1
|
Tantra T, Singh Y, Patekar R, Kulkarni S, Kumar P, Thareja S. Phosphate Prodrugs: An Approach to Improve the Bioavailability of Clinically Approved Drugs. Curr Med Chem 2024; 31:336-357. [PMID: 36757029 DOI: 10.2174/0929867330666230209094738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 02/10/2023]
Abstract
The phosphate prodrug approach has emerged as a viable option for increasing the bioavailability of a drug candidate with low hydrophilicity and poor cell membrane permeability. When a phosphoric acid moiety is attached to the parent drug, it results in a several-fold elevation in aqueous solubility which helps to achieve desired bioavailability of the pharmaceutically active parental molecule. The neutral phosphate prodrugs have rapid diffusion ability through the plasma membrane as compared to their charged counterpart. The presence of phosphate mono ester breaking alkaline phosphatase (ALP) enzyme throughout the whole human body, is the main consideration behind the development of phosphate prodrug strategy. The popularity of this phosphate prodrug strategy is increasing nowadays due to the fulfillment of different desired pharmacokinetic characteristics required to get pharmaceutical and therapeutic responses without showing any serious adverse drug reactions (ADR). This review article mainly focuses on various phosphate prodrugs synthesized within the last decade to get an improved pharmacological response of the parent moiety along with various preclinical and clinical challenges associated with this approach. Emphasis is also given to the chemical mechanism to release the parent moiety from the prodrug.
Collapse
Affiliation(s)
- Tanmoy Tantra
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rohan Patekar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| |
Collapse
|
2
|
van der Vlies AJ, Ghasemi M, Adair BM, Adair JH, Gomez ED, Hasegawa U. Reactive Oxygen Species-Triggered Hydrogen Sulfide Release and Cancer-Selective Antiproliferative Effect of Anethole Dithiolethione-Containing Polymeric Micelles. Adv Healthc Mater 2023; 12:e2201836. [PMID: 36495554 PMCID: PMC10125727 DOI: 10.1002/adhm.202201836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen sulfide (H2 S) is a gaseous signaling molecule in the human body and has attracted attention in cancer therapy due to its regulatory roles in cancer cell proliferation and migration. Accumulating evidence suggests that continuous delivery of H2 S to cancer cells for extended periods of time suppresses cancer progression. However, one major challenge in therapeutic applications of H2 S is its controlled delivery. To solve this problem, polymeric micelles are developed containing H2 S donating-anethole dithiolethione (ADT) groups, with H2 S release profiles optimal for suppressing cancer cell proliferation. The micelles release H2 S upon oxidation by reactive oxygens species (ROS) that are present inside the cells. The H2 S release profiles can be controlled by changing the polymer design. Furthermore, the micelles that show a moderate H2 S release rate exert the strongest anti-proliferative effect in human colon cancer cells in in vitro assays as well as the chick chorioallantoic membrane cancer model, while the micelles do not affect proliferation of human umbilical vein endothelial cells. This study shows the importance of fine-tuning H2 S release profiles using a micelle approach for realizing the full therapeutic potential of H2 S in cancer treatment.
Collapse
Affiliation(s)
- André J van der Vlies
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Masoud Ghasemi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernadette M Adair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - James H Adair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Bioengineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Pharmacology, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Enrique D Gomez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Urara Hasegawa
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
4
|
Chen JJY, van der Vlies AJ, Hasegawa U. Hydrogen sulfide-releasing micelles for promoting angiogenesis. Polym Chem 2020; 11:4454-4463. [PMID: 33796157 PMCID: PMC8009299 DOI: 10.1039/d0py00495b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen sulfide (H2S), an important gaseous signalling molecule in the human body, has been shown to be involved in many physiological processes such as angiogenesis. Since the biological activities of H2S are known to be significantly affected by the dose and exposure duration, the development of H2S delivery systems that enable control of H2S release is critical for exploring its therapeutic potential. Here, we prepared polymeric micelles with different H2S release profiles, which were prepared from amphiphilic block copolymers consisting of a hydrophilic poly(N-acryloyl morpholine) segment and a hydrophobic segment containing H2S-releasing anethole dithiolethione (ADT) groups. The thermodynamic stability of the micelles was modulated by altering the ADT content of the polymers. The micelles with higher thermodynamic stability showed significantly slower H2S release. Furthermore, the sustained H2S release from the micelles enhanced migration and tube formation in human umbilical vein cells (HUVECs) and induced vascularlization in the in ovo chick chorioallantoic membrane (CAM) assay.
Collapse
Affiliation(s)
- Jerry J. Y. Chen
- Osaka University, Department of Applied Chemistry, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - A. J. van der Vlies
- Kansas State University, Tim Taylor Department of Chemical Engineering, 1005 Durland Hall, 66506, Manhattan Kansas, USA
| | - U. Hasegawa
- Kansas State University, Tim Taylor Department of Chemical Engineering, 1005 Durland Hall, 66506, Manhattan Kansas, USA
| |
Collapse
|
5
|
Dali MM, Dansette PM, Mansuy D, Boucher JL. Comparison of Various Aryl-Dithiolethiones and Aryl-Dithiolones As Hydrogen Sulfide Donors in the Presence of Rat Liver Microsomes. Drug Metab Dispos 2020; 48:426-431. [PMID: 32234734 DOI: 10.1124/dmd.119.090274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
It has been reported that microsomal metabolism of ADT (5-(p-methoxyphenyl)-3H-1,2-dithiole-3-thione, anetholedithiolethione, Sulfarlem) and ADO (5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one, anetholedithiolone) led to formation of H2S mainly derived from oxidations catalyzed by cytochrome P450-dependent monooxygenases and that ADO was a better H2S donor than ADT under these conditions. This article compares the H2S donor abilities of 18 dithiolethione and dithiolone analogs of ADT and ADO upon incubation with rat liver microsomes. It shows that, for all the studied compounds, maximal H2S formation was obtained after incubation with microsomes and NADPH and that this formation greatly decreased in the presence of N-benzylimidazole, a known inhibitor of cytochrome P450. This indicates that H2S formation from all the studied compounds requires, as previously observed in the case of ADT and ADO, oxidations catalyzed by cytochrome P450-dependent monooxygenases. Under these conditions, the studied dithiolones were almost always better H2S donors than the corresponding dithiolethiones. Interestingly, the best H2S yields (up to 75%) were observed in microsomal oxidation of ADO and its close analogs, pCl-Ph-DO and Ph-DO, in the presence of glutathione (GSH), whereas only small amounts of H2S were formed in microsomal incubations of those compounds with GSH but in the absence of NADPH. A possible mechanism for this effect of GSH is proposed on the basis of results obtained from reactions of GSH with 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one-1-sulfoxide, the ADO metabolite involved in H2S formation in microsomal oxidation of ADO. SIGNIFICANCE STATEMENT: A series of 18 dithiolethiones and dithiolones were compared for their ability to form hydrogen sulfide (H2S) in oxidations catalyzed by microsomal monooxygenases. The studied dithiolones were better H2S donors than the corresponding dithiolethiones, and the addition of glutathione to the incubations strongly increased H2S formation. A possible mechanism for this effect of GSH is proposed on the basis of results obtained from reactions of GSH with 5-(p-methoxyphenyl)-3H-1,2-dithiole-3-one-1-sulfoxide, a metabolite of the choleretic and sialologic drug Sulfarlem.
Collapse
Affiliation(s)
- Madou-Marilyn Dali
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Patrick M Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| |
Collapse
|
6
|
Huang S, Dong R, Xu G, Liu J, Gao X, Yu S, Qie P, Gou G, Hu M, Wang Y, Peng J, Guang B, Xu Y, Yang T. Synthesis, Characterization, and In Vivo Evaluation of Desmethyl Anethole Trithione Phosphate Prodrug for Ameliorating Cerebral Ischemia-Reperfusion Injury in Rats. ACS OMEGA 2020; 5:4595-4602. [PMID: 32175506 PMCID: PMC7066653 DOI: 10.1021/acsomega.9b04129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Anethol trithione (ATT) has a wide range of physiological activities, but its use is limited due to its poor water solubility. To improve the solubility of ATT, we synthesized and characterized a novel phosphate prodrug (ATXP) relying on the availability of the hydroxy group in 5-(4-hydroxyphenyl)-3H-1,2-dithiole3-thione (ATX), which was transformed from ATT rapidly and extensively in vivo. Our results showed that ATXP significantly improved drug solubility. ATXP was rapidly converted to ATX and reached a maximum plasma concentration with a T max of approximately 5 min after intravenous (iv) administration. Furthermore, after the oral administration of ATXP, the C max was 3326.30 ± 566.50 ng/mL, which was approximately 5-fold greater than that of the parent drug form, indicating that ATXP has greater absorption than that of ATT. Additionally, the oral phosphate prodrug ATXP increased the ATX in the area under the plasma concentration vs time curves (AUC0-t = 3927.40 ± 321.50 and AUC0-∞ = 4579.0 ± 756.30), making its use in practical applications more meaningful. Finally, compared to the vehicle, ATXP was confirmed to maintain the bioactivity of the parent drug for a significant reduction in infarct volume 24 h after reperfusion. Based on these findings, the phosphate prodrug ATXP is a potentially useful water-soluble prodrug with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Sheng Huang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Renhan Dong
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
- Chengdu
Beinuokecheng Biotechnology Co., Ltd., No. 88, Keyuan South Road, New and High-Tech Zone, Chengdu 610094, Sichuan, China
| | - Gaojie Xu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Jin Liu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Xiaofang Gao
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Siqi Yu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Pengfan Qie
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Gang Gou
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Min Hu
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Yu Wang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Jian Peng
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| | - Bing Guang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
- Chengdu
Beinuokecheng Biotechnology Co., Ltd., No. 88, Keyuan South Road, New and High-Tech Zone, Chengdu 610094, Sichuan, China
| | - Ying Xu
- The
First Affiliated Hospital, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Tai Yang
- School
of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, Sichuan, China
| |
Collapse
|
7
|
Deng X, Wang N, Meng L, Zhou S, Huang J, Xing J, He L, Jiang W, Li Q. Optimization of the benzamide fragment targeting the S 2' site leads to potent dipeptidyl peptidase-IV inhibitors. Bioorg Chem 2019; 94:103366. [PMID: 31640932 DOI: 10.1016/j.bioorg.2019.103366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
Abstract
Our recently successful identification of benzoic acid-based DPP-4 inhibitors spurs the further quest for in-depth structure-activity relationships (SAR) study in S2' site DPP-4. Thus novel benzamide fragments were designed to target the S2' site to compromise lipophilicity and improve oral activity. Exploring SAR by introduction of a variety of amide and halogen on benzene ring led to identification of several compounds, exerting moderated to excellent DPP-4 activities, in which 4'-chlorine substituted methyl amide 17g showed most potent DPP-4 activity with the IC50 value of 1.6 nM. Its activity was superior to reference alogliptin. Docking study ideally verified and interpreted the obtained SAR of designed compounds. As a continuation, DPP-8/9 assays revealed the designed compounds exhibited good selectivity over DPP-8 and DPP-9. Subsequent cell-based test indicated compound 17g displayed low toxicity toward the LO2 cell line up to 100 μM. In vivo evaluation showed compound 17g robustly improved the glucose tolerance in normal mice. Importantly, 17g exhibited reasonable pharmacokinetic (PK) profiles for oral delivery. Overall, compound 17g has the potential to a safe and efficacious DPP-4 inhibitor for T2DM treatment.
Collapse
Affiliation(s)
- Xiaoyan Deng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Na Wang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Liuwei Meng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Siru Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Junli Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Junhao Xing
- Department of Organic Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Linhong He
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Weizhe Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Qing Li
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
8
|
Dulac M, Nagarathinam C, Dansette P, Mansuy D, Boucher JL. Mechanism of H 2S Formation from the Metabolism of Anetholedithiolethione and Anetholedithiolone by Rat Liver Microsomes. Drug Metab Dispos 2019; 47:1061-1065. [PMID: 31213461 DOI: 10.1124/dmd.119.087205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/28/2022] Open
Abstract
The drug anetholedithiolethione (ADT) and its analogs have been extensively used as H2S donors. However, the mechanism of H2S formation from ADT under biologic conditions remains almost completely unknown. This article shows that only small amounts of H2S are formed during incubation of ADT and of its metabolite anetholedithiolone (ADO) with rat liver cytosol or with rat liver microsomes (RLM) in the absence of NADPH, indicating that H2S formation under these conditions is of hydrolytic origin only to a minor extent. By contrast, much greater amounts of H2S are formed upon incubation of ADT and ADO with RLM in the presence of NADPH and dioxygen, with a concomitant formation of H2S and para-methoxy-acetophenone (pMA). Moreover, H2S and pMA formation under those conditions are greatly inhibited in the presence of N-benzyl-imidazole indicating the involvement of cytochrome P450-dependent monooxygenases. Mechanistic studies show the intermediate formation of the ADT-derived 1,2-dithiolium cation and of the ADO sulfoxide during microsomal metabolism of ADT and ADO, respectively. This article proposes the first detailed mechanisms for the formation of H2S from microsomal metabolism of ADT and ADO in agreement with those data and with previously published data on the metabolism of compounds involving a C=S bond. Finally, this article shows for the first time that ADO is a better H2S donor than ADT under those conditions. SIGNIFICANCE STATEMENT: Incubation of anetholedithiolethione (ADT) or its metabolite anetholedithiolone (ADO) in the presence of rat liver microsomes, NADPH, and O2 leads to H2S. This article shows for the first time that this H2S formation involves several steps catalyzed by microsomal monooxygenases and that ADO is a better H2S donor than ADT. We propose the first detailed mechanisms for the formation of H2S from the microsomal metabolism of ADT and ADO.
Collapse
Affiliation(s)
- Martin Dulac
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Citra Nagarathinam
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Patrick Dansette
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Daniel Mansuy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, University Paris Descartes, Paris, France
| |
Collapse
|
9
|
Detaille D, Pasdois P, Sémont A, Dos Santos P, Diolez P. An old medicine as a new drug to prevent mitochondrial complex I from producing oxygen radicals. PLoS One 2019; 14:e0216385. [PMID: 31048932 PMCID: PMC6497312 DOI: 10.1371/journal.pone.0216385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Findings Here, we demonstrate that OP2113 (5-(4-Methoxyphenyl)-3H-1,2-dithiole-3-thione, CAS 532-11-6), synthesized and used as a drug since 1696, does not act as an unspecific antioxidant molecule (i.e., as a radical scavenger) but unexpectedly decreases mitochondrial reactive oxygen species (ROS/H2O2) production by acting as a specific inhibitor of ROS production at the IQ site of complex I of the mitochondrial respiratory chain. Studies performed on isolated rat heart mitochondria also showed that OP2113 does not affect oxidative phosphorylation driven by complex I or complex II substrates. We assessed the effect of OP2113 on an infarct model of ex vivo rat heart in which mitochondrial ROS production is highly involved and showed that OP2113 protects heart tissue as well as the recovery of heart contractile activity. Conclusion / Significance This work represents the first demonstration of a drug authorized for use in humans that can prevent mitochondria from producing ROS/H2O2. OP2113 therefore appears to be a member of the new class of mitochondrial ROS blockers (S1QELs) and could protect mitochondrial function in numerous diseases in which ROS-induced mitochondrial dysfunction occurs. These applications include but are not limited to aging, Parkinson’s and Alzheimer's diseases, cardiac atrial fibrillation, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dominique Detaille
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Philippe Pasdois
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Audrey Sémont
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Pierre Dos Santos
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- Centre Hospitalo-Universitaire de Bordeaux (CHU), Pôle Cardio-thoracique, Pessac, France
| | - Philippe Diolez
- IHU Liryc, L’institut de rythmologie et modélisation cardiaque, Fondation Bordeaux Université, Pessac-Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|