1912. [PMID: 29574564 PMCID: PMC6084771 DOI: 10.1007/s00204-018-2201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
42
|
Bell CC, Dankers ACA, Lauschke VM, Sison-Young R, Jenkins R, Rowe C, Goldring CE, Park K, Regan SL, Walker T, Schofield C, Baze A, Foster AJ, Williams DP, van de Ven AWM, Jacobs F, van Houdt J, Lähteenmäki T, Snoeys J, Juhila S, Richert L, Ingelman-Sundberg M. Comparison of Hepatic 2D Sandwich Cultures and 3D Spheroids for Long-term Toxicity Applications: A Multicenter Study. Toxicol Sci 2018; 162:655-666. [PMID: 29329425 PMCID: PMC5888952 DOI: 10.1093/toxsci/kfx289] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary human hepatocytes (PHHs) are commonly used for in vitro studies of drug-induced liver injury. However, when cultured as 2D monolayers, PHH lose crucial hepatic functions within hours. This dedifferentiation can be ameliorated when PHHs are cultured in sandwich configuration (2Dsw), particularly when cultures are regularly re-overlaid with extracellular matrix, or as 3D spheroids. In this study, the 6 participating laboratories evaluated the robustness of these 2 model systems made from cryopreserved PHH from the same donors considering both inter-donor and inter-laboratory variability and compared their suitability for use in repeated-dose toxicity studies using 5 different hepatotoxins with different toxicity mechanisms. We found that expression levels of proteins involved in drug absorption, distribution, metabolism, and excretion, as well as catalytic activities of 5 different CYPs, were significantly higher in 3D spheroid cultures, potentially affecting the exposure of the cells to drugs and their metabolites. Furthermore, global proteomic analyses revealed that PHH in 3D spheroid configuration were temporally stable whereas proteomes from the same donors in 2Dsw cultures showed substantial alterations in protein expression patterns over the 14 days in culture. Overall, spheroid cultures were more sensitive to the hepatotoxic compounds investigated, particularly upon long-term exposures, across testing sites with little inter-laboratory or inter-donor variability. The data presented here suggest that repeated-dosing regimens improve the predictivity of in vitro toxicity assays, and that PHH spheroids provide a sensitive and robust system for long-term mechanistic studies of drug-induced hepatotoxicity, whereas the 2Dsw system has a more dedifferentiated phenotype and lower sensitivity to detect hepatotoxicity.
Collapse
Affiliation(s)
- Catherine C Bell
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anita C A Dankers
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Roz Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Cliff Rowe
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Chris E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Sophie L Regan
- Safety and ADME Translational Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Tracy Walker
- Investigative Safety & Drug Metabolism, GlaxoSmithKline Research and Development, Ware, UK
| | | | - Audrey Baze
- KaLy Cell, Plobsheim, France
- UNISTRA, Strasbourg, France
| | - Alison J Foster
- Safety and ADME Translational Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Dominic P Williams
- Safety and ADME Translational Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Amy W M van de Ven
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Frank Jacobs
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Jos van Houdt
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | - Jan Snoeys
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Satu Juhila
- In Vitro Biology, Orion Pharma, Espoo, Finland
| | - Lysiane Richert
- KaLy Cell, Plobsheim, France
- PEPITE EA4267, University of Bourgogne Franche-Comté, Besançon, France
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Burbank MG, Sharanek A, Burban A, Mialanne H, Aerts H, Guguen-Guillouzo C, Weaver RJ, Guillouzo A. From the Cover: MechanisticInsights in Cytotoxic and Cholestatic Potential of the Endothelial Receptor Antagonists Using HepaRG Cells. Toxicol Sci 2018; 157:451-464. [PMID: 28369585 DOI: 10.1093/toxsci/kfx062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several endothelin receptor antagonists (ERAs) have been developed for the treatment of pulmonary arterial hypertension (PAH). Some of them have been related to clinical cases of hepatocellular injury (sitaxentan [SIT]) and/or cholestasis (bosentan [BOS]). We aimed to determine if ambrisentan (AMB) and macitentan (MAC), in addition to BOS and SIT, could potentially cause liver damage in man by use of human HepaRG cells. Our results showed that like BOS, MAC-induced cytotoxicity and cholestatic disorders characterized by bile canaliculi dilatation and impairment of myosin light chain kinase signaling. Macitentan also strongly inhibited taurocholic acid and carboxy-2',7'-dichlorofluorescein efflux while it had a much lower inhibitory effect on influx activity compared to BOS and SIT. Moreover, these three drugs caused decreased intracellular accumulation and parallel increased levels of total bile acids (BAs) in serum-free culture media. In addition, all drugs except AMB variably deregulated gene expression of BA transporters. In contrast, SIT was hepatotoxic without causing cholestatic damage, likely via the formation of reactive metabolites and AMB was not hepatotoxic. Together, our results show that some ERAs can be hepatotoxic and that the recently marketed MAC, structurally similar to BOS, can also cause cholestatic alterations in HepaRG cells. The absence of currently known or suspected cases of cholestasis in patients suffering from PAH treated with MAC is rationalized by the lower therapeutic doses and Cmax, and longer receptor residence time compared to BOS.
Collapse
Affiliation(s)
- Matthew Gibson Burbank
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France.,Biologie Servier, Gidy, France
| | - Ahmad Sharanek
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France
| | - Audrey Burban
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France
| | | | | | | | | | - André Guillouzo
- Inserm UMR 991, Foie, Métabolismes et Cancer, Rennes, France.,Université Rennes 1, Rennes, France
| |
Collapse
|
44
|
Luo X, Gupta K, Ananthanarayanan A, Wang Z, Xia L, Li A, Sakban RB, Liu S, Yu H. Directed Differentiation of Adult Liver Derived Mesenchymal Like Stem Cells into Functional Hepatocytes. Sci Rep 2018; 8:2818. [PMID: 29434311 PMCID: PMC5809507 DOI: 10.1038/s41598-018-20304-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Shortage of functional hepatocytes hampers drug safety testing and therapeutic applications because mature hepatocytes cannot be expanded and maintain functions in vitro. Recent studies have reported that liver progenitor cells can originate from mature hepatocytes in vivo. Derivation of proliferating progenitor cells from mature hepatocytes, and re-differentiation into functional hepatocytes in vitro has not been successful. Here we report the derivation of novel mesenchymal-like stem cells (arHMSCs) from adult rat hepatocytes. Immunofluorescence and flow cytometry characterization of arHMSCs found expression of mesenchymal markers CD29, CD44, CD90, vimentin and alpha smooth muscle actin. These arHMSCs proliferated in vitro for 4 passages yielding 104 fold increase in cell number in 28 days, and differentiated into hepatocyte-like cells (arHMSC-H). The arHMSC-H expressed significantly higher level of hepatocyte-specific markers (200 fold for albumin and 6 fold for Cyp450 enzymes) than arHMSCs. The arHMSC-H also demonstrated dose response curves similar to primary hepatocytes for 3 of the 6 paradigm hepatotoxicants tested, demonstrating utility in drug safety testing applications.
Collapse
Affiliation(s)
- Xiaobei Luo
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Kapish Gupta
- Mechanobiology Institute, National University of, Singapore, Singapore
| | - Abhishek Ananthanarayanan
- Invitrocue Pte Ltd, Singapore, Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore
| | - Zenan Wang
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Xia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aimin Li
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China
| | - Rashidah Binte Sakban
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Side Liu
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China.
| | - Hanry Yu
- Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, China. .,Mechanobiology Institute, National University of, Singapore, Singapore. .,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,BioSyM, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore.
| |
Collapse
|
45
|
Burban A, Sharanek A, Guguen-Guillouzo C, Guillouzo A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 2018; 115:166-178. [PMID: 29191461 DOI: 10.1016/j.freeradbiomed.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.
Collapse
Affiliation(s)
- Audrey Burban
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | - Ahmad Sharanek
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | | | - André Guillouzo
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France.
| |
Collapse
|
46
|
Sharanek A, Burban A, Humbert L, Guguen-Guillouzo C, Rainteau D, Guillouzo A. Progressive and Preferential Cellular Accumulation of Hydrophobic Bile Acids Induced by Cholestatic Drugs Is Associated with Inhibition of Their Amidation and Sulfation. Drug Metab Dispos 2017; 45:1292-1303. [PMID: 28928138 DOI: 10.1124/dmd.117.077420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/12/2017] [Indexed: 02/13/2025] Open
Abstract
Drug-induced intrahepatic cholestasis is characterized by cellular accumulation of bile acids (BAs), whose mechanisms remain poorly understood. The present study aimed to analyze early and progressive alterations of BA profiles induced by cyclosporine A, chlorpromazine, troglitazone, tolcapone, trovafloxacin, and tacrolimus after 4-hour, 24-hour, and 6-day treatments of differentiated HepaRG cells. In BA-free medium, the potent cholestatic drugs cyclosporine A, chlorpromazine, and troglitazone reduced endogenous BA synthesis after 24 hours, whereas the rarely cholestatic drugs tolcapone, trovafloxacin, and tacrolimus reduced BA synthesis only after 6 days. In the presence of physiologic serum BA concentrations, cyclosporine A, chlorpromazine, and troglitazone induced early and preferential cellular accumulation of unconjugated lithocholic, deoxycholic, and chenodeoxycholic acids that increased 8- to 12-fold and 47- to 50-fold after 24 hours and 6 days, respectively. Accumulation of these hydrophobic BAs resulted from strong inhibition of amidation, and in addition, for lithocholic acid reduction of its sulfoconjugation, and was associated with variable alterations of uptake and efflux transporters. Trovafloxacin also caused BA accumulation, especially after 6 days, whereas tolcapone and tacrolimus were still without effect. However, when exogenous BAs were added to the medium at cholestatic serum concentrations, a 6-day treatment with all drugs resulted in cellular BA accumulation with higher folds of chenodeoxycholic and lithocholic acids. At the tested concentration, tolcapone had the lowest effect. These results bring the first demonstration that major cholestatic drugs can cause preferential and progressive in vitro cellular accumulation of unconjugated toxic hydrophobic BAs and bring new insights into mechanisms involved in drug-induced cellular accumulation of toxic BAs.
Collapse
Affiliation(s)
- Ahmad Sharanek
- INSERM UMR991/1241, Liver Metabolism and Cancer/Numecan, Rennes, France (A.S., A.B., C.G.-G., A.G.); Université de Rennes 1, Rennes, France (A.S., A.B., C.G.-G., A.G.); and ERL INSERM U1157/UMR7203, Faculté de Médecine Pierre et Marie Curie, Site Saint Antoine, Paris, France (L.H., D.R.)
| | - Audrey Burban
- INSERM UMR991/1241, Liver Metabolism and Cancer/Numecan, Rennes, France (A.S., A.B., C.G.-G., A.G.); Université de Rennes 1, Rennes, France (A.S., A.B., C.G.-G., A.G.); and ERL INSERM U1157/UMR7203, Faculté de Médecine Pierre et Marie Curie, Site Saint Antoine, Paris, France (L.H., D.R.)
| | - Lydie Humbert
- INSERM UMR991/1241, Liver Metabolism and Cancer/Numecan, Rennes, France (A.S., A.B., C.G.-G., A.G.); Université de Rennes 1, Rennes, France (A.S., A.B., C.G.-G., A.G.); and ERL INSERM U1157/UMR7203, Faculté de Médecine Pierre et Marie Curie, Site Saint Antoine, Paris, France (L.H., D.R.)
| | - Christiane Guguen-Guillouzo
- INSERM UMR991/1241, Liver Metabolism and Cancer/Numecan, Rennes, France (A.S., A.B., C.G.-G., A.G.); Université de Rennes 1, Rennes, France (A.S., A.B., C.G.-G., A.G.); and ERL INSERM U1157/UMR7203, Faculté de Médecine Pierre et Marie Curie, Site Saint Antoine, Paris, France (L.H., D.R.)
| | - Dominique Rainteau
- INSERM UMR991/1241, Liver Metabolism and Cancer/Numecan, Rennes, France (A.S., A.B., C.G.-G., A.G.); Université de Rennes 1, Rennes, France (A.S., A.B., C.G.-G., A.G.); and ERL INSERM U1157/UMR7203, Faculté de Médecine Pierre et Marie Curie, Site Saint Antoine, Paris, France (L.H., D.R.)
| | - André Guillouzo
- INSERM UMR991/1241, Liver Metabolism and Cancer/Numecan, Rennes, France (A.S., A.B., C.G.-G., A.G.); Université de Rennes 1, Rennes, France (A.S., A.B., C.G.-G., A.G.); and ERL INSERM U1157/UMR7203, Faculté de Médecine Pierre et Marie Curie, Site Saint Antoine, Paris, France (L.H., D.R.)
| |
Collapse
|
47
|
Kaschek D, Sharanek A, Guillouzo A, Timmer J, Weaver RJ. A Dynamic Mathematical Model of Bile Acid Clearance in HepaRG Cells. Toxicol Sci 2017; 161:48-57. [DOI: 10.1093/toxsci/kfx199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
48
|
Penicillinase-resistant antibiotics induce non-immune-mediated cholestasis through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways. Sci Rep 2017; 7:1815. [PMID: 28500348 PMCID: PMC5431934 DOI: 10.1038/s41598-017-01171-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
Abstract
The penicillinase-resistant antibiotics (PRAs), especially the highly prescribed flucloxacillin, caused frequent liver injury via mechanisms that remain largely non-elucidated. We first showed that flucloxacillin, independently of cytotoxicity, could exhibit cholestatic effects in human hepatocytes in the absence of an immune reaction, that were typified by dilatation of bile canaliculi associated with impairment of the Rho-kinase signaling pathway and reduced bile acid efflux. Then, we analyzed the sequential molecular events involved in flucloxacillin-induced cholestasis. A crucial role of HSP27 by inhibiting Rho-kinase activity was demonstrated using siRNA and the specific inhibitor KRIBB3. HSP27 activation was dependent on the PKC/P38 pathway, and led downstream to activation of the PI3K/AKT pathway. Other PRAs induced similar cholestatic effects while non PRAs were ineffective. Our results demonstrate that PRAs can induce cholestatic features in human hepatocytes through HSP27 activation associated with PKC/P38 and PI3K/AKT signaling pathways and consequently support the conclusion that in clinic they can cause a non-immune-mediated cholestasis that is not restricted to patients possessing certain genetic determinants.
Collapse
|