1
|
Tipnoppanon S, Udomnilobol U, Siwamogsatham S, Vorasettakarnkij Y, Sukasem C, Prueksaritanont T, Chariyavilaskul P, Yodsurang V, Srimatimanon T, Chamnanphon M, Vanwong N. Impacts of Pharmacokinetic Gene Polymorphisms on Steady-State Plasma Concentrations of Simvastatin in Thai Population. Clin Transl Sci 2025; 18:e70225. [PMID: 40297930 PMCID: PMC12038368 DOI: 10.1111/cts.70225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Simvastatin, an HMG-CoA reductase inhibitor, is widely used for hypercholesterolemia but may cause myotoxicity linked to its plasma concentration. Pharmacokinetic gene polymorphisms influence inter-individual variability in simvastatin exposure. This study investigated the effects of pharmacokinetic gene polymorphisms on steady-state simvastatin plasma levels in Thai patients. Eighty-nine Thai patients with dyslipidemia or coronary artery disease on simvastatin treatment for at least 2 weeks without dose adjustment were recruited from King Chulalongkorn Memorial Hospital. Simvastatin lactone and acid concentrations were measured 12 h post-dose using UHPLC-MS/MS. Pharmacokinetic gene polymorphisms, including ABCB1, ABCC2, ABCG2, SLCO1B1, SLCO1B3, CYP3A4, and CYP3A5, were genotyped by MassARRAY System. The results showed that patients with the SLCO1B1 c.521TC+CC genotype had significantly higher simvastatin acid levels than those with c.521TT (0.53 vs. 0.19 ng/mL, p = 0.03). Similarly, the SLCO1B1*1b/*15 genotype was associated with higher simvastatin acid levels than SLCO1B1*1a/*1a (0.58 vs. 0.16 ng/mL, p < 0.001). These findings suggest that SLCO1B1 c.521T>C, alone or with c.388A>G (SLCO1B1*1b/*15), reduces OATP1B1 function, leading to elevated simvastatin acid levels and increased myotoxicity risk. This study confirms the association of SLCO1B1 rs4149056 (c.521T>C) with higher simvastatin plasma levels in Thai patients. The study highlights the potential role of SLCO1B1 genotyping, particularly rs4149056 (c.521T>C) and rs2306283 (c.388A>G), in guiding statin therapy for Thai patients, which could help optimize treatment and reduce adverse effects such as statin-induced myotoxicity.
Collapse
Affiliation(s)
- Sayanit Tipnoppanon
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical ChemistryFaculty of Allied Health Sciences, Chulalongkorn UniversityBangkokThailand
| | - Udomsak Udomnilobol
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR)Chulalongkorn UniversityBangkokThailand
| | - Sarawut Siwamogsatham
- Division of Ambulatory and Hospital Medicine, Department of MedicineKing Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn UniversityBangkokThailand
- Chula Clinical Research Center (ChulaCRC), Faculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Yongkasem Vorasettakarnkij
- Division of Ambulatory and Hospital Medicine, Department of MedicineKing Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of PathologyFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi HospitalBangkokThailand
| | - Thomayant Prueksaritanont
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR)Chulalongkorn UniversityBangkokThailand
| | - Pajaree Chariyavilaskul
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Chulalongkorn UniversityBangkokThailand
- Department of PharmacologyFaculty of Medicine, Chulalongkorn UniversityBangkokThailand
| | - Varalee Yodsurang
- Department of Pharmacology and PhysiologyFaculty of Pharmaceutical Sciences, Chulalongkorn UniversityBangkokThailand
- Center of Excellence in Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals, Chulalongkorn UniversityBangkokThailand
| | - Thanate Srimatimanon
- Department of Pharmacology and PhysiologyFaculty of Pharmaceutical Sciences, Chulalongkorn UniversityBangkokThailand
| | - Monpat Chamnanphon
- Department of PathologyFaculty of Medicine, Srinakharinwirot UniversityNakhonnayokThailand
| | - Natchaya Vanwong
- Department of Clinical ChemistryFaculty of Allied Health Sciences, Chulalongkorn UniversityBangkokThailand
| |
Collapse
|
2
|
Morse BL, Ma X, Liu R, Bhattachar SN, Nicoll C, Varghese NM, Kelly RP, Stamatis SD, Pratt EJ. Effect of Gastric pH on the Pharmacokinetics of Atorvastatin and its Metabolites in Healthy Participants. Eur J Drug Metab Pharmacokinet 2025; 50:175-186. [PMID: 39956861 DOI: 10.1007/s13318-025-00937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVE Atorvastatin is dosed in its active acid form although it exists in equilibrium with its inactive lactone form in vivo. Although in vitro atorvastatin acid displays pH-dependent conversion to the lactone metabolite, pharmacokinetic (PK) data on the effect of elevated gastric pH on atorvastatin and major atorvastatin-related species are not currently available. In this dedicated study, we investigated the effect of food and acid-reducing agents on the PK of atorvastatin and its three major metabolites in humans. METHODS This was an open label, randomized, crossover study conducted in 17 healthy volunteers. Part 1 examined the PK of a 10-mg dose of atorvastatin co-administered with or without a 600-mg dose of sodium bicarbonate in fasted and fed states. Part 2 was a single assessment to examine the PK of a 10-mg dose of atorvastatin in the fasted state following a 5-day treatment course of 40-mg daily esomeprazole. Gastric pH was monitored during treatments using Heidelberg capsules. A linear mixed effects model was used to derive ratios for PK parameters of atorvastatin and metabolites between treatments. RESULTS Similar to previous food effect studies, food significantly decreased the maximum concentration (Cmax) and increased the time to Cmax (tmax) of atorvastatin, with minimal effect on total exposure of atorvastatin or metabolites. Neither sodium bicarbonate, in the fed or fasted state, nor treatment with esomeprazole had a clinically meaningful effect on the exposure of atorvastatin or its metabolites. CONCLUSIONS According to these results, atorvastatin PK does not appear to be sensitive to changes in gastric pH.
Collapse
Affiliation(s)
| | - Xiaosu Ma
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Rong Liu
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Conchon Costa AC, Medeiros JIM, Kang W, Yamamoto PA, de Gaitani CM, Vasconcelos MED, Da Silva RM, Kemp R, Sankarankutty AK, Salgado W, Santos JS, Schmidt S, De Moraes NV. Redefining Statin Dosage Post-Gastric Bypass: Insights from a Population Pharmacokinetics-Pharmacodynamics Link Approach. J Clin Pharmacol 2024; 64:1473-1483. [PMID: 39101567 DOI: 10.1002/jcph.6110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
Roux-en-Y gastric bypass (RYGB) involves creating a small stomach pouch, bypassing part of the small intestine, and rerouting the digestive tract. These alterations can potentially change the drug exposure and response. Our primary aim was to assess the impact of RYGB on the pharmacokinetics of simvastatin lactone (SV) and its active metabolite, simvastatin hydroxy acid (SVA). Ultimately, we aimed to optimize dosing for this understudied population by employing a population pharmacokinetic-pharmacodynamic link approach. The study comprised patients who had undergone RYGB surgery and individuals without a previous history of RYGB. All participants received a single oral dose of simvastatin. Plasma concentration data were analyzed with a nonlinear mixed-effect modeling approach. A parent-metabolite model with first-order absorption, 2-compartments for SV and 1-compartment for SVA, linear elimination, and enterohepatic circulation best described the data. The model was linked to the turnover pharmacodynamic model to describe the SVA inhibition on LDL-cholesterol production. Our simulations indicated that following RYGB surgery, the exposure to SV and SVA decreased by 40%. Consequently, for low-intensity statin patients, we recommend increasing the dose from 10 to 20 mg in post-RYGB patients to maintain a comparable response to that of non-operated subjects. Moderate-intensity statin patients should require increasing doses to 40 or 60 mg or the addition of a non-statin medication to achieve similar therapeutic outcomes. In conclusion, individuals post-RYGB exhibit diminished exposure to SV and may benefit from increasing the dose or adjunctive therapy with non-statin drugs to attain equivalent responses and mitigate potential adverse events.
Collapse
Affiliation(s)
- Ana Carolina Conchon Costa
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | | | - Wonho Kang
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Priscila A Yamamoto
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Cristiane M de Gaitani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Mayrla E D Vasconcelos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Moreira Da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Rafael Kemp
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ajith K Sankarankutty
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Wilson Salgado
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Jose Sebastiao Santos
- School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Natalia Valadares De Moraes
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Bellosta S, Corsini A. Drug interactions in cardiology: focus on statins and their combination with other lipid-lowering drugs. Expert Opin Drug Metab Toxicol 2024; 20:1013-1021. [PMID: 39252198 DOI: 10.1080/17425255.2024.2402493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Statins are the primary therapeutic approach for treating hypercholesterolemia in hyperlipidemic high cardiovascular-risk patients, as stated by the recent European and American guidelines. However, in some patients, statin treatment is not sufficient to achieve the recommended plasma LDL-C levels, and the addition of a second hypolipidemic drug becomes mandatory. Concomitant administration of multiple medications may increase the risk of adverse events, potentially leading to statin-associated muscle or liver symptoms and non-adherence or discontinuation of statin therapy, such as in women. The addition of a second hypolipidemic drug (such as ezetimibe, anti-PCSK9 monoclonal antibodies, bempedoic acid, and inclisiran) may lead to drug-drug interactions (DDIs). The evaluation of the different pharmacokinetic profiles may improve and personalize the treatment. AREAS COVERED We aimed to give an update on the potential DDIs between statins and other hypolipidemic drugs currently used to treat high-risk hyperlipidemic patients. EXPERT OPINION It is fundamental to understand the risk associated with DDIs to manage better the addition of a concomitant hyperlipidemic drug to a statin-treated patient. Many health agencies have published specific guidelines for assessing DDIs, but these mainly apply to in vitro studies. New predictive approaches are being proposed and may help evaluate and manage DDIs.
Collapse
Affiliation(s)
- Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Ferri N, Colombo E, Corsini A. Bempedoic Acid, the First-in-Class Oral ATP Citrate Lyase Inhibitor with Hypocholesterolemic Activity: Clinical Pharmacology and Drug-Drug Interactions. Pharmaceutics 2024; 16:1371. [PMID: 39598495 PMCID: PMC11597693 DOI: 10.3390/pharmaceutics16111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Bempedoic acid is a new drug that improves the control of cholesterol levels, either as monotherapy or in combination with existing lipid-lowering therapies, and shows clinical efficacy in cardiovascular disease patients. Thus, patients with comorbidities and under multiple therapies may be eligible for bempedoic acid, thus facing the potential problem of drug-drug interactions (DDIs). Bempedoic acid is a prodrug administered orally at a fixed daily dose of 180 mg. The dicarboxylic acid is enzymatically activated by conjugation with coenzyme A (CoA) to form the pharmacologically active thioester (bempedoic acid-CoA). This process is catalyzed by very-long-chain acyl-CoA synthetase 1 (ACSVL1), expressed almost exclusively at the hepatic level. Bempedoic acid-CoA is a potent and selective inhibitor of ATP citrate lyase (ACL), a key enzyme in the biosynthetic pathway of cholesterol and fatty acids. The drug reduces low-density lipoprotein-cholesterol (LDL-C) (20-25%), non-high-density lipoprotein-cholesterol (HDL-C) (19%), apolipoprotein B (apoB) (15%), and total cholesterol (16%) in patients with hypercholesterolemia or mixed dyslipidemia. The drug has a favorable pharmacokinetics profile. Bempedoic acid and its metabolites are not substrates or inhibitors/inducers of cytochrome P450 (CYP450) involved in drug metabolism. On the other hand, bempedoic acid-glucuronide is a substrate for organic anion transporter 3 (OAT3). Bempedoic acid and its glucuronide are weak inhibitors of the OAT2, OAT3, and organic anion-transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3). Thus, bempedoic acid could inhibit (perpetrator) the hepatic uptake of OATP1B1/3 substrate drugs and the renal elimination of OAT2 and OAT3 substrates and could suffer (victim) the effect of OAT3 transporter inhibitors, reducing its renal elimination. Based on these pharmacological characteristics, here, we describe the potential DDIs of bempedoic acid with concomitant medications and the possible clinical implications.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Medicine, University of Padova, 35100 Padua, Italy
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
- Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, 20122 Milan, Italy; (E.C.); (A.C.)
| | - Elisa Colombo
- Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, 20122 Milan, Italy; (E.C.); (A.C.)
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20122 Milan, Italy
| | - Alberto Corsini
- Centro di Ricerca Coordinata sulle Interazioni Farmacologiche, 20122 Milan, Italy; (E.C.); (A.C.)
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20122 Milan, Italy
| |
Collapse
|
6
|
Kamimura T, Hounslow N, Suganami H, Tanigawa R. Drug-drug interactions between pemafibrate and statins on pharmacokinetics in healthy male volunteers: Open-label, randomized, 6-sequence, 3-period crossover studies. Clin Transl Sci 2024; 17:e13900. [PMID: 39078149 PMCID: PMC11287820 DOI: 10.1111/cts.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Elevated triglyceride levels are associated with an increased risk of cardiovascular events despite guideline-based statin treatment of low-density lipoprotein cholesterol. Peroxisome proliferator-activated receptor α (PPARα) agonists exert a significant triglyceride-lowering effect. However, combination therapy of PPARα agonists with statins poses an increased risk of rhabdomyolysis, which is rare but a major concern of the combination therapy. Pharmacokinetic interaction is suspected to be a contributing factor to the risk. To examine the potential for combination therapy with the selective PPARα modulator (SPPARMα) pemafibrate and statins, drug-drug interaction studies were conducted with open-label, randomized, 6-sequence, 3-period crossover designs for the combination of pemafibrate 0.2 mg twice daily and each of 6 statins once daily: pitavastatin 4 mg/day (n = 18), atorvastatin 20 mg/day (n = 18), rosuvastatin 20 mg/day (n = 29), pravastatin 20 mg/day (n = 18), simvastatin 20 mg/day (n = 20), and fluvastatin 60 mg/day (n = 19), involving healthy male volunteers. The pharmacokinetic parameters of pemafibrate and each of the statins were similar regardless of coadministration. There was neither an effect on the systemic exposure of pemafibrate nor a clinically important increase in the systemic exposure of any of the statins on the coadministration although the systemic exposure of simvastatin was reduced by about 15% and its open acid form by about 60%. The HMG-CoA reductase inhibitory activity in plasma samples from the simvastatin and pemafibrate combination group was about 70% of that in the simvastatin alone group. In conclusion, pemafibrate did not increase the systemic exposure of statins, and vice versa, in healthy male volunteers.
Collapse
Affiliation(s)
| | | | | | - Ryohei Tanigawa
- Global Clinical Development DepartmentKowa Company, Ltd.TokyoJapan
| |
Collapse
|
7
|
Mykkänen AJH, Tarkiainen EK, Taskinen S, Neuvonen M, Paile-Hyvärinen M, Lilius TO, Tapaninen T, Klein K, Schwab M, Backman JT, Tornio A, Niemi M. Genome-Wide Association Study of Atorvastatin Pharmacokinetics: Associations With SLCO1B1, UGT1A3, and LPP. Clin Pharmacol Ther 2024; 115:1428-1440. [PMID: 38493369 DOI: 10.1002/cpt.3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].
Collapse
Affiliation(s)
- Anssi J H Mykkänen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Taskinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuomas O Lilius
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany
- Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Hoste E, Haufroid V, Deldicque L, Balligand JL, Elens L. Atorvastatin-associated myotoxicity: A toxicokinetic review of pharmacogenetic associations to evaluate the feasibility of precision pharmacotherapy. Clin Biochem 2024; 124:110707. [PMID: 38182100 DOI: 10.1016/j.clinbiochem.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Atorvastatin (ATV) and other statins are highly effective in reducing cholesterol levels. However, in some patients, the development of drug-associated muscle side effects remains an issue as it compromises the adherence to treatment. Since the toxicity is dose-dependent, exploring factors modulating pharmacokinetics (PK) appears fundamental. The purpose of this review aims at reporting the current state of knowledge about the singular genetic susceptibilities influencing the risk of developing ATV muscle adverse events through PK modulations. Multiple single nucleotide polymorphisms (SNP) in efflux (ABCB1, ABCC1, ABCC2, ABCC4 and ABCG2) and influx (SLCO1B1, SLCO1B3 and SLCO2B1) transporters have been explored for their association with ATV PK modulation or with statin-related myotoxicities (SRM) development. The most convincing pharmacogenetic association with ATV remains the influence of the rs4149056 (c.521 T > C) in SLCO1B1 on ATV PK and pharmacodynamics. This SNP has been robustly associated with increased ATV systemic exposure and consequently, an increased risk of SRM. Additionally, the SNP rs2231142 (c.421C > A) in ABCG2 has also been associated with increased drug exposure and higher risk of SRM occurrence. SLCO1B1 and ABCG2 pharmacogenetic associations highlight that modulation of ATV systemic exposure is important to explain the risk of developing SRM. However, some novel observations credit the hypothesis that additional genes (e.g. SLCO2B1 or ABCC1) might be important for explaining local PK modulations within the muscle tissue, indicating that studying the local PK directly at the skeletal muscle level might pave the way for additional understanding.
Collapse
Affiliation(s)
- Emilia Hoste
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Louise Deldicque
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Laure Elens
- Integrated PharmacoMetrics, pharmacoGenomics and Pharmacokinetics, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels 1200, Belgium; Louvain Center for Toxicology and Applied Pharmacology, Institut de recherche expérimentale et clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
9
|
Hirota T, Ieiri I. Interindividual variability in statin pharmacokinetics and effects of drug transporters. Expert Opin Drug Metab Toxicol 2024; 20:37-43. [PMID: 38251424 DOI: 10.1080/17425255.2024.2305746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Statins are HMG-CoA reductase inhibitors that primarily lower plasma cholesterol levels. It has been suggested that the myotoxic response is a direct result of hydroxymethylglutaryl-CoA reductase inhibition and dose-dependent. Therefore, an accurate understanding of the combination of drugs that inhibit statin metabolism and factors that cause interindividual variability in the pharmacokinetics of statin is important to avoid serious side effects of statins. Relevant articles included in this review were identified through a PubMed search (through May 2023). AREAS COVERED This review provides an overview of hepatic and intestinal metabolism of statins, followed by a discussion of drug-drug interactions and interindividual variables that influence statin pharmacokinetics: gut bacteria, disease, and pharmacokinetics-related genetic polymorphisms. EXPERT OPINION Drug-drug interactions have a strong influence on statin pharmacokinetics, and gut microbiota, disease, and genetic polymorphisms all contribute significantly to interindividual variation in statin pharmacokinetics. Individual optimization of statin treatment requires studies that consider the progression of the disease and associated changes in concomitant medications.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Avvari SK, Cusumano JA, Jogiraju VK, Manchandani P, Taft DR. PBPK Modeling of Azithromycin Systemic Exposure in a Roux-en-Y Gastric Bypass Surgery Patient Population. Pharmaceutics 2023; 15:2520. [PMID: 38004500 PMCID: PMC10674169 DOI: 10.3390/pharmaceutics15112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, PBPK modeling using the Simcyp® Simulator was performed to evaluate whether Roux-en-Y gastric bypass (RYGB) surgery impacts the oral absorption and bioavailability of azithromycin. An RYGB surgery patient population was adapted from the published literature and verified using the same probe medications, atorvastatin and midazolam. Next, a PBPK model of azithromycin was constructed to simulate changes in systemic drug exposure after the administration of different oral formulations (tablet, suspension) to patients pre- and post-RYGB surgery using the developed and verified population model. Clinically observed changes in azithromycin systemic exposure post-surgery following oral administration (single-dose tablet formulation) were captured using PBPK modeling based on the comparison of model-predicted exposure metrics (Cmax, AUC) to published clinical data. Model simulations predicted a 30% reduction in steady-state AUC after surgery for three- and five-day multiple dose regimens of an azithromycin tablet formulation. The relative bioavailability of a suspension formulation was 1.5-fold higher than the tablet formulation after multiple dosing. The changes in systemic exposure observed after surgery were used to evaluate the clinical efficacy of azithromycin against two of the most common pathogens causing community acquired pneumonia based on the corresponding AUC24/MIC pharmacodynamic endpoint. The results suggest lower bioavailability of the tablet formulation post-surgery may impact clinical efficacy. Overall, the research demonstrates the potential of a PBPK modeling approach as a framework to optimize oral drug therapy in patients post-RYGB surgery.
Collapse
Affiliation(s)
- Suvarchala Kiranmai Avvari
- Samuel J. and Joan B. Williamson Institute for Pharmacometrics, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | - Jaclyn A. Cusumano
- Division of Pharmacy Practice, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| | | | | | - David R. Taft
- Samuel J. and Joan B. Williamson Institute for Pharmacometrics, Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| |
Collapse
|
11
|
Somers T, Siddiqi S, Morshuis WJ, Russel FGM, Schirris TJJ. Statins and Cardiomyocyte Metabolism, Friend or Foe? J Cardiovasc Dev Dis 2023; 10:417. [PMID: 37887864 PMCID: PMC10607220 DOI: 10.3390/jcdd10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The mechanism underlying these complaints has become increasingly clear, but less is known about the effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we explore the differences in the mechanism of action and potential side effects of statins in cardiac and skeletal muscle and how they present clinically. These insights may contribute to a more personalized treatment strategy.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Wim J. Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom J. J. Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
12
|
Amore BM, Cramer C, MacDougall D, Emery MG. The Disposition and Metabolism of Bempedoic Acid, a Potent Inhibitor of ATP Citrate Lyase, in Healthy Human Subjects. Drug Metab Dispos 2023; 51:599-609. [PMID: 36878717 DOI: 10.1124/dmd.122.001142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
The disposition and metabolism of bempedoic acid, a selective inhibitor of ATP citrate lyase, were examined in healthy male subjects. After a single administration of [14C] bempedoic acid (240 mg, 113 μCi) oral solution, mean concentrations of total radioactivity in plasma as a function of time indicated absorption was rapid with peak concentrations achieved at 1 hour after dose administration. Radioactivity was decreased in a multiexponential fashion with an estimated elimination half-life of 26.0 hours. Radiolabeled dose was predominantly recovered in urine (62.1% of dose) and a smaller amount in feces (25.4% of dose). Bempedoic acid was extensively metabolized with 1.6%-3.7% of dose excreted unchanged in urine and feces combined. Overall, the major clearance route of bempedoic acid is metabolism by uridine 5'-diphosphate glucuronosyltransferases. Metabolism in hepatocyte cultures of human and nonclinical species were generally in agreement with clinical metabolite profiles. Pooled plasma samples were characterized by the presence of bempedoic acid (ETC-1002), which accounted for 59.3% of total plasma radioactivity, ESP15228 (M7; a reversible keto metabolite of bempedoic acid), and their respective glucuronide conjugates. The acyl glucuronide of bempedoic acid (M6) represented 23%-36% of radioactivity in plasma and accounted for approximately 37% of dose excreted in urine. In feces, the majority of radioactivity was associated with a co-eluting mixture of a carboxylic acid metabolite of bempedoic acid (M2a), a taurine conjugate of bempedoic acid (M2c), and hydroxymethyl-ESP15228 (M2b), which collectively accounted for 3.1%-22.9% of bempedoic acid dose across subjects. SIGNIFICANCE STATEMENT: This study characterizes the disposition and metabolism of bempedoic acid, an inhibitor of ATP citrate lyase for hypercholesterolemia. This work provides further understanding of bempedoic acid clinical pharmacokinetics and clearance pathways in adult subjects.
Collapse
Affiliation(s)
| | - Clay Cramer
- Esperion Therapeutics, Inc., Ann Arbor, Michigan
| | | | | |
Collapse
|
13
|
Chung H, Kim JM, Park JW, Noh J, Kim KA, Park JY. Effects of Simvastatin on Pharmacokinetics and Anticoagulant Effects of Dabigatran in Healthy Subjects. Pharmaceuticals (Basel) 2023; 16:364. [PMID: 36986464 PMCID: PMC10056008 DOI: 10.3390/ph16030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Higher risk of major hemorrhage associated with concomitant use of dabigatran and simvastatin compared to other statins was previously reported with a suggestion of P-glycoprotein-mediated interaction. The aim of this study was to evaluate the effects of simvastatin on pharmacokinetics and anticoagulant effects of dabigatran, a direct oral anticoagulant. A total of 12 healthy subjects were enrolled in an open-label, two-period, single sequence study. Subjects were given 150 mg of dabigatran etexilate followed by 40 mg of once-daily simvastatin for seven days. Dabigatran etexilate was administered with simvastatin on the seventh day of simvastatin administration. Blood samples for pharmacokinetic and pharmacodynamic analyses were obtained until 24 h post-dose of dabigatran etexilate with or without co-administration of simvastatin. Pharmacokinetic parameters were derived from noncompartmental analysis for dabigatran etexilate, dabigatran, and dabigatran acylglucuronide. When simvastatin was co-administered, geometric mean ratios of area under time-concentration curves for dabigatran etexilate, dabigatran, and dabigatran acylglucuronide were 1.47, 1.21, and 1.57, respectively, compared to when dabigatran etexilate was administered alone. Thrombin generation assay and coagulation assay showed similar profiles between before and after co-administration of simvastatin. This study provides evidence that simvastatin treatment plays a minor role in modulating pharmacokinetics and anticoagulant effects of dabigatran etexilate.
Collapse
Affiliation(s)
- Hyewon Chung
- Department of Clinical Pharmacology and Toxicology, Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Jong-Min Kim
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin-Woo Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Neurology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jihyeon Noh
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Ruscica M, Ferri N, Banach M, Sirtori CR, Corsini A. Side effects of statins: from pathophysiology and epidemiology to diagnostic and therapeutic implications. Cardiovasc Res 2023; 118:3288-3304. [PMID: 35238338 DOI: 10.1093/cvr/cvac020] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Treatment with statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, has proven beneficial preventive effects on cardiovascular events. However, discontinuation due to intolerance and non-adherence remain two of the major gaps in both primary and secondary prevention. This leads many patients with high-risk of atherosclerotic cardiovascular disease (ASCVD) to be inadequately treated or not to achieve target lipid level goals, and as consequence they undergo an increased risk of cardiovascular events. The aim of this review is thus to give an overview of the reasons for discontinuation and on the possible mechanisms behind them. Although statins, as a class, are generally safe, they are associated with an increased risk of diabetes mellitus and hepatic transaminase elevations. Incidence of cataracts or cognitive dysfunction and others presented in the literature (e.g. proteinuria and haematuria) have been never confirmed to have a causal link. Conversely, debated remains the effect on myalgia. Muscle side effects are the most commonly reported, although myalgia is still believed by some to be the result of a nocebo/drucebo effect. Concerning mechanisms behind muscular side effects, no clear conclusions have been reached. Thus, if on one side it is important to identify individuals either at higher risk to develop a side effect, or with confirmed risk factors and conditions of statin intolerance, on the other side alternative strategies should be identified to avoid an increased ASCVD risk.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Universita degli Studi di Padova, Padova, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
15
|
Jiang Z, Wu Z, Liu R, Du Q, Fu X, Li M, Kuang Y, Lin S, Wu J, Xie W, Shi G, Peng Y, Zheng F. Effect of polymorphisms in drug metabolism and transportation on plasma concentration of atorvastatin and its metabolites in patients with chronic kidney disease. Front Pharmacol 2023; 14:1102810. [PMID: 36923356 PMCID: PMC10010391 DOI: 10.3389/fphar.2023.1102810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Dyslipidemia due to renal insufficiency is a common complication in patients with chronic kidney diseases (CKD), and a major risk factor for the development of cardiovascular events. Atorvastatin (AT) is mainly used in the treatment of dyslipidemia in patients with CKD. However, response to the atorvastatin varies inter-individually in clinical applications. We examined the association between polymorphisms in genes involved in drug metabolism and transport, and plasma concentrations of atorvastatin and its metabolites (2-hydroxy atorvastatin (2-AT), 2-hydroxy atorvastatin lactone (2-ATL), 4-hydroxy atorvastatin (4-AT), 4-hydroxy atorvastatin lactone (4-ATL), atorvastatin lactone (ATL)) in kidney diseases patients. Genotypes were determined using TaqMan real time PCR in 212 CKD patients, treated with 20 mg of atorvastatin daily for 6 weeks. The steady state plasma concentrations of atorvastatin and its metabolites were quantified using ultraperformance liquid chromatography in combination with triple quadrupole mass spectrometry (UPLC-MS/MS). Univariate and multivariate analyses showed the variant in ABCC4 (rs3742106) was associated with decreased concentrations of AT and its metabolites (2-AT+2-ATL: β = -0.162, p = 0.028 in the dominant model; AT+2-AT+4-AT: β = -0.212, p = 0.028 in the genotype model), while patients carrying the variant allele ABCC4-rs868853 (β = 0.177, p = 0.011) or NR1I2-rs6785049 (β = 0.123, p = 0.044) had higher concentrations of 2-AT+2-ATL in plasma compared with homozygous wildtype carriers. Luciferase activity was enhanced in HepG2 cells harboring a construct expressing the rs3742106-T allele or the rs868853-G allele (p < 0.05 for each) compared with a construct expressing the rs3742106G or the rs868853-A allele. These findings suggest that two functional polymorphisms in the ABCC4 gene may affect transcriptional activity, thereby directly or indirectly affecting release of AT and its metabolites from hepatocytes into the circulation.
Collapse
Affiliation(s)
- Zebin Jiang
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zemin Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Ruixue Liu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Qin Du
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xian Fu
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Min Li
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongjun Kuang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shen Lin
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Jiaxuan Wu
- Department of Anesthesiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Weiji Xie
- Department of Nephrology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanqiang Peng
- Department of Nephrology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| | - Fuchun Zheng
- Clinical Pharmacology Laboratory, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- *Correspondence: Fuchun Zheng, ; Yanqiang Peng,
| |
Collapse
|
16
|
Simvastatin: In Vitro Metabolic Profiling of a Potent Competitive HMG-CoA Reductase Inhibitor. SEPARATIONS 2022. [DOI: 10.3390/separations9120400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Simvastatin (SV) is a semisynthetic derivative of lovastatin (LV), which is biosynthetically produced from the fungus Aspergillus terreus and has a high log p value (log p = 4.39)and thus high hepatic extraction and high efficacy in controlling cholesterol synthesis. The current study was undertaken to investigate the metabolic profile of SV using various mass spectrometry (MS) platforms. Metabolic profiling was studied in in vitro models, rat liver microsomes (RLMs), and isolated perfused rat liver hepatocytes (RLHs) using both ion trap and triple quadruple LC–MS/MS systems. A total of 29 metabolites were identified. Among them, three types of SV-related phase-I metabolites, namely exomethylene simvastatin acid (exomethylene SVA), monohydroxy SVA, and dihydrodiol SVA, were identified as new in RLMs. No phase-II metabolites were identified while incubating with RLHs.
Collapse
|
17
|
Prieto Garcia L, Lundahl A, Ahlström C, Vildhede A, Lennernäs H, Sjögren E. Does the choice of applied physiologically‐based pharmacokinetics platform matter? A case study on simvastatin disposition and drug–drug interaction. CPT Pharmacometrics Syst Pharmacol 2022; 11:1194-1209. [PMID: 35722750 PMCID: PMC9469690 DOI: 10.1002/psp4.12837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Physiologically‐based pharmacokinetic (PBPK) models have an important role in drug discovery/development and decision making in regulatory submissions. This is facilitated by predefined PBPK platforms with user‐friendly graphical interface, such as Simcyp and PK‐Sim. However, evaluations of platform differences and the potential implications for disposition‐related applications are still lacking. The aim of this study was to assess how PBPK model development, input parameters, and model output are affected by the selection of PBPK platform. This is exemplified via the establishment of simvastatin PBPK models (workflow, final models, and output) in PK‐Sim and Simcyp as representatives of established whole‐body PBPK platforms. The major finding was that the choice of PBPK platform influenced the model development strategy and the final model input parameters, however, the predictive performance of the simvastatin models was still comparable between the platforms. The main differences between the structure and implementation of Simcyp and PK‐Sim were found in the absorption and distribution models. Both platforms predicted equally well the observed simvastatin (lactone and acid) pharmacokinetics (20–80 mg), BCRP and OATP1B1 drug–gene interactions (DGIs), and drug–drug interactions (DDIs) when co‐administered with CYP3A4 and OATP1B1 inhibitors/inducers. This study illustrates that in‐depth knowledge of established PBPK platforms is needed to enable an assessment of the consequences of PBPK platform selection. Specifically, this work provides insights on software differences and potential implications when bridging PBPK knowledge between Simcyp and PK‐Sim users. Finally, it provides a simvastatin model implemented in both platforms for risk assessment of metabolism‐ and transporter‐mediated DGIs and DDIs.
Collapse
Affiliation(s)
- Luna Prieto Garcia
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development Uppsala University Uppsala Sweden
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Anna Lundahl
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Christine Ahlström
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Anna Vildhede
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development Uppsala University Uppsala Sweden
| | - Erik Sjögren
- Department of Pharmaceutical Bioscience, Translational Drug Discovery and Development Uppsala University Uppsala Sweden
| |
Collapse
|
18
|
Mykkänen AJH, Taskinen S, Neuvonen M, Paile-Hyvärinen M, Tarkiainen EK, Lilius T, Tapaninen T, Backman JT, Tornio A, Niemi M. Genomewide Association Study of Simvastatin Pharmacokinetics. Clin Pharmacol Ther 2022; 112:676-686. [PMID: 35652242 PMCID: PMC9540481 DOI: 10.1002/cpt.2674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
We investigated genetic determinants of single-dose simvastatin pharmacokinetics in a prospective study of 170 subjects and a retrospective cohort of 59 healthy volunteers. In a microarray-based genomewide association study with the prospective data, the SLCO1B1 c.521T>C (p.Val174Ala, rs4149056) single nucleotide variation showed the strongest, genomewide significant association with the area under the plasma simvastatin acid concentration-time curve (AUC; P = 6.0 × 10-10 ). Meta-analysis with the retrospective cohort strengthened the association (P = 1.6 × 10-17 ). In a stepwise linear regression candidate gene analysis among all 229 participants, SLCO1B1 c.521T>C (P = 1.9 × 10-13 ) and CYP3A4 c.664T>C (p.Ser222Pro, rs55785340, CYP3A4*2, P = 0.023) were associated with increased simvastatin acid AUC. Moreover, the SLCO1B1 c.463C>A (p.Pro155Thr, rs11045819, P = 7.2 × 10-6 ) and c.1929A>C (p.Leu643Phe, rs34671512, P = 5.3 × 10-4 ) variants associated with decreased simvastatin acid AUC. Based on these results and the literature, we classified the volunteers into genotype-predicted OATP1B1 and CYP3A4 phenotype groups. Compared with the normal OATP1B1 function group, simvastatin acid AUC was 273% larger in the poor (90% confidence interval (CI), 137%, 488%; P = 3.1 × 10-6 ), 40% larger in the decreased (90% CI, 8%, 83%; P = 0.036), and 67% smaller in the highly increased function group (90% CI, 46%, 80%; P = 2.4 × 10-4 ). Intermediate CYP3A4 metabolizers (i.e., heterozygous carriers of either CYP3A4*2 or CYP3A4*22 (rs35599367)), had 87% (90% CI, 39%, 152%, P = 6.4 × 10-4 ) larger simvastatin acid AUC than normal metabolizers. These data suggest that in addition to no function SLCO1B1 variants, increased function SLCO1B1 variants and reduced function CYP3A4 variants may affect the pharmacokinetics, efficacy, and safety of simvastatin. Care is warranted if simvastatin is prescribed to patients carrying decreased function SLCO1B1 or CYP3A4 alleles.
Collapse
Affiliation(s)
- Anssi J H Mykkänen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Taskinen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuomas Lilius
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effects of Soy Isoflavones and Green Tea Extract on Simvastatin Pharmacokinetics and Influence of the SLCO1B1 521T > C Polymorphism. Front Nutr 2022; 9:868126. [PMID: 35685887 PMCID: PMC9171976 DOI: 10.3389/fnut.2022.868126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Green tea and soy products are extensively consumed by many people and they may influence the activity of drug metabolizing enzymes and drug transporters to result in drug interactions. This study was performed to evaluate the effect of green tea and soy isoflavone extracts on the pharmacokinetics of simvastatin in healthy subjects and to clarify the role of polymorphisms in the SLCO1B1 drug transporter in this effect. METHODS This was an open-label, three-phase randomized crossover pharmacokinetic study. A single dose of simvastatin 20 mg was taken on three occasions (without herbs, with green tea, and with soy isoflavones) by healthy male Chinese subjects. The green tea and soy isoflavone extracts were given at a dose containing EGCG 800 mg once daily or soy isoflavones about 80 mg once daily for 14 days before simvastatin dosing with at least 4-weeks washout period between phases. RESULTS All the 18 subjects completed the study. Intake of soy isoflavones was associated with reduced systemic exposure to simvastatin acid [geometric mean (% coefficient of variation) AUC0-24h from 16.1 (44.2) h⋅μg/L to 12.1 (54.6) h⋅μg/L, P < 0.05) but not the lactone. Further analysis showed that the interaction between simvastatin and the soy isoflavones only resulted in a significant reduction of AUC in subjects with the SLCO1B1 521TT genotype and not in those with the 521C variant allele. There was no overall effect of the green tea extract on simvastatin pharmacokinetics but the group with the SLCO1B1 521TT genotype showed reduced AUC values for simvastatin acid. CONCLUSION This study showed repeated administration of soy isoflavones reduced the systemic bioavailability of simvastatin in healthy volunteers that was dependent on the SLCO1B1 genotype which suggested that soy isoflavones-simvastatin interaction is impacted by genotype-related function of this liver uptake transporter.
Collapse
Affiliation(s)
- Weiwei Zeng
- The Second People’s Hospital of Longgang District, Shenzhen, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
20
|
Chu X, Chan GH, Houle R, Lin M, Yabut J, Fandozzi C. In Vitro Assessment of Transporter Mediated Perpetrator DDIs for Several Hepatitis C Virus Direct-Acting Antiviral Drugs and Prediction of DDIs with Statins Using Static Models. AAPS J 2022; 24:45. [DOI: 10.1208/s12248-021-00677-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
|
21
|
Filppula AM, Hirvensalo P, Parviainen H, Ivaska VE, Lönnberg KI, Deng F, Viinamäki J, Kurkela M, Neuvonen M, Niemi M. Comparative Hepatic and Intestinal Metabolism and Pharmacodynamics of Statins. Drug Metab Dispos 2021; 49:658-667. [PMID: 34045219 DOI: 10.1124/dmd.121.000406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
This study aimed to comprehensively investigate the in vitro metabolism of statins. The metabolism of clinically relevant concentrations of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, and their metabolites were investigated using human liver microsomes (HLMs), human intestine microsomes (HIMs), liver cytosol, and recombinant cytochrome P450 enzymes. We also determined the inhibitory effects of statin acids on their pharmacological target, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. In HLMs, statin lactones were metabolized to a much higher extent than their acid forms. Atorvastatin lactone and simvastatin (lactone) showed extensive metabolism [intrinsic clearance (CLint) values of 3700 and 7400 µl/min per milligram], whereas the metabolism of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin was slower (CLint 20-840 µl/min per milligram). The acids had CLint values in the range <0.1-80 µl/min per milligram. In HIMs, only atorvastatin lactone and simvastatin (lactone) exhibited notable metabolism, with CLint values corresponding to 20% of those observed in HLMs. CYP3A4/5 and CYP2C9 were the main statin-metabolizing enzymes. The majority of the acids inhibited HMG-CoA reductase, with 50% inhibitory concentrations of 4-20 nM. The present comparison of the metabolism and pharmacodynamics of the various statins using identical methods provides a strong basis for further application, e.g., comparative systems pharmacology modeling. SIGNIFICANCE STATEMENT: The present comparison of the in vitro metabolic and pharmacodynamic properties of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin and their metabolites using unified methodology provides a strong basis for further application. Together with in vitro drug transporter and clinical data, the present findings are applicable for use in comparative systems pharmacology modeling to predict the pharmacokinetics and pharmacological effects of statins at different dosages.
Collapse
Affiliation(s)
- Anne M Filppula
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Heli Parviainen
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Vilma E Ivaska
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - K Ivar Lönnberg
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Feng Deng
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Jenni Viinamäki
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mika Kurkela
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mikko Neuvonen
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (A.M.F., P.H., H.P., V.E.I., K.I.L., F.D., J.V., M.K., M.Ne., M.Ni.) and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| |
Collapse
|
22
|
Drug-drug-gene interactions as mediators of adverse drug reactions to diclofenac and statins: a case report and literature review. ACTA ACUST UNITED AC 2021; 72:114-128. [PMID: 34187111 PMCID: PMC8265195 DOI: 10.2478/aiht-2021-72-3549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/01/2021] [Indexed: 01/29/2023]
Abstract
Concomitant treatment with drugs that inhibit drug metabolising enzymes and/or transporters, such as commonly prescribed statins and nonsteroidal anti-inflammatory drugs (NSAIDs), has been associated with prolonged drug exposure and increased risk of adverse drug reactions (ADRs) due to drug-drug interactions. The risk is further increased in patients with chronic diseases/comorbidities who are more susceptible because of their genetic setup or external factors. In that light, we present a case of a 46-year-old woman who had been experiencing acute renal and hepatic injury and myalgia over two years of concomitant treatment with diclofenac, atorvastatin, simvastatin/fenofibrate, and several other drugs, including pantoprazole and furosemide. Our pharmacogenomic findings supported the suspicion that ADRs, most notably the multi-organ toxicity experienced by our patient, may be owed to drug-drug-gene interactions and increased bioavailability of the prescribed drugs due to slower detoxification capacity and decreased hepatic and renal elimination. We also discuss the importance of CYP polymorphisms in the biotransformation of endogenous substrates such as arachidonic acid and their modulating role in pathophysiological processes. Yet even though the risks of ADRs related to the above mentioned drugs are substantially evidenced in literature, pre-emptive pharmacogenetic analysis has not yet found its way into common clinical practice.
Collapse
|
23
|
Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics 2021; 13:pharmaceutics13050709. [PMID: 34068030 PMCID: PMC8152487 DOI: 10.3390/pharmaceutics13050709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Atorvastatin (ATS) is the gold-standard treatment worldwide for the management of hypercholesterolemia and prevention of cardiovascular diseases associated with dyslipidemia. Physiologically based pharmacokinetic (PBPK) models have been positioned as a valuable tool for the characterization of complex pharmacokinetic (PK) processes and its extrapolation in special sub-groups of the population, leading to regulatory recognition. Several PBPK models of ATS have been published in the recent years, addressing different aspects of the PK properties of ATS. Therefore, the aims of this review are (i) to summarize the physicochemical and pharmacokinetic characteristics involved in the time-course of ATS, and (ii) to evaluate the major highlights and limitations of the PBPK models of ATS published so far. The PBPK models incorporate common elements related to the physicochemical aspects of ATS. However, there are important differences in relation to the analyte evaluated, the type and effect of transporters and metabolic enzymes, and the permeability value used. Additionally, this review identifies major processes (lactonization, P-gp contribution, ATS-Ca solubility, simultaneous management of multiple analytes, and experimental evidence in the target population), which would enhance the PBPK model prediction to serve as a valid tool for ATS dose optimization.
Collapse
|
24
|
Lei HP, Qin M, Cai LY, Wu H, Tang L, Liu JE, Deng CY, Liu YB, Zhu Q, Li HP, Hu W, Yang M, Zhu YZ, Zhong SL. UGT1A1 rs4148323 A Allele is Associated With Increased 2-Hydroxy Atorvastatin Formation and Higher Death Risk in Chinese Patients With Coronary Artery Disease. Front Pharmacol 2021; 12:586973. [PMID: 33762934 PMCID: PMC7982952 DOI: 10.3389/fphar.2021.586973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
It is widely accepted that genetic polymorphisms impact atorvastatin (ATV) metabolism, clinical efficacy, and adverse events. The objectives of this study were to identify novel genetic variants influencing ATV metabolism and outcomes in Chinese patients with coronary artery disease (CAD). A total of 1079 CAD patients were enrolled and followed for 5 years. DNA from the blood and human liver tissue samples were genotyped using either Global Screening Array-24 v1.0 BeadChip or HumanOmniZhongHua-8 BeadChip. Concentrations of ATV and its metabolites in plasma and liver samples were determined using a verified ultra-performance liquid chromatography mass spectrometry (UPLC-MS/MS) method. The patients carrying A allele for the rs4148323 polymorphism (UGT1A1) showed an increase in 2-hydroxy ATV/ATV ratio (p = 1.69E−07, false discovery rate [FDR] = 8.66E−03) relative to the value in individuals without the variant allele. The result was further validated by an independent cohort comprising an additional 222 CAD patients (p = 1.08E−07). Moreover, the rs4148323 A allele was associated with an increased risk of death (hazard ratio [HR] 1.774; 95% confidence interval [CI], 1.031–3.052; p = 0.0198). In conclusion, our results suggested that the UGT1A1 rs4148323 A allele was associated with increased 2-hydroxy ATV formation and was a significant death risk factor in Chinese patients with CAD.
Collapse
Affiliation(s)
- He-Ping Lei
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Min Qin
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Li-Yun Cai
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Pharmacy, Southern Medical University, Guangzhou, China
| | - Hong Wu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Tang
- School of Pharmacy, Southern Medical University, Guangzhou, China
| | - Ju-E Liu
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun-Yu Deng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Yi-Bin Liu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Qian Zhu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Han-Ping Li
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Wei Hu
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Min Yang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shi-Long Zhong
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
25
|
Rebelo D, Correia AT, Nunes B. Acute and chronic effects of environmental realistic concentrations of simvastatin in danio rerio: evidences of oxidative alterations and endocrine disruptive activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103522. [PMID: 33144098 DOI: 10.1016/j.etap.2020.103522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Due to their wide use, pharmaceuticals can be discarded, metabolized and excreted into the environment, potentially affecting aquatic organisms. Lipid-regulating drugs are among the most prescribed medications around the world, to control human cholesterol levels, in more than 20 million patients. Despite this massive use of lipid-regulating drugs, particularly simvastatin, the role of these drugs is not fully characterized and understood in terms of its potential toxicological effects at the environmental level. This work intended to characterize the toxicity of an acute (120 h post-fertilization) and chronic (60 days) exposure to the antihyperlipidemic drug simvastatin (in concentrations of 92.45, 184.9, 369.8, 739.6 and 1479.2 ng L-1), in the freshwater species zebrafish (Danio rerio). The concentrations hereby mentioned were implemented in both exposures, and were based on levels found in wastewater treatment plant influents (11.7 ± 3.2 μg L-1), effluents (2.65 ± 0.8 μg L-1) and Apies River (1.585 ± 0.3 μg L-1), located in Pretoria, South Africa and, particularly in the maximum levels found in effluents from wastewater treatment plants in Portugal (369.8 ng L-1). The acute effects were analysed focusing on behavioural endpoints (erratic and purposeful swimming), total distance travelled and swimming time), biomarkers of oxidative stress (the activities of the enzymes superoxide dismutase, catalase, glutathione peroxidase), biotransformation (the activity of glutathione S-transferases) and lipid peroxidation (levels of thiobarbituric acid reactive substances). Animals chronically exposed were also histologically analysed for sex determination and gonadal developmental stages identification. In terms of acute exposure, significant alterations were reported in terms of behavioural alterations (hyperactivity), followed by a general reduction in all tested biomarkers. Also, the analysis of chronically exposed fish evidenced no alterations in sex ratio and maturation stages. In addition, the analysis of chronically exposed fish evidenced no alterations in terms of sexual characteristics, suggesting that the chronic exposure of Danio rerio to simvastatin does not alter the sex ratio and maturation stages of individuals. This assumption suggests that simvastatin did not act as an endocrine disruptor. Moreover, the metabolism, neuronal interactions and the antioxidant properties of SIM seem to have modulated the hereby-mentioned results of toxicity. Results from this assay allow inferring that simvastatin can have an ecologically relevant impact in living organisms.
Collapse
Affiliation(s)
- D Rebelo
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4550-208, Matosinhos, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - B Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
26
|
The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int J Mol Sci 2020; 21:ijms21228745. [PMID: 33228116 PMCID: PMC7699354 DOI: 10.3390/ijms21228745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Statins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades. Here, we present a concise perspective on the role of statins in lowering serum cholesterol levels, and how their reported interactions with phospholipid membranes offer a crucial insight into the mechanism of some of the more commonly observed pleiotropic effects of statin administration. Lipophilicity, which governs hepatoselectivity, is directly related to the molecular structure of statins, which dictates interaction with and transport through membranes. The structure of statins is therefore a clinically important consideration in the treatment of hypercholesterolaemia. This review integrates the recent biophysical studies of statins with the literature on the physiological effects and provides new insights into the mechanistic cause of statin pleiotropy, and prospective means of understanding the cholesterol-independent effects of statins.
Collapse
|
27
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
28
|
Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 2020; 16:809-822. [PMID: 32729746 DOI: 10.1080/17425255.2020.1801634] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) lower cholesterol synthesis in patients with hypercholesterolemia. Increased statin exposure is an important risk factor for skeletal muscle toxicity. Potent inhibitors of cytochrome P450 (CYP) 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin, and atorvastatin. Fluvastatin is metabolized by CYP2C9, whereas pravastatin, rosuvastatin, and pitavastatin are unaffected by inhibition by either CYP. Statins also have different affinities for membrane transporters involved in processes such as intestinal absorption, hepatic absorption, biliary excretion, and renal excretion. AREAS COVERED In this review, the pharmacokinetic aspects of drug-drug interactions with statins and genetic polymorphisms of CYPs and drug transporters involved in the pharmacokinetics of statins are discussed. EXPERT OPINION Understanding the mechanisms underlying statin interactions can help minimize drug interactions and reduce the adverse side effects caused by statins. Since recent studies have shown the involvement of drug transporters such as OATP and BCRP as well as CYPs in statin pharmacokinetics, further clinical studies focusing on the drug transporters are necessary. The establishment of biomarkers based on novel mechanisms, such as the leakage of microRNAs into the peripheral blood associated with the muscle toxicity, is important for the early detection of statin side effects.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Yuito Fujita
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
29
|
Turner RM, Fontana V, Zhang JE, Carr D, Yin P, FitzGerald R, Morris AP, Pirmohamed M. A Genome-wide Association Study of Circulating Levels of Atorvastatin and Its Major Metabolites. Clin Pharmacol Ther 2020; 108:287-297. [PMID: 32128760 DOI: 10.1002/cpt.1820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 01/03/2023]
Abstract
Atorvastatin (ATV) is frequently prescribed and generally well tolerated, but can lead to myotoxicity, especially at higher doses. A genome-wide association study of circulating levels of ATV, 2-hydroxy (2-OH) ATV, ATV lactone (ATV L), and 2-OH ATV L was performed in 590 patients who had been hospitalized with a non-ST elevation acute coronary syndrome 1 month earlier and were on high-dose ATV (80 mg or 40 mg daily). The UGT1A locus (lead single nucleotide polymorphism, rs887829) was strongly associated with both increased 2-OH ATV/ATV (P = 7.25 × 10-16 ) and 2-OH ATV L/ATV L (P = 3.95 × 10-15 ) metabolic ratios. Moreover, rs45446698, which tags CYP3A7*1C, was nominally associated with increased 2-OH ATV/ATV (P = 6.18 × 10-7 ), and SLCO1B1 rs4149056 with increased ATV (P = 2.21 × 10-6 ) and 2-OH ATV (P = 1.09 × 10-6 ) levels. In a subset of these patients whose levels of ATV and metabolites had also been measured at 12 months after hospitalization (n = 149), all of these associations remained, except for 2-OH ATV and rs4149056 (P = 0.057). Clinically, rs4149056 was associated with increased muscular symptoms (odds ratio (OR) 3.97; 95% confidence interval (CI) 1.29-12.27; P = 0.016) and ATV intolerance (OR 1.55; 95% CI 1.09-2.19; P = 0.014) in patients (n = 870) primarily discharged on high-dose ATV. In summary, both novel and recognized genetic associations have been identified with circulating levels of ATV and its major metabolites. Further study is warranted to determine the clinical utility of genotyping rs4149056 in patients on high-dose ATV.
Collapse
Affiliation(s)
- Richard M Turner
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Vanessa Fontana
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Jieying E Zhang
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel Carr
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Peng Yin
- Department of Biostatistics, University of Liverpool, Liverpool, UK.,Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Richard FitzGerald
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK.,Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Turner RM, Fontana V, FitzGerald R, Morris AP, Pirmohamed M. Investigating the clinical factors and comedications associated with circulating levels of atorvastatin and its major metabolites in secondary prevention. Br J Clin Pharmacol 2020; 86:62-74. [PMID: 31656041 PMCID: PMC6983514 DOI: 10.1111/bcp.14133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022] Open
Abstract
Aims The lipid-lowering drug, atorvastatin (ATV), is 1 of the most commonly prescribed medications worldwide. The aim of this study was to comprehensively investigate and characterise the clinical factors and comedications associated with circulating levels of ATV and its metabolites in secondary prevention clinical practice. Methods The plasma concentrations of ATV, 2-hydroxy (2-OH) ATV, ATV lactone (ATV L) and 2-OH ATV L were determined in patients 1 month after hospitalisation for a non-ST elevation acute coronary syndrome. Factors were identified using all subsets multivariable regression and model averaging with the Bayesian information criterion. Exploratory genotype-stratified analyses were conducted using ABCG2 rs2231142 (Q141K) and CYP2C19 metaboliser status to further investigate novel associations. Results A total of 571 patients were included; 534 and 37 were taking ATV 80 mg and 40 mg daily, respectively. Clinical factors associated with ATV and/or its metabolite levels included age, sex, body mass index and CYP3A inhibiting comedications. Smoking was newly associated with increased ATV lactonisation and reduced hydroxylation. Proton pump inhibitors (PPIs) and loop diuretics were newly associated with modestly increased levels of ATV (14% and 38%, respectively) and its metabolites. An interaction between PPIs and CYP2C19 metaboliser status on exposure to specific ATV analytes (e.g. interaction P = .0071 for 2-OH ATV L) was observed. Overall model R2 values were 0.14-0.24.ConclusionMultiple factors were associated with circulating ATV and metabolite levels, including novel associations with smoking and drug-drug(-gene) interactions involving PPIs and loop diuretics. Further investigations are needed to identify additional factors that influence ATV exposure.
Collapse
Affiliation(s)
- Richard M Turner
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Vanessa Fontana
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Richard FitzGerald
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, United Kingdom
| | - Munir Pirmohamed
- Department of Molecular & Clinical Pharmacology, University of Liverpool, United Kingdom
| |
Collapse
|
31
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
32
|
Influence of OATP1B1 and BCRP polymorphisms on the pharmacokinetics and pharmacodynamics of rosuvastatin in elderly and young Korean subjects. Sci Rep 2019; 9:19410. [PMID: 31857620 PMCID: PMC6923423 DOI: 10.1038/s41598-019-55562-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 02/04/2023] Open
Abstract
A lack of information regarding whether genetic polymorphisms of SLCO1B1 and ABCG2 affect the pharmacokinetics (PKs)/pharmacodynamics (PDs) of rosuvastatin in elderly subjects prevents optimal individualized pharmacotherapy of rosuvastatin in clinical settings. This study aimed to investigate the effect of age and genetic polymorphisms and possible differences in genetic effects on the PKs/PDs of rosuvastatin between elderly and young subjects. Two separate clinical studies designed as open-label, one-sequence studies with multiple-dose administration for elderly (n = 20) and young (n = 32) subjects were conducted. All subjects received 20 mg of rosuvastatin once daily for 21 days. The exposure to rosuvastatin, characterized by the area under the time curve (AUC), increased by 23% in the elderly subjects compared with that of young subjects, which was not significant. When compared to the subjects with breast cancer resistance protein (BCRP) normal function, the exposure to rosuvastatin increased by 44% in young subjects (p = 0.0021) with BCRP intermediate function (IF) and by 35% and 59% (p > 0.05 for both) in elderly subjects with BCRP IF and low function, respectively. SLCO1B1 521T > C was also partially associated with a higher AUC of rosuvastatin in young subjects and a less pronounced increasing trend in elderly subjects (p > 0.05 for both). The lipid-lowering effect of rosuvastatin was less pronounced in the elderly subjects than in the young subjects, and genetic polymorphisms of neither SLCO1B1 nor ABCG2 significantly affected the PDs of rosuvastatin. The ABCG2 421C > A polymorphism was associated with the PKs of rosuvastatin and was identified as a more important determinant than the SLCO1B1 521T > C polymorphism in both elderly and young subjects.
Collapse
|
33
|
Iwaki Y, Lee W, Sugiyama Y. Comparative and quantitative assessment on statin efficacy and safety: insights into inter-statin and inter-individual variability via dose- and exposure-response relationships. Expert Opin Drug Metab Toxicol 2019; 15:897-911. [PMID: 31648563 DOI: 10.1080/17425255.2019.1681399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Statins are prescribed widely for cholesterol-lowering therapy, but it is known that their efficacy and safety profiles vary, despite the shared pharmacophore and pharmacological target. The immense body of related clinical and preclinical data offers a unique opportunity to explore the possible factors underlying inter-statin and inter-individual variabilities.Area covered: Clinical and preclinical data from various statins were compiled with regard to the efficacy (cholesterol-lowering effect) and safety (muscle toxicity). Based on the compiled data, dose- and exposure-response relationships were explored to obtain mechanistic and quantitative insights into the variations in the efficacy and safety profiles of statins.Expert opinion: Our analyses indicated that the inter-statin variability in the cholesterol-lowering effect may be mainly attributable to variations in potency of inhibition of the pharmacological target, rather than variations in drug exposure at the site of drug action. However, the drug exposure at the sites of drug action (i.e., the liver for efficacy and the muscle for safety) may contribute to the differences in the efficacy and safety observed in individual patients.
Collapse
Affiliation(s)
- Yuki Iwaki
- Clinical Pharmacology, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
34
|
Prediction of pharmacokinetic drug-drug interactions causing atorvastatin-induced rhabdomyolysis using physiologically based pharmacokinetic modelling. Biomed Pharmacother 2019; 119:109416. [PMID: 31518878 DOI: 10.1016/j.biopha.2019.109416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Atorvastatin and its lactone form metabolite are reported to be associated with statin-induced myopathy (SIM) such as myalgia and life-threatening rhabdomyolysis. Though the statin-induced rhabdomyolysis is not common during statin therapy, its incidence will significantly increase due to pharmacokinetic drug-drug interactions (DDIs) with inhibitor drugs which inhibit atorvastatin's and its lactone's metabolism and hepatic uptake. Thus, the quantitative analysis of DDIs of atorvastatin and its lactone with cytochrome P450 3A4 (CYP3A4) and organic anion-transporting polypeptide (OATP) inhibitors is of great importance. This study aimed to predict pharmacokinetic DDIs possibly causing atorvastatin-induced rhabdomyolysis using Physiologically Based Pharmacokinetic (PBPK) Modelling. Firstly, we refined the PBPK models of atorvastatin and atorvastatin lactone for predicting the DDIs with CYP3A4 and OATP inhibitors. Thereafter, we predicted the exposure changes of atorvastatin and atorvastatin lactone originating from the case reports of atorvastatin-induced rhabdomyolysis using the refined models. The simulation results show that pharmacokinetic DDIs of atorvastatin and its lactone with fluconazole, palbociclib diltiazem and cyclosporine are significant. Consequently, clinicians should be aware of necessary dose adjustment of atorvastatin being used with these four inhibitor drugs.
Collapse
|
35
|
Malagnino V, Duthaler U, Seibert I, Krähenbühl S, Meyer Zu Schwabedissen HE. OATP1B3-1B7 (LST-3TM12) Is a Drug Transporter That Affects Endoplasmic Reticulum Access and the Metabolism of Ezetimibe. Mol Pharmacol 2019; 96:128-137. [PMID: 31127008 DOI: 10.1124/mol.118.114934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 05/15/2019] [Indexed: 02/14/2025] Open
Abstract
Drug transporters play a crucial role in pharmacokinetics. One subfamily of transporters with proven clinical relevance are the OATP1B transporters. Recently we identified a new member of the OATP1B family named OATP1B3-1B7 (LST-3TM12). This functional transporter is encoded by SLCO1B3 and SLCO1B7 OATP1B3-1B7 is expressed in hepatocytes and is located in the membrane of the smooth endoplasmic reticulum (SER). One aim of this study was to test whether OATP1B3-1B7 interacts with commercial drugs. First, we screened a selection of OATP1B substrates for inhibition of OATP1B3-1B7-mediated transport of dehydroepiandrosterone sulfate and identified several inhibitors. One such inhibitor was ezetimibe, which not only inhibited OATP1B3-1B7 but is also a substrate, as its cellular content was significantly increased in cells heterologously expressing the transporter. In humans, ezetimibe is extensively metabolized by hepatic and intestinal uridine-5'-diphospho-glucuronosyltransferases (UGTs), the catalytic site of which is located within the SER lumen. After verification of OATP1B3-1B7 expression in the small intestine, we determined in microsomes whether SER access can be modulated by inhibitors of OATP1B3-1B7. We were able to show that these compounds significantly reduced accumulation in small intestinal and hepatic microsomes, which influenced the rate of ezetimibe β-D-glucuronide formation as determined in microsomes treated with bromsulphthalein. Notably, this molecule not only inhibits the herein reported transporter but also other transport systems. In conclusion, we report that multiple drugs interact with OATP1B3-1B7; for ezetimibe, we were able to show that SER access and metabolism is significantly reduced by bromsulphthalein, which is an inhibitor of OATP1B3-1B7. SIGNIFICANCE STATEMENT: OATP1B3-1B3 (LST-3TM12) is a transporter that has yet to be fully characterized. We provide valuable insight into the interaction potential of this transporter with several marketed drugs. Ezetimibe, which interacted with OATP1B3-1B7, is highly metabolized by uridine-5'-diphospho-glucuronosyltransferases (UGTs), whose catalytic site is located within the smooth endoplasmic reticulum (SER) lumen. Through microsomal assays with ezetimibe and the transport inhibitor bromsulphthalein we investigated the interdependence of SER access and the glucuronidation rate of ezetimibe. These findings led us to the hypothesis that access or exit of drugs to the SER is orchestrated by SER transporters such as OATP1B3-1B7.
Collapse
Affiliation(s)
- Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Urs Duthaler
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Stephan Krähenbühl
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| | - Henriette E Meyer Zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel (V.M., I.S., H.E.M.S.) and Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University of Basel and University Hospital Basel (U.D., S.K.), Basel, Switzerland
| |
Collapse
|
36
|
Tatham LM, Liptrott NJ, Rannard SP, Owen A. Long-Acting Injectable Statins-Is It Time for a Paradigm Shift? Molecules 2019; 24:E2685. [PMID: 31344834 PMCID: PMC6695729 DOI: 10.3390/molecules24152685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023] Open
Abstract
In recent years, advances in pharmaceutical processing technologies have resulted in development of medicines that provide therapeutic pharmacokinetic exposure for a period ranging from weeks to months following a single parenteral administration. Benefits for adherence, dose and patient satisfaction have been witnessed across a range of indications from contraception to schizophrenia, with a range of long-acting medicines also in development for infectious diseases such as HIV. Existing drugs that have successfully been formulated as long-acting injectable formulations have long pharmacokinetic half-lives, low target plasma exposures, and low aqueous solubility. Of the statins that are clinically used currently, atorvastatin, rosuvastatin, and pitavastatin may have compatibility with this approach. The case for development of long-acting injectable statins is set out within this manuscript for this important class of life-saving drugs. An overview of some of the potential development and implementation challenges is also presented.
Collapse
Affiliation(s)
- Lee M Tatham
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
- Tandem Nano Ltd., Liverpool L22 3GL, UK
| | - Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | - Steve P Rannard
- Department of Chemistry, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK.
- Tandem Nano Ltd., Liverpool L22 3GL, UK.
| |
Collapse
|
37
|
Ogungbenro K, Wagner JB, Abdel-Rahman S, Leeder JS, Galetin A. A population pharmacokinetic model for simvastatin and its metabolites in children and adolescents. Eur J Clin Pharmacol 2019; 75:1227-1235. [PMID: 31172248 PMCID: PMC6697721 DOI: 10.1007/s00228-019-02697-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/23/2019] [Indexed: 11/26/2022]
Abstract
Purpose Poor adherence to dietary/behaviour modifications as interventions for hypercholesterolemia in paediatric patients often necessitates the initiation of statin therapy. The aim of this study was to develop a joint population pharmacokinetic model for simvastatin and four metabolites in children and adolescents to investigate sources of variability in simvastatin acid exposure in this patient population, in addition to SLCO1B1 genotype status. Methods Plasma concentrations of simvastatin and its four metabolites, demographic and polymorphism data for OATP1B1 and CYP3A5 were analysed utilising a population pharmacokinetic modelling approach from an existing single oral dose (10 mg < 17 years and 20 mg ≥ 18 years) pharmacokinetic dataset of 32 children and adolescents. Results The population PK model included a one compartment disposition model for simvastatin with irregular oral absorption described by two parallel absorption processes each consisting of sequential zero and first-order processes. The data for each metabolite were described by a one-compartment disposition model with the formation and elimination apparent parameters estimated. The model confirmed the statistically significant effect of c.521T>C (rs4149056) on the pharmacokinetics of the active metabolite simvastatin acid in children/adolescents, consistent with adult data. In addition, age was identified as a covariate affecting elimination clearances of 6-hydroxymethyl simvastatin acid and 3, 5 dihydrodiol simvastatin metabolites. Conclusion The model developed describes the pharmacokinetics of simvastatin and its metabolites in children/adolescents capturing the effects of both c.521T>C and age on variability in exposure in this patient population. This joint simvastatin metabolite model is envisaged to facilitate optimisation of simvastatin dosing in children/adolescents. Electronic supplementary material The online version of this article (10.1007/s00228-019-02697-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy Kansas City, Kansas City, MO, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, USA
- Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
38
|
Drug Treatment of Hyperlipidemia in Chinese Patients: Focus on the Use of Simvastatin and Ezetimibe Alone and in Combination. Am J Cardiovasc Drugs 2019; 19:237-247. [PMID: 30714088 DOI: 10.1007/s40256-018-00317-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated serum low-density lipoprotein cholesterol (LDL-C) is a major risk factor for coronary heart disease (CHD). Many guidelines recommend LDL-C as a primary treatment target, and statins represent the cornerstone of treatment for lipid management. Recently revised guidelines recommend even more intense management of LDL-C, especially in patients at moderate and high risk. However, LDL-C levels in the Chinese population differ from those in Western populations, and the benefits and safety of the maximum allowable dose of statins have yet to be determined. Furthermore, in practice, many patients do not achieve the increasingly stringent LDL-C goals. Consequently, alternative approaches to lipid management are required. Combination therapy with ezetimibe and a statin, which have complementary mechanisms of action, is more effective than statin monotherapies, even at high doses. Several clinical studies have consistently shown that combination therapy with ezetimibe and simvastatin lowers LDL-C more potently than statin monotherapies. Moreover, the safety and tolerability profile of the combination therapy appears to be similar to that of low-dose statin monotherapies. This review discusses the role of simvastatin in combination with ezetimibe in controlling dyslipidemia in Chinese patients, particularly the efficacy and safety of combination therapy in light of recently published clinical data.
Collapse
|
39
|
Association between the UGT1A1*28 allele and hyperbilirubinemia in HIV-positive patients receiving atazanavir: a meta-analysis. Biosci Rep 2019; 39:BSR20182105. [PMID: 30962262 PMCID: PMC6499501 DOI: 10.1042/bsr20182105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
Objectives The uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1)*28 allele in HIV-positive patients receiving atazanavir (ATV) might be associated with the risk of hyperbilirubinemia. Owing to mixed and inconclusive results, a meta-analysis was conducted to systematically summarize and clarify this association. Methods Based on a comprehensive search of PubMed, Embase and Web of Science databases, studies investigating the association between UGT1A1 alleles and hyperbilirubinemia was retrieved. We evaluated the strength of this relationship using odds ratios (ORs) with 95% confidence intervals (CIs). Sensitivity analysis was performed by removing each study one at a time and calculating the pooled ORs of the remaining studies to test the robustness of the meta-analysis results. The Q statistic and the I2 index statistic were used to assess heterogeneity. Publication bias was evaluated using Orwin’s fail-safe N test. Results A total of six individual studies were included in this meta-analysis. A significantly increased risk of hyperbilirubinemia was observed in HIV-positive patients receiving ATV with the UGT1A1*1/*28 or UGT1A1*28/*28 genotype, and the risk was higher with the UGT1A1*28/*28 genotype than with the UGT1A1*1/*28 genotype. (UGT1A1*28/*28 versus UGT1A1*1/*28: OR = 3.69, 95%CI = 1.82–7.49; UGT1A1*1/*28 versus UGT1A1*1/*1: OR = 3.50, 95%CI = 1.35–9.08; UGT1A1*28/*28 versus UGT1A1*1/*1: OR = 10.07, 95%CI = 4.39–23.10). All of the pooled ORs were not significantly affected by the remaining studies and different modeling methods, indicating robust results. Conclusions This meta-analysis suggests that the UGT1A1*28 allele represents a biomarker for an increased risk of hyperbilirubinemia in HIV-positive patients receiving ATV.
Collapse
|
40
|
Li Y, Wu Y, Li YJ, Meng L, Ding CY, Dong ZJ. Effects of Silymarin on the In Vivo Pharmacokinetics of Simvastatin and Its Active Metabolite in Rats. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24091666. [PMID: 31035343 PMCID: PMC6540003 DOI: 10.3390/molecules24091666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Herein, the effect of silymarin pretreatment on the pharmacokinetics of simvastatin in rats was evaluated. To ensure the accuracy of the results, a rapid and sensitive UPLC-MS/MS method was established for simultaneous quantification of simvastatin (SV) and its active metabolite simvastatin acid (SVA). This method was applied for studying the pharmacokinetic interactions in rats after oral co-administration of silymarin (45 mg/kg) and different concentrations of SV. The major pharmacokinetic parameters, including Cmax, tmax, t1/2, mean residence time (MRT), elimination rate constant (λz) and area under the concentration-time curve (AUC0-12h), were calculated using the non-compartmental model. The results showed that the co-administration of silymarin and SV significantly increased the Cmax and AUC0-12h of SVA compared with SV alone, while there was no significant difference with regards to Tmax and t1/2. However, SV pharmacokinetic parameters were not significantly affected by silymarin pretreatment. Therefore, these changes indicated that drug-drug interactions may occur after co-administration of silymarin and SV.
Collapse
Affiliation(s)
- Ying Li
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Yin Wu
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Ya-Jing Li
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Lu Meng
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Cong-Yang Ding
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| | - Zhan-Jun Dong
- National Clinical Drug Monitoring Center, Department of Pharmacy, Hebei Province General Center, Shijiazhuang 050051, China.
| |
Collapse
|
41
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
42
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
43
|
Matsunaga N, Ufuk A, Morse BL, Bedwell DW, Bao J, Mohutsky MA, Hillgren KM, Hall SD, Houston JB, Galetin A. Hepatic Organic Anion Transporting Polypeptide-Mediated Clearance in the Beagle Dog: Assessing In Vitro-In Vivo Relationships and Applying Cross-Species Empirical Scaling Factors to Improve Prediction of Human Clearance. Drug Metab Dispos 2019; 47:215-226. [PMID: 30593544 DOI: 10.1124/dmd.118.084194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Bridget L Morse
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - David W Bedwell
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Jingqi Bao
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Michael A Mohutsky
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Kathleen M Hillgren
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Stephen D Hall
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| |
Collapse
|
44
|
A Method for Direct Monitoring of Atorvastatin Adherence in Cardiovascular Disease Prevention: Quantification of the Total Exposure to Parent Drug and Major Metabolites Using 2-Channel Chromatography and Tandem Mass Spectrometry. Ther Drug Monit 2019; 41:19-28. [PMID: 30633723 DOI: 10.1097/ftd.0000000000000578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Low adherence to statin therapy remains a public health concern associated with poor prognosis in cardiovascular disease patients. A feasible method for statin adherence monitoring in clinical practice has yet to be developed. In this article, we describe a novel method designed for the direct monitoring of atorvastatin adherence based on the sum of parent drug and major metabolites in blood samples. METHODS Acid and lactone forms of atorvastatin, 2-OH-atorvastatin, and 4-OH-atorvastatin were assayed. Plasma proteins were precipitated with an acidified mixture of methanol, acetonitrile, and aqueous zinc sulfate, and the supernatant was analyzed with 2-channel reversed-phase chromatography coupled to tandem mass spectrometry. Assay validation was performed according to the guidelines provided by the European Medicines Agency and the US Food and Drug Administration. RESULTS The effective run time was 1 minute and 45 seconds per sample. Mean accuracy ranged from 92% to 110%, and coefficients of variation were ≤8.1% over the measurement ranges for individual compounds. The sum of acids and corresponding lactones was stable in clinical plasma samples kept at ambient temperature for up to 6 days after blood sampling (mean sum within 96.6%-101% of baseline). CONCLUSIONS A fast and reliable assay for the quantification of atorvastatin and its 5 major metabolites in clinical blood samples is reported. Limitations of preanalytical stability were solved using the sum of the acid and lactone forms. The assay is feasible for implementation in clinical practice, and the sum of parent drug and metabolites may be used for direct monitoring of atorvastatin adherence.
Collapse
|
45
|
Galiullina LF, Scheidt HA, Huster D, Aganov A, Klochkov V. Interaction of statins with phospholipid bilayers studied by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:584-593. [PMID: 30578770 DOI: 10.1016/j.bbamem.2018.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
Statins are drugs that specifically inhibit the enzyme HMG-CoA reductase and thereby reduce the concentration of low-density lipoprotein cholesterol, which represents a well-established risk factor for the development of atherosclerosis. The results of several clinical trials have shown that there are important intermolecular differences responsible for the broader pharmacologic actions of statins, even beyond HMG-CoA reductase inhibition. According to one hypothesis, the biological effects exerted by these compounds depend on their localization in the cellular membrane. The aim of the current work was to study the interactions of different statins with phospholipid membranes and to investigate their influence on the membrane structure and dynamics using various solid-state NMR techniques. Using 1H NOESY MAS NMR, it was shown that atorvastatin, cerivastatin, fluvastatin, rosuvastatin, and some percentage of pravastatin intercalate the lipid-water interface of POPC membranes to different degrees. Based on cross-relaxation rates, the different average distribution of the individual statins in the bilayer was determined quantitatively. Investigation of the influence of the investigated statins on membrane structure revealed that lovastatin had the least effect on lipid packing and chain order, pravastatin significantly lowered lipid chain order, while the other statins slightly decreased lipid chain order parameters mostly in the middle segments of the phospholipid chains.
Collapse
Affiliation(s)
- Leisan F Galiullina
- Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Albert Aganov
- Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| | - Vladimir Klochkov
- Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russian Federation
| |
Collapse
|
46
|
Lv X, Zhang JB, Hou J, Dou TY, Ge GB, Hu WZ, Yang L. Chemical Probes for Human UDP-Glucuronosyltransferases: A Comprehensive Review. Biotechnol J 2018; 14:e1800002. [PMID: 30192065 DOI: 10.1002/biot.201800002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/19/2018] [Indexed: 01/11/2023]
Abstract
UGTs play crucial roles in the metabolism and detoxification of both endogenous and xenobiotic compounds. The key roles of UGTs in human health have garnered great interest in the design and development of specific probes for human UGTs. However, in contrast to other human enzymes, the probe substrates for human UGTs are rarely reported, owing to the highly overlapping substrate specificities of UGTs and the lack of the integrated crystal structures of UGTs. Over the past decades, many efforts are made to develop specific probe substrates for UGTs and use them in both basic research and drug discovery. This review focuses on recent progress in the development of probe substrates for UGTs and their biomedical applications. A long list of chemical probes for UGTs, including non-fluorescent and fluorescent probes along with their structural information and kinetic parameters, are prepared and analyzed. Additionally, challenges and future directions in this field are highlighted in the final section. All information and knowledge presented in this review provide practical tools/methods for measuring UGT activities in complex biological samples, which will be very helpful for rapid screening and characterization of UGT modulators, and for exploring the relevance of UGT enzymes to human diseases.
Collapse
Affiliation(s)
- Xia Lv
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | | | - Jie Hou
- Dalian Medical University, Dalian, 116044, China
| | - Tong-Yi Dou
- School of Life Science and Medicine, Dalian University of Technology, Panjin, 124221, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Zhong Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
47
|
Laxman TS, Puttervu SK, Mishra A, Verma S, Singh SP, Sashidhara KV, Marandi CM, Saxena S, Yadav MK, Bhatta RS. Evaluation of interconversion pharmacokinetics of 16α-hydroxycleroda-3,13(14)Z-dien-15,16-olide - a novel HMG-CoA reductase inhibitor and its acid metabolite using multi-compartmental pharmacokinetic model in mice. Xenobiotica 2018; 49:474-483. [PMID: 29565234 DOI: 10.1080/00498254.2018.1451933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
16α-Hydroxycleroda-3,13(14)Z-dien-15,16-olide (4655K-09 or K-09) is a novel clerodane diterpene lactone reported for its anti-hyperlipidemic efficacy. The objective of the present study was to investigate the probable reversible metabolism of 4655K-09 and evaluate its effects on pharmacokinetic (PK) properties. The PK studies were carried out through intravenous (IV) bolus administration of 4655K-09 and K-9T in mice at a dose of 3, 6 and 12 mg/kg separately. The oral PK study of 4655K-09 was carried out at therapeutic dose of 25 mg/kg. The % AUC of metabolite converted to parent upon its administration % AUCK-09K-9T was found to be 27.28 ± 2.67. The multi-compartmental interconversion model defined reversible and irreversible clearances along with volumes of distribution for parent and metabolite. The results emphasized that hydrolysis of lactone to acid was more efficient than back conversion to parent due to greater extent of irreversible elimination of acid. Further, the role of interconversion in pharmacokinetics of 4655K-09 was evaluated through secondary parameters like conversion coefficients of parent to metabolite ( KK-9TK-09:0.08 ± 0.02 ), metabolite to parent ( KK-09K-9T : 0.019 ± 0.001), exposure enhancement (EE: 1.04 ± 0.006), and recycled fraction (RF: 0.042 ± 0.007), highlighted the minimal role of interconversion. The estimation of oral bioavailability remains unaffected when calculated through considering reversible metabolism. The present model-based interconversion pharmacokinetics of 4655K-09 in mice could be further extended to other species to support its development as anti-hyperlipidemic agent.
Collapse
Affiliation(s)
- Tulsankar Sachin Laxman
- a Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India.,b Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
| | - Santosh Kumar Puttervu
- a Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India.,b Academy of Scientific and Innovative Research (AcSIR) , New Delhi , India
| | - Anjali Mishra
- a Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Sarvesh Verma
- a Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - S P Singh
- c Medicinal & Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - K V Sashidhara
- c Medicinal & Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - C M Marandi
- d Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Rae Bareli , India
| | - Shivani Saxena
- d Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Rae Bareli , India
| | - Manoj K Yadav
- c Medicinal & Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Rabi S Bhatta
- a Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India.,d Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Rae Bareli , India
| |
Collapse
|
48
|
Deljehier T, Pariente A, Miremont-Salamé G, Haramburu F, Nguyen L, Rubin S, Rigothier C, Théophile H. Rhabdomyolysis after co-administration of a statin and fusidic acid: an analysis of the literature and of the WHO database of adverse drug reactions. Br J Clin Pharmacol 2018; 84:1057-1063. [PMID: 29337401 DOI: 10.1111/bcp.13515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/16/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
Following a severe case of rhabdomyolysis in our University Hospital after a co-administration of atorvastatin and fusidic acid, we describe this interaction as this combination is not clearly contraindicated in some countries, particularly for long-term treatment by fusidic acid. All cases of rhabdomyolysis during a co-administration of a statin and fusidic acid were identified in the literature and in the World and Health Organization database, VigiBase® . In the literature, 29 cases of rhabdomyolysis were identified; mean age was 66 years, median duration of co-administration before rhabdomyolysis occurrence was 21 days, 28% of cases were fatal. In the VigiBase® , 182 cases were retrieved; mean age was 68 years, median duration of co-administration before rhabdomyolysis was 31 days and 24% of cases were fatal. Owing to the high fatality associated with this co-administration and the long duration of treatment before rhabdomyolysis occurrence, fusidic acid should be used if there is no appropriate alternative, as long as statin therapy is interrupted for the duration of fusidic acid therapy, and perhaps a week longer. Rarely will interruption of this sort have adverse consequences for the patient.
Collapse
Affiliation(s)
- Thomas Deljehier
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Antoine Pariente
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,team Pharmacoepidemiology, University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Ghada Miremont-Salamé
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,team Pharmacoepidemiology, University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Françoise Haramburu
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France.,team Pharmacoepidemiology, University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000, Bordeaux, France
| | - Linh Nguyen
- University of Bordeaux, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux, Bordeaux, France.,INSERM, BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Sébastien Rubin
- University of Bordeaux, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux, Bordeaux, France.,INSERM, BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Claire Rigothier
- University of Bordeaux, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, CHU Bordeaux, Bordeaux, France.,INSERM, BioTis, UMR 1026, University of Bordeaux, Bordeaux, France
| | - Hélène Théophile
- Department of Medical Pharmacology, Regional Pharmacovigilance Centre, CHU Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|
49
|
Wagner JB, Abdel-Rahman S, Van Haandel L, Gaedigk A, Gaedigk R, Raghuveer G, Kauffman R, Leeder JS. Impact of SLCO1B1 Genotype on Pediatric Simvastatin Acid Pharmacokinetics. J Clin Pharmacol 2018; 58:823-833. [PMID: 29469964 DOI: 10.1002/jcph.1080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
This study investigated the impact of allelic variation in SLCO1B1, a gene encoding for the liver-specific solute carrier organic anion transporter family member 1B1 protein (SLCO1B1), on simvastatin and simvastatin acid (SVA) systemic exposure in children and adolescents. Participants (8-20 years old) with at least 1 variant SLCO1B1 c.521T>C allele (521TC, n = 15; 521CC, n = 2) and 2 wild-type alleles (521TT, n = 15) completed a single oral dose pharmacokinetic study. At equivalent doses, SVA exposure was 6.3- and 2.5-fold greater in 521CC and TC genotypes relative to 521TT (Cmax , 2.1 ± 0.2 vs 1.0 ± 0.5 vs 0.4 ± 0.3 ng/mL; P < .0001; and AUC, 12.1 ± 0.3 vs 4.5 ± 2.5 vs 1.9 ± 1.8 ng·h/mL; P < .0001). The impact of the SLCO1B1 c.521 genotype was more pronounced in children, although considerable interindividual variability in SVA exposure was observed within genotype groups. In addition, SVA systemic exposure was negligible in 25% of pediatric participants. Further investigation of the ontogeny and genetic variation of SVA formation and SLCO1B1-mediated hepatic uptake is necessary to better understand the variability in SVA exposure in children and its clinical consequences.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Ralph Kauffman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
50
|
Kim CH, An H, Kim SH, Shin D. Pharmacokinetic and pharmacodynamic interaction between ezetimibe and rosuvastatin in healthy male subjects. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3461-3469. [PMID: 29255347 PMCID: PMC5723108 DOI: 10.2147/dddt.s146863] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background and objective Rosuvastatin and ezetimibe are commonly applied in lipid-lowering pharmacotherapy. However, the pharmacokinetic (PK) interaction was not clear by the coadministration of rosuvastatin and ezetimibe. This study investigated the pharmacodynamic (PD) and PK interactions between rosuvastatin and ezetimibe through a crossover clinical trial. Subjects and methods A randomized, open-label, multiple-dose, two-treatment, two-period, two-sequence crossover study with two treatment parts was conducted in healthy male subjects. Study part A involved rosuvastatin, and study part B involved ezetimibe. A total of 25 subjects in both parts completed the PK and PD evaluations. Rosuvastatin (20 mg) or ezetimibe (10 mg) was administered once daily for 7 days as monotherapy or co-therapy. The plasma concentrations of rosuvastatin, total ezetimibe and free ezetimibe were measured for 72 h after day 7. Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and total cholesterol (TC) were investigated for the PD assessments on day 1 (pretreatment) and day 8. Results Rosuvastatin and ezetimibe presented multiple peaks. The 90% confidence intervals (CIs) of the geometric mean ratios for the peak plasma concentration at steady state (Cmax,ss) and area under the plasma concentration-time curve during the dosing interval at steady state (AUCτ,ss) of rosuvastatin and total ezetimibe were within the range 0.8-1.25. However, the coadministration increased the systemic exposure of free ezetimibe. In the PD assessments, rosuvastatin and ezetimibe monotherapy reduced the LDL-C and TC levels effectively. In addition, the lipid-lowering effects of the coadministration corresponded to an approximate summation of the effects of rosuvastatin and ezetimibe monotherapy. However, no significant changes in HDL-C were observed with rosuvastatin or ezetimibe treatment. No significant safety issue was noted. Conclusion The coadministration of rosuvastatin and ezetimibe revealed a bioequivalent PK interaction. Additional lipid-lowering effects, including decreased LDL-C and TC, were observed as expected in combination therapy without significant safety concern.
Collapse
Affiliation(s)
- Chang Hee Kim
- Department of Urology, Gachon University Gil Medical Center, Incheon
| | - Hyungmi An
- Department of Statistics, Seoul National University, Seoul
| | - Sung Hye Kim
- Clinical Development, Navipharm Co., Ltd., Suwon
| | - Dongseong Shin
- Clinical Trials Center, Gachon University Gil Medical Center, Incheon, South Korea
| |
Collapse
|