1
|
Finan B, Douros JD, Goldwater R, Hansen AMK, Hjerpsted JB, Hjøllund KR, Kankam MK, Knerr PJ, Konkar A, Mowery SA, Müller TD, Nielsen JR, Nygård SB, Perez-Tilve D, Raun K, Yang B, Tschöp MH, DiMarchi RD. A once-daily GLP-1/GIP/glucagon receptor tri-agonist (NN1706) lowers body weight in rodents, monkeys and humans. Mol Metab 2025; 96:102129. [PMID: 40139439 PMCID: PMC12051155 DOI: 10.1016/j.molmet.2025.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Single molecules that combine complementary modes of action with glucagon-like peptide-1 receptor (GLP-1R) agonism are best-in-class therapeutics for obesity treatment. NN1706 (MAR423, RO6883746) is a fatty-acylated tri-agonist designed for balanced activity at GLP-1R and glucose-dependent insulinotropic peptide receptor (GIPR) with lower relative potency at the glucagon receptor (GcgR). Obese mice, rats and non-human primates dosed with NN1706 showed significant body weight reductions and improved glycemic control. In human participants with overweight or obesity, daily subcutaneous NN1706 treatment resulted in substantial body weight loss in a dose-dependent manner without impairing glycemic control (NCT03095807, NCT03661879). However, increased heart rate was observed across NN1706 treatment cohorts, which challenges further clinical development of NN1706.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Novo Nordisk Research Center Boston, Boston, MA, USA
| | | | | | | | | | | | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Anish Konkar
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | | | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Matthias H Tschöp
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany; Helmholtz Munich, Neuherberg, Germany
| | | |
Collapse
|
2
|
Nørgaard RA, Bhatt DK, Järvinen E, Stage TB, Gabel-Jensen C, Galetin A, Säll C. Evaluating Drug-Drug Interaction Risk Associated with Peptide Analogs Using advanced In Vitro Systems. Drug Metab Dispos 2024; 52:1170-1180. [PMID: 38050097 DOI: 10.1124/dmd.123.001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 12/06/2023] Open
Abstract
Drug-drug interaction (DDI) assessment of therapeutic peptides is an evolving area. The industry generally follows DDI guidelines for small molecules, but the translation of data generated with commonly used in vitro systems to in vivo is sparse. In the current study, we investigated the ability of advanced human hepatocyte in vitro systems, namely HepatoPac, spheroids, and Liver-on-a-chip, to assess potential changes in regulation of CYP1A2, CYP2B6, CYP3A4, SLCO1B1, and ABCC2 in the presence of selected therapeutic peptides, proteins, and small molecules. The peptide NN1177, a glucagon and GLP-1 receptor co-agonist, did not suppress mRNA expression or activity of CYP1A2, CYP2B6, and CYP3A4 in HepatoPac, spheroids, or Liver-on-a-chip; these findings were in contrast to the data obtained in sandwich cultured hepatocytes. No effect of NN1177 on SLCO1B1 and ABCC2 mRNA was observed in any of the complex systems. The induction magnitude differed across the systems (e.g., rifampicin induction of CYP3A4 mRNA ranged from 2.8-fold in spheroids to 81.2-fold in Liver-on-a-chip). Small molecules, obeticholic acid and abemaciclib, showed varying responses in HepatoPac, spheroids, and Liver-on-a-chip, indicating a need for EC50 determinations to fully assess translatability data. HepatoPac, the most extensively investigated in this study (3 donors), showed high potential to investigate DDIs associated with CYP regulation by therapeutic peptides. Spheroids and Liver-on-a-chip were only assessed in one hepatocyte donor and further evaluations are required to confirm their potential. This study establishes an excellent foundation toward the establishment of more clinically-relevant in vitro tools for evaluation of potential DDIs with therapeutic peptides. SIGNIFICANT STATEMENT: At present, there are no guidelines for drug-drug interaction (DDI) assessment of therapeutic peptides. Existing in vitro methods recommended for assessing small molecule DDIs do not appear to translate well for peptide drugs, complicating drug development for these moieties. Here, we establish evidence that complex cellular systems have potential to be used as more clinically-relevant tools for the in vitro DDI evaluation of therapeutic peptides.
Collapse
Affiliation(s)
- Rune Aa Nørgaard
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Deepak K Bhatt
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Erkka Järvinen
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Tore B Stage
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Charlotte Gabel-Jensen
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Aleksandra Galetin
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| | - Carolina Säll
- Development ADME, Novo Nordisk A/S, Måløv, Denmark (R.A.N., D.K.B., C.G.-J., C.S.); Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark (E.J., T.B.S.); Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark (T.B.S.); and Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester, United Kingdom (A.G.)
| |
Collapse
|
3
|
Dallmann A, Teutonico D, Schaller S, Burghaus R, Frechen S. In-Depth Analysis of the Selection of PBPK Modeling Tools: Bibliometric and Social Network Analysis of the Open Systems Pharmacology Community. J Clin Pharmacol 2024; 64:1055-1067. [PMID: 38708848 DOI: 10.1002/jcph.2453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Since the Open Source Initiative laid the foundation for the open source software environment in 1998, the popularity of free and open source software has been steadily increasing. Model-informed drug discovery and development (MID3), a key component of pharmaceutical research and development, heavily makes use of computational models which can be developed using various software including the Open Systems Pharmacology (OSP) software (PK-Sim/MoBi), a free and open source software tool for physiologically based pharmacokinetic (PBPK) modeling. In this study, we aimed to investigate the impact, application areas, and reach of the OSP software as well as the relationships and collaboration patterns between organizations having published OSP-related articles between 2017 and 2023. Therefore, we conducted a bibliometric analysis of OSP-related publications and a social network analysis of the organizations with which authors of OSP-related publications were affiliated. On several levels, we found evidence for a significant growth in the size of the OSP community as well as its visibility in the MID3 community since OSP's establishment in 2017. Specifically, the annual publication rate of PubMed-indexed PBPK-related articles using the OSP software outpaced that of PBPK-related articles using any software. Our bibliometric analysis and network analysis demonstrated that the expansion of the OSP community was predominantly driven by new authors and organizations without prior connections to the community involving the generation of research clusters de novo and an overall diversification of the network. These findings suggest an ongoing evolution of the OSP community toward a more segmented, diverse, and inclusive network.
Collapse
Affiliation(s)
- André Dallmann
- Bayer HealthCare SAS, Loos, France
- Pharmacometrics/Modeling & Simulation, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Donato Teutonico
- Translational Medicine & Early Development, Sanofi-Aventis R&D, Vitry-sur-Seine, France
| | | | - Rolf Burghaus
- Pharmacometrics/Modeling & Simulation, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| | - Sebastian Frechen
- Pharmacometrics/Modeling & Simulation, Research & Development, Pharmaceuticals, Bayer AG, Leverkusen, Germany
| |
Collapse
|
4
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
5
|
Pouzin C, Teutonico D, Fagniez N, Ziti-Ljajic S, Perreard-Dumaine A, Pardon M, Klieber S, Nguyen L. Prediction of CYP Down Regulation after Tusamitamab Ravtansine Administration (a DM4-Conjugate), Based on an In Vitro-In Vivo Extrapolation Approach. Clin Pharmacol Ther 2024; 115:278-287. [PMID: 37964462 DOI: 10.1002/cpt.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Tusamitamab ravtansine is an antibody-drug conjugate (ADC) composed of a humanized monoclonal antibody (IgG1) and DM4 payload. Even if DM4 and its main metabolite methyl-DM4 (Me-DM4) circulate at low concentrations after ADC administration, their potential as perpetrators of cytochrome P450 mediated drug-drug interaction was assessed. In vitro studies in human hepatocytes indicated that Me-DM4 elicited a clear concentration-dependent down regulation of cytochrome P450 enzymes (CYP3A4, 1A2, and 2B6). Because DM4 was unstable under the incubation conditions studied, the in vitro constants could not be determined for this entity. Thus, to predict the clinical relevance of this observed downregulation, an in vitro-in vivo extrapolation (IVIVE) pharmacokinetic (PK) based approach was developed. To mitigate model prediction errors and because of their similar inhibitory effect on tubulin polymerization, the same downregulation constants were used for DM4 and Me-DM4. This approach describes the time course of decreasing CYP3A4, 1A2, and 2B6 enzyme amounts as a function of circulating concentrations of DM4 and Me-DM4 predicted from a population PK model. The developed IVIVE-PK model showed that the highest CYP abundance decrease was observed for CYP3A4, with a transient reduction of < 10% from baseline. The impact on midazolam exposure, as probe substrate of CYP3A, was then simulated based on a physiologically-based PK static method. The maximal CYP3A4 abundance reduction was associated with a predicted midazolam area under the curve (AUC) ratio of 1.14. To conclude, the observed in vitro downregulation of CYPs by Me-DM4 is not expected to have relevant clinical impact.
Collapse
Affiliation(s)
- Clemence Pouzin
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Donato Teutonico
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Nathalie Fagniez
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | - Samira Ziti-Ljajic
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| | | | | | - Sylvie Klieber
- Sanofi R&D, In vitro ADME, Drug Metabolism and Pharmacokinetics, Paris, France
| | - Laurent Nguyen
- Sanofi R&D, Pharmacokinetics Dynamics and Metabolism Department, Paris, France
| |
Collapse
|
6
|
Friedrichsen MH, Endahl L, Kreiner FF, Goldwater R, Kankam M, Toubro S, Nygård SB. Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity. Mol Metab 2023; 78:101801. [PMID: 37690519 PMCID: PMC10568562 DOI: 10.1016/j.molmet.2023.101801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Glucagon/glucagon-like peptide-1 (GLP-1) receptor co-agonists may provide greater weight loss than agonists targeting the GLP-1 receptor alone. We report results from three phase 1 trials investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of the glucagon/GLP-1 receptor co-agonist NNC9204-1177 (NN1177) for once-weekly subcutaneous use in adults with overweight or obesity. METHODS Our focus was a 12-week, multiple ascending dose (MAD), placebo-controlled, double-blind trial in which adults (N = 99) received NN1177 (on an escalating dose regimen of 200, 600, 1300, 1900, 2800, 4200 and 6000 μg) or placebo. Two other trials also contributed to the findings reported in this article: a first human dose (FHD)/single ascending dose (SAD), placebo-controlled, double-blind trial in which adults (N = 49) received NN1177 (treatment doses of 10, 40, 120, 350, 700 and 1100 μg) or placebo, and a drug-drug interaction, open-label, single-sequence trial in which adults (N = 45) received a 4200-μg dose of NN1177, following administration of a Cooperstown 5 + 1 index cocktail. Safety, tolerability, pharmacokinetic and pharmacodynamic endpoints were assessed. RESULTS For the FHD/SAD and MAD trials, baseline characteristics were generally balanced across treatment cohorts. The geometric mean half-life of NN1177 at steady state was estimated at between 77 and 111 h, and clinically relevant weight loss was achieved (up to 12.6% at week 12; 4200 μg in the MAD trial). Although NN1177 appeared tolerable across trials, several unexpected treatment-related safety signals were observed; increased heart rate, decreased reticulocyte count, increased markers of inflammation (fibrinogen and C-reactive protein), increased aspartate and alanine aminotransferase, impaired glucose tolerance and reduced blood levels of some amino acids. CONCLUSION Although treatment with NN1177 was associated with dose-dependent and clinically relevant weight loss, the observed safety signals precluded further clinical development.
Collapse
Affiliation(s)
| | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas, Overland Park, KS, USA
| | | | | |
Collapse
|
7
|
Klein G, Petrone M, Yang Y, Hoang T, Hazlett S, Hansen L, Flor A. Pharmacokinetics and Safety of Cotadutide, a GLP-1 and Glucagon Receptor Dual Agonist, in Individuals with Renal Impairment: A Single-Dose, Phase I, Bridging Study. Clin Pharmacokinet 2023; 62:881-890. [PMID: 37140727 PMCID: PMC10256642 DOI: 10.1007/s40262-023-01239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Cotadutide is a balanced glucagon-like peptide-1 and glucagon receptor dual agonist under development for the treatment of non-alcoholic steatohepatitis and type 2 diabetes with chronic kidney disease. We evaluated the pharmacokinetics (PK), safety and immunogenicity of a single dose of cotadutide in individuals with varying degrees of renal impairment. METHODS In this phase I bridging study, individuals 18-85 years of age, with a body mass index of 17-40 kg/m2 and varying degrees of renal function {end-stage renal disease (ESRD; creatinine clearance [CrCl] < 20 mL/min); severe renal impairment (CrCl ≥ 20 to < 30 mL/min); lower moderate renal impairment (CrCl ≥ 30 to < 44 mL/min); upper moderate renal impairment (CrCl ≥ 45 to < 60 mL/min); normal renal function (CrCl ≥ 90 mL/min)} were treated with a single dose of subcutaneous cotadutide 100 µg under fasted conditions in the lower abdomen. The co-primary endpoints were area under the plasma concentration-time curve from time zero to 48 h (AUC48) and the maximum observed plasma concentration (Cmax) for cotadutide. Safety and immunogenicity were secondary endpoints. This trial is registered with ClinicalTrials.gov (NCT03235375). RESULTS A total of 37 individuals were enrolled in the study (only three enrolled in the ESRD group, therefore this group was excluded from the primary PK analysis). AUC48 and Cmax values for cotadutide were similar across all renal function groups {severe renal impairment vs. normal renal function: AUC48 geometric mean ratio (GMR) 0.99 (90% confidence interval [CI] 0.76-1.29); lower moderate renal impairment versus normal renal function: AUC48 GMR 1.01 (90% CI 0.79-1.30); upper moderate renal impairment versus normal renal function: AUC48 GMR 1.09 (90% CI 0.82-1.43)}. A sensitivity analysis that combined the ESRD and severe renal impairment groups did not show notable changes in the AUC48 and Cmax GMRs. The incidences of treatment-emergent adverse events (TEAE) ranged from 42.9 to 72.7% across all groups and were mostly mild to moderate in severity. Only one patient had a grade III or worse TEAE during the study period. No positive antidrug antibody results were observed. CONCLUSIONS These results suggest that the PK and tolerability of cotadutide are unaffected by renal function and that dose adjustments may not be required in individuals with renal impairment.
Collapse
Affiliation(s)
| | - Marcella Petrone
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Ye Yang
- Early Biometrics and Statistical Innovation, Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Sheila Hazlett
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Lars Hansen
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Armando Flor
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| |
Collapse
|
8
|
Säll C, Argikar U, Fonseca K, Hilgendorf C, Lopes F, Riedel J, Schiller H, Sonesson A, Umehara K, Wang K. Industry Perspective on Therapeutic Peptide Drug-Drug Interaction Assessments During Drug Development: A European Federation of Pharmaceutical Industries and Associations White Paper. Clin Pharmacol Ther 2023; 113:1199-1216. [PMID: 36633114 DOI: 10.1002/cpt.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Drug-drug interaction (DDI) assessments are well defined in health authority guidelines for small molecule drugs, and US Food and Drug Administration (FDA) draft guidance is now available for therapeutic proteins. However, there are currently no regulatory guidelines outlining DDI assessments for therapeutic peptides, which poses significant uncertainty and challenges during drug development for this heterogenous class of molecules. A cross-industry peptide DDI working group consisting of experts from 10 leading companies was formed under the sponsorship of the European Federation of Pharmaceutical Industries and Associations. We aimed to capture the range of DDI studies undertaken for peptide drugs by (i) anonymously surveying relevant companies involved in peptide drug development to better understand DDI study type/timing currently performed and (ii) compiling a database containing in vitro / clinical DDI data from submission packages for recently approved peptide drugs. Our analyses highlight significant gaps and uncertainty in the field. For example, the reported timing of in vitro peptide DDI studies, if performed, vary substantially across responding companies from early research to phase III. Nearly all in vitro cytochrome P450 / transporter inhibition studies reported in the survey were negative. For the few positive hits reported, no clinical follow-up studies were performed, questioning the clinical relevance of these findings. Furthermore, available submission packages reveal DDI likelihood is low for peptides >2 kDa, making it reasonable to adopt a risk-based approach during drug development for larger peptides. By benchmarking the landscape of peptide DDI activities across the industry, we set the stage for future discussions with health authorities on harmonizing peptide DDI approaches.
Collapse
Affiliation(s)
- Carolina Säll
- Development Absorption, Distribution, Metabolism, and Excretion, Novo Nordisk A/S, Måløv, Denmark
| | - Upendra Argikar
- Non-clinical Development, Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Kari Fonseca
- Medicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Cambridge, Massachusetts, USA
| | - Constanze Hilgendorf
- Drug Metabolism and Pharmacokinetics, Early Research and Development Cardiovascular Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca Gothenburg, Mölndal, Sweden
| | - Filipe Lopes
- Early Development Absorption, Distribution, Metabolism, and Excretion, Pharvaris GmbH, Zug, Switzerland
| | - Jens Riedel
- Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt/Main, Germany
| | - Hilmar Schiller
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Anders Sonesson
- Global Drug Metabolism and Pharmacokinetics, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Kenichi Umehara
- Pharmaceutical Sciences, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Kai Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research & Development, San Diego, California, USA
| |
Collapse
|