1
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
3
|
Banerjee B, Olajide OJ, Bortolussi G, Muro AF. Activation of Alternative Bilirubin Clearance Pathways Partially Reduces Hyperbilirubinemia in a Mouse Model Lacking Functional Ugt1a1 Activity. Int J Mol Sci 2022; 23:ijms231810703. [PMID: 36142606 PMCID: PMC9505366 DOI: 10.3390/ijms231810703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
Bilirubin is a heme catabolite and Ugt1a1 is the only enzyme involved in the biological elimination of bilirubin. Partially functional or non-functional Ugt1a1 may result in neuronal damage and death due to the accumulation of unconjugated bilirubin in the brain. The understanding of the role of alternative bilirubin detoxification mechanisms that can reduce bilirubin toxicity risk is crucial for developing novel therapeutic strategies. To provide a proof-of-principle showing whether activation of alternative detoxification pathways could lead to life-compatible bilirubin levels in the absence of Ugt1a1 activity, we used Ugt1−/− hyperbilirubinemic mice devoid of bilirubin glucuronidation activity. We treated adult Ugt1−/− mice with TCPOBOP, a strong agonist of the constitutive androstane receptor (CAR). TCPOBOP treatment decreased plasma and liver tissue bilirubin levels by about 38%, and resulted in the transcriptional activation of a vast array of genes involved in bilirubin transport and metabolism. However, brain bilirubin level was unaltered. We observed ~40% degradation of bilirubin in the liver microsomes from TCPOBOP treated Ugt1−/− mice. Our findings suggest that, in the absence of Ugt1a1, the activation of alternative bilirubin clearance pathways can partially improve hyperbilirubinemic conditions. This therapeutic approach may only be considered in a combinatorial manner along with other treatments.
Collapse
|
4
|
The Role of Farnesoid X Receptor in Accelerated Liver Regeneration in Rats Subjected to ALPPS. Curr Oncol 2021; 28:5240-5254. [PMID: 34940077 PMCID: PMC8700148 DOI: 10.3390/curroncol28060438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background: the role of bile acid (BA)-induced farnesoid X receptor (Fxr) signaling in liver regeneration following associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) was investigated in a rat model. Methods: Male Wistar rats underwent portal vein ligation (PVL) (n = 30) or ALPPS (n = 30). Animals were sacrificed pre-operatively and at 24, 48, 72, or 168 h after intervention. Regeneration rate, Ki67 index, hemodynamic changes in the hepatic circulation, and BA levels were assessed. Transcriptome analysis of molecular regulators involved in the Fxr signaling pathway, BA transport, and BA production was performed. Results: ALLPS induced more extensive liver regeneration (p < 0.001) and elevation of systemic and portal BA levels (p < 0.05) than PVL. The mRNA levels of proteins participating in hepatic Fxr signaling were comparable between the intervention groups. More profound activation of the intestinal Fxr pathway was observed 24 h after ALPPS compared to PVL. Conclusion: Our study elaborates on a possible linkage between BA-induced Fxr signaling and accelerated liver regeneration induced by ALPPS in rats. ALPPS could trigger liver regeneration via intestinal Fxr signaling cascades instead of hepatic Fxr signaling, thereby deviating from the mechanism of BA-mediated regeneration following one-stage hepatectomy.
Collapse
|
5
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
6
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Rigalli JP, Tocchetti GN, Weiss J. Modulation of ABC Transporters by Nuclear Receptors: Physiological, Pathological and Pharmacological Aspects. Curr Med Chem 2019; 26:1079-1112. [DOI: 10.2174/0929867324666170920141707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
ABC transporters are membrane proteins mediating the efflux of endo- and xenobiotics. Transporter expression is not static but instead is subject to a dynamic modulation aiming at responding to changes in the internal environment and thus at maintaining homeostatic conditions. Nuclear receptors are ligand modulated transcription factors that get activated upon changes in the intracellular concentrations of the respective agonists and bind to response elements within the promoter of ABC transporters, thus modulating their expression and, consequently, their activity. This review compiles information about transporter regulation by nuclear receptors classified according to the perpetrator compounds and the biological effects resulting from the regulation. Modulation by hormone receptors is involved in maintaining endocrine homeostasis and may also lead to an altered efflux of other substrates in cases of altered hormonal levels. Xenobiotic receptors play a key role in limiting the accumulation of potentially harmful compounds. In addition, their frequent activation by therapeutic agents makes them common molecular elements mediating drug-drug interactions and cancer multidrug resistance. Finally, lipid and retinoid receptors are usually activated by endogenous molecules, thus sensing metabolic changes and inducing ABC transporters to counteract potential alterations. Furthermore, the axis nuclear receptor-ABC transporter constitutes a promising therapeutic target for the treatment of several disease states like cancer, atherosclerosis and dyslipidemia. In the current work, we summarize the information available on the pharmacological potential of nuclear receptor modulators and discuss their applicability in the clinical practice.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Guillermo Nicolás Tocchetti
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology. University of Heidelberg. Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Wang L, Ma L, Lin Y, Liu X, Xiao L, Zhang Y, Xu Y, Zhou H, Pan G. Leflunomide Increases Hepatic Exposure to Methotrexate and Its Metabolite by Differentially Regulating Multidrug Resistance-Associated Protein Mrp2/3/4 Transporters via Peroxisome Proliferator-Activated Receptor α Activation. Mol Pharmacol 2018; 93:563-574. [PMID: 29618584 DOI: 10.1124/mol.117.110593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/26/2018] [Indexed: 02/14/2025] Open
Abstract
Methotrexate (MTX) is the gold standard drug for the treatment of rheumatoid arthritis (RA), and it is frequently combined with leflunomide (LEF) to enhance its clinical efficacy. However, this combination can exacerbate liver toxicity, and the underlying mechanism has not yet been clarified. We investigated whether LEF affects the pharmacokinetics of MTX and its primary toxic metabolite, 7-hydroxyl methotrexate (7OH MTX), in mice. LEF significantly increased the plasma concentration (area under the plasma concentration-time curve) of MTX and 7OH MTX (2.4 and 4.5 times, respectively), decreased their bile excretion, and increased their accumulation in the liver and kidneys. When we investigated the effect of LEF on the MTX absorption, distribution, metabolism, and excretion process, we found that LEF had little effect on liver aldehyde oxidase and 7OH MTX formation. However, LEF significantly decreased the expression of the apical efflux transporter multidrug resistance-associated protein 2 (Mrp2) and increased that of the basolateral efflux transporters Mrp3/4, except there was no significant change in Mrp4 protein expression. Mrp2/3/4 alteration changed the distribution of MTX and 7OH MTX in plasma and tissues. Further studies suggested that LEF indirectly activated peroxisome proliferator-activated receptor α (PPARα), which was likely responsible for the Mrp2/3/4 alteration in the liver. The MTX plasma concentration change induced by LEF was reversed by the PPARα-specific antagonist GW6471. These results may partially explain the exacerbated liver toxicity caused by combination treatment with MTX and LEF and may raise concerns regarding the risk of potential drug-drug interactions between PPARα agonists and Mrp substrates in the clinic.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Leilei Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Yunfei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Xing Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ling Xiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Yiting Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Ye Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China and University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Tomankova V, Anzenbacher P, Anzenbacherova E. Effects of obesity on liver cytochromes P450 in various animal models. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:144-151. [DOI: 10.5507/bp.2017.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 05/11/2017] [Indexed: 01/24/2023] Open
|
10
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
11
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
12
|
Lynch C, Zhao J, Huang R, Xiao J, Li L, Heyward S, Xia M, Wang H. Quantitative high-throughput identification of drugs as modulators of human constitutive androstane receptor. Sci Rep 2015; 5:10405. [PMID: 25993555 PMCID: PMC4438668 DOI: 10.1038/srep10405] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) plays a key role in governing the transcription of numerous hepatic genes that involve xenobiotic metabolism/clearance, energy homeostasis, and cell proliferation. Thus, identification of novel human CAR (hCAR) modulators may not only enhance early prediction of drug-drug interactions but also offer potentially novel therapeutics for diseases such as metabolic disorders and cancer. In this study, we have generated a double stable cell line expressing both hCAR and a CYP2B6-driven luciferase reporter for quantitative high-throughput screening (qHTS) of hCAR modulators. Approximately 2800 compounds from the NIH Chemical Genomics Center Pharmaceutical Collection were screened employing both the activation and deactivation modes of the qHTS. Activators (115) and deactivators (152) of hCAR were identified from the primary qHTS, among which 10 agonists and 10 antagonists were further validated in the physiologically relevant human primary hepatocytes for compound-mediated hCAR nuclear translocation and target gene expression. Collectively, our results reveal that hCAR modulators can be efficiently identified through this newly established qHTS assay. Profiling drug collections for hCAR activity would facilitate the prediction of metabolism-based drug-drug interactions, and may lead to the identification of potential novel therapeutics.
Collapse
Affiliation(s)
- Caitlin Lynch
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, 21201 Maryland
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, 20892 Maryland
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, 20892 Maryland
| | - Jingwei Xiao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, 21201 Maryland
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, 21201 Maryland
| | | | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, 20892 Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, 21201 Maryland
| |
Collapse
|
13
|
Cai JS, Chen JH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J Membr Biol 2014; 247:1067-82. [PMID: 25107305 PMCID: PMC4207937 DOI: 10.1007/s00232-014-9715-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95 % BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5 % (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Collapse
Affiliation(s)
- Jian-Shan Cai
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, People's Republic of China,
| | | |
Collapse
|
14
|
Ibrahim ZS, Ahmed MM, El-Shazly SA, Ishizuka M, Fujita S. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat. Biosci Biotechnol Biochem 2014; 78:1550-9. [PMID: 25052003 DOI: 10.1080/09168451.2014.923302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.
Collapse
Affiliation(s)
- Zein Shaban Ibrahim
- a Faculty of Veterinary Medicine, Department of Physiology , Kafrelsheikh University , Kafrelsheikh , Egypt
| | | | | | | | | |
Collapse
|
15
|
Role of nuclear receptors in the regulation of drug transporters in the brain. Trends Pharmacol Sci 2013; 34:361-72. [PMID: 23769624 DOI: 10.1016/j.tips.2013.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/24/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette membrane-associated drug efflux transporters and solute carrier influx transporters, expressed at the blood-brain barrier, blood-cerebrospinal fluid barrier, and in brain parenchyma, are important determinants of drug disposition in the central nervous system. Targeting the regulatory pathways that govern the expression of these transporters could provide novel approaches to selectively alter drug permeability into the brain. Nuclear receptors are ligand-activated transcription factors which regulate the gene expression of several metabolic enzymes and drug efflux/influx transporters. Although efforts have primarily been focused on investigating these regulatory pathways in peripheral organs (i.e., liver and intestine), recent findings demonstrate their significance in the brain. This review addresses the role of nuclear receptors in the regulation of drug transporter functional expression in the brain. An in-depth understanding of these pathways could guide the development of novel pharmacotherapy with either enhanced efficacy in the central nervous system or minimal associated neurotoxicity.
Collapse
|
16
|
Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2013; 13:1327-44. [PMID: 22746301 DOI: 10.2174/138920012803341302] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022]
Abstract
Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.
Collapse
Affiliation(s)
- Adarsh Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Raucy JL, Lasker JM. Cell-based systems to assess nuclear receptor activation and their use in drug development. Drug Metab Rev 2013; 45:101-9. [DOI: 10.3109/03602532.2012.737333] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Chen Y, Tang Y, Guo C, Wang J, Boral D, Nie D. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters. Biochem Pharmacol 2012; 83:1112-26. [PMID: 22326308 PMCID: PMC3339266 DOI: 10.1016/j.bcp.2012.01.030] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/23/2012] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Chemotherapy is one of the three most common treatment modalities for cancer. However, its efficacy is limited by multidrug resistant cancer cells. Drug metabolizing enzymes (DMEs) and efflux transporters promote the metabolism, elimination, and detoxification of chemotherapeutic agents. Consequently, elevated levels of DMEs and efflux transporters reduce the therapeutic effectiveness of chemotherapeutics and, often, lead to treatment failure. Nuclear receptors, especially pregnane X receptor (PXR, NR1I2) and constitutive androstane activated receptor (CAR, NR1I3), are increasingly recognized for their role in xenobiotic metabolism and clearance as well as their role in the development of multidrug resistance (MDR) during chemotherapy. Promiscuous xenobiotic receptors, including PXR and CAR, govern the inducible expressions of a broad spectrum of target genes that encode phase I DMEs, phase II DMEs, and efflux transporters. Recent studies conducted by a number of groups, including ours, have revealed that PXR and CAR play pivotal roles in the development of MDR in various human carcinomas, including prostate, colon, ovarian, and esophageal squamous cell carcinomas. Accordingly, PXR/CAR expression levels and/or activation statuses may predict prognosis and identify the risk of drug resistance in patients subjected to chemotherapy. Further, PXR/CAR antagonists, when used in combination with existing chemotherapeutics that activate PXR/CAR, are feasible and promising options that could be utilized to overcome or, at least, attenuate MDR in cancer cells.
Collapse
Affiliation(s)
- Yakun Chen
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794, United States
| | | | | | | | | | | |
Collapse
|
19
|
Ménez C, Mselli-Lakhal L, Foucaud-Vignault M, Balaguer P, Alvinerie M, Lespine A. Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line. Biochem Pharmacol 2012; 83:269-78. [DOI: 10.1016/j.bcp.2011.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 11/26/2022]
|
20
|
Zamek-Gliszczynski MJ, Day JS, Hillgren KM, Phillips DL. Efflux transport is an important determinant of ethinylestradiol glucuronide and ethinylestradiol sulfate pharmacokinetics. Drug Metab Dispos 2011; 39:1794-800. [PMID: 21708882 DOI: 10.1124/dmd.111.040162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
17α-ethinylestradiol (EE) undergoes extensive conjugation to 17α-ethinylestradiol-3-O-glucuronide (EEG) and 17α-ethinylestradiol-3-O-sulfate (EES). Thus, oral contraceptive drug-drug interaction (DDI) studies usually characterize metabolite pharmacokinetics, with changes typically attributed to modulation of metabolism. EE passively diffuses through plasma membranes, but its conjugates are hydrophilic and require active transport. Unlike EE metabolism, EEG and EES transport has not been explored in vivo as a potential mechanism of DDIs. Recent in vitro studies demonstrated that EEG is transported by multidrug resistance-associated protein (MRP) 2 and MRP3 and EES is a breast cancer resistance protein (BCRP) substrate. In the study presented here, pharmacokinetics of EE and conjugates were studied in TR⁻ rats, which lack Mrp2, have marginal hepatic Bcrp expression, and overexpress hepatic Mrp3. EE pharmacokinetics in TR⁻ rats were comparable to wild type; however, EEG and EES systemic exposures were altered markedly. EEG exposure was greatly increased: 20-fold and >100-fold after intravenous and oral EE administration, respectively. In contrast, EES exposure was lower in TR⁻ rats: 65% decreased (intravenously) and 83% decreased (orally). In intestinal and liver perfusions, EE intestinal permeability and metabolism and hepatic clearance were unchanged in TR⁻ rats; however, secretion of EEG into intestinal lumen was halved, EEG was not detected in TR⁻ bile, and EES biliary excretion was 98% decreased. After oral EE administration to Mrp2- and Bcrp-knockout mice, EEG exposure increased 46- and 2-fold, respectively, whereas EES concentrations were decreased modestly. In conclusion, altered efflux transport resulted in major alterations of EEG and EES pharmacokinetics, highlighting transport as a potential site of DDIs with EE conjugates.
Collapse
|
21
|
Chai J, Luo D, Wu X, Wang H, He Y, Li Q, Zhang Y, Chen L, Peng ZH, Xiao T, Wang R, Chen W. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J Gastrointest Surg 2011; 15:996-1004. [PMID: 21359593 DOI: 10.1007/s11605-011-1473-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/10/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatic multidrug resistance-associated protein 4 (Mrp4) levels are low, but increase markedly in rodent cholestatic liver. Nuclear receptors (NRs) are essential for regulating Mrp4 expression in cholestasis models. However, information about MRP4 and related NRs, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoic X receptor-α (RXRα), is relatively lacking in human obstructive cholestasis. We collected liver samples from patients with obstructive cholestasis or without liver disease and investigated the expression of MRP4 and NRs CAR, PXR, and RXRα by semi-quantitative RT-PCR, Western blot and immunostaining assays. RESULTS MRP4 mRNA/protein levels were markedly increased in obstructive cholestasis. Concentration of serum total bile acids (TBA) was significantly correlated with MRP4 protein in cholestasis samples (P < 0.01). PXR and RXRα mRNA/protein levels were significantly increased in obstructive cholestasis. CAR mRNA levels were unchanged while protein levels were markedly induced in obstructive cholestasis. There was a statistically positive correlation between MRP4 mRNA and CAR protein (P < 0.05), suggesting that CAR may activate transcription of MRP4 genes by its nuclear translocation. CONCLUSION Hepatic MRP4 levels were dramatically induced in human obstructive cholestasis, which may reduce liver injury by increasing efflux of toxic bile acids from hepatocytes into blood.
Collapse
Affiliation(s)
- Jin Chai
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Radović B, Hussong R, Gerhäuser C, Meinl W, Frank N, Becker H, Köhrle J. Xanthohumol, a prenylated chalcone from hops, modulates hepatic expression of genes involved in thyroid hormone distribution and metabolism. Mol Nutr Food Res 2010; 54 Suppl 2:S225-35. [PMID: 20461738 DOI: 10.1002/mnfr.200900489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we analyzed the influence of xanthohumol (XN) on thyroid hormone (TH) distribution and metabolism in rats. A potent and selective competition of XN for thyroxine (T4) binding to transthyretin (IC(50)=1 microM at 1.7 nM [(125)I]T4) was found in human and rat sera in vitro. Female rats treated orally with XN showed increased hepatic expression of T4-binding globulin and decreased transthyretin and albumin. Thyrotropin levels and hepatic type 1 deiodinase activity were moderately increased. Northern blot analysis revealed diminished expression of liver sulfotransferase (Sult1a1) and uridine-diphosphate glucuronosyltransferase (Ugt1a1) after XN treatment. The transcript levels of constitutive androstane receptor (CAR), known to be involved in regulation of enzymes metabolizing hormones, drugs and xenobiotics, was lower in rats treated with >10 mg XN/kg body weight per day. Immunoblot analysis indicates reduced amounts of CAR protein. The phenobarbital-inducible cytochrome P450 mRNA level was decreased in rats treated with >10 mg XN/kg/day, in agreement with reduced CAR protein. Although only moderate changes in TH serum levels were observed, the XN-dependent altered expression of components involved in TH homeostasis might be important not only for hormone metabolism, but also for hepatic phase I and II elimination of drug metabolites and xenobiotics.
Collapse
Affiliation(s)
- Branislav Radović
- Institut für Experimentelle Endokrinologie & Endokrinologisches Forschungs-Centrum EnForCé, Charité Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010; 62:1238-49. [PMID: 20727377 DOI: 10.1016/j.addr.2010.08.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/24/2022]
Abstract
Drug-metabolizing enzymes (DMEs) and transporters play pivotal roles in the disposition and detoxification of numerous foreign and endogenous chemicals. To accommodate chemical challenges, the expression of many DMEs and transporters is up-regulated by a group of ligand-activated transcription factors namely nuclear receptors (NRs). The importance of NRs in xenobiotic metabolism and clearance is best exemplified by the most promiscuous xenobiotic receptors: pregnane X receptor (PXR, NR1I2) and constitutive androstane/activated receptor (CAR, NR1I3). Together, these two receptors govern the inductive expression of a largely overlapping array of target genes encoding phase I and II DMEs, and drug transporters. Moreover, PXR and CAR also represent two distinctive mechanisms of NR activation, whereby CAR demonstrates both constitutive and ligand-independent activation. In this review, recent advances in our understanding of PXR and CAR as xenosensors are discussed with emphasis placed on the differences rather than similarities of these two xenobiotic receptors in ligand recognition and target gene regulation.
Collapse
|
24
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
25
|
Li H, Wang H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab Toxicol 2010; 6:409-26. [PMID: 20113149 DOI: 10.1517/17425251003598886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Xenobiotic receptors (XRs) play pivotal roles in regulating the expression of genes that determine the clearance and detoxification of xenobiotics, such as drugs and environmental chemicals. Recently, it has become increasingly evident that most XRs shuttle between the cytoplasm and nucleus, and activation of such receptors is directly associated with xenobiotic-induced nuclear import. AREAS COVERED IN THIS REVIEW The scope of this review covers research literature that discusses nuclear translocation and activation of XRs, as well as unpublished data generated from this laboratory. Specific emphasis is given to the constitutive androstane receptor (CAR), the pregnane X receptor and the aryl hydrocarbon receptor. WHAT THE READERS WILL GAIN A number of molecular chaperons presumably associated with cellular localization of XRs have been identified. Primary hepatocyte cultures have been established as a unique model retaining inactive CAR in the cytoplasm. Moreover, several splicing variants of human CAR exhibit altered cellular localization and chemical activation. TAKE HOME MESSAGE Nuclear accumulation is an essential step in the activation of XRs. Although great strides have been made, much remains to be understood concerning the mechanisms underlying intracellular localization and trafficking of XRs, which involve both direct ligand-binding and indirect pathways.
Collapse
Affiliation(s)
- Haishan Li
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
26
|
Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. Mol Pharmacol 2010; 78:376-83. [PMID: 20547735 PMCID: PMC2939489 DOI: 10.1124/mol.110.063685] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 06/14/2010] [Indexed: 12/11/2022] Open
Abstract
ATP-driven efflux transporters at the blood-brain barrier both protect against neurotoxicants and limit drug delivery to the brain. In other barrier and excretory tissues, efflux transporter expression is regulated by certain ligand-activated nuclear receptors. Here we identified constitutive androstane receptor (CAR) as a positive regulator of P-glycoprotein, multidrug resistance-associated protein 2 (Mrp2), and breast cancer resistance protein (BCRP) expression in rat and mouse brain capillaries. Exposing rat brain capillaries to the CAR activator, phenobarbital (PB), increased the transport activity and protein expression (Western blots) of P-glycoprotein, Mrp2, and BCRP. Induction of transport was abolished by the protein phosphatase 2A inhibitor, OA. Similar effects on transporter activity and expression were found when mouse brain capillaries were exposed to the mouse-specific CAR ligand, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). In brain capillaries from CAR-null mice, TCPOBOP did not increase transporter activity. Finally, treating mice with 0.33 mg/kg TCPOBOP or rats with 80 mg/kg PB increased P-glycoprotein-, Mrp2-, and BCRP-mediated transport and protein expression in brain capillaries assayed ex vivo. Thus, CAR activation selectively tightens the blood-brain barrier by increasing transport activity and protein expression of three xenobiotic efflux pumps.
Collapse
Affiliation(s)
- Xueqian Wang
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
27
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 582] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
28
|
Le Vee M, Lecureur V, Moreau A, Stieger B, Fardel O. Differential regulation of drug transporter expression by hepatocyte growth factor in primary human hepatocytes. Drug Metab Dispos 2009; 37:2228-35. [PMID: 19661216 DOI: 10.1124/dmd.109.028035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte growth factor (HGF) is known to down-regulate expression of drug-detoxifying proteins such as cytochromes P450 (P450s) in human hepatocytes. The present study was designed to determine whether HGF may also impair expression of uptake and efflux drug transporters, which constitute important determinants of the liver detoxification pathway, such as P450s. Exposure of primary human hepatocytes to 20 ng/ml HGF for 48 h was found to down-regulate mRNA levels of major sinusoidal uptake transporters, including sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptide (OATP) 2B1, OATP1B1, organic cation transporter (OCT) 1, and organic anion transporter 2. HGF concomitantly reduced NTCP, OATP2B1, and OATP1B1 protein expression and NTCP, OATP, and OCT1 transport activities. With respect to efflux pumps, HGF decreased mRNA expression of the canalicular bile salt export pump, whereas that of the multidrug resistance (MDR) 1 gene was transiently increased. Moreover, Western blot analysis indicated that HGF up-regulated expressions of MDR1/P-glycoprotein and breast cancer resistance protein in human hepatocytes, whereas those of multidrug resistance gene-associated protein (MRP) 2 and MRP3 were unchanged. However, HGF prevented constitutive androstane receptor-related up-regulation of MRP2 occurring in phenobarbital-treated hepatocytes. Taken together, these data demonstrate that HGF differentially regulates transporter expression in human hepatocytes, i.e., it represses most of the sinusoidal uptake transporters, whereas expression of most of the efflux transporters is unchanged or increased. Such changes probably contribute to alterations of pharmacokinetics in patients with diseases associated with increased plasma levels of HGF such as fulminant hepatitis.
Collapse
Affiliation(s)
- Marc Le Vee
- Equipe d'Accueil 4427, SeRAIC/Institut National de la Santé et de la Recherche Médicale U620, Institut Fédératif de Recherches 140, University of Rennes 1, Rennes, France
| | | | | | | | | |
Collapse
|
29
|
Patel JP, Brocks DR. The effect of oral lipids and circulating lipoproteins on the metabolism of drugs. Expert Opin Drug Metab Toxicol 2009; 5:1385-98. [DOI: 10.1517/17425250903176439] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
di Masi A, De Marinis E, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: Molecular, functional, and biomedical aspects. Mol Aspects Med 2009; 30:297-343. [PMID: 19427329 DOI: 10.1016/j.mam.2009.04.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors sharing a common evolutionary history and having similar sequence features at the protein level. Selective ligand(s) for some NRs is not known, therefore these NRs have been named "orphan receptors". Whenever ligands have been recognized for any of the orphan receptor, it has been categorized and grouped as "adopted" orphan receptor. This group includes the constitutive androstane receptor (CAR) and the pregnane X receptor (PXR). They function as sensors of toxic byproducts derived from endogenous metabolites and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. The broad response profile has established that CAR and PXR are xenobiotic sensors that coordinately regulate xenobiotic clearance in the liver and intestine via induction of genes involved in drug and xenobiotic metabolism. In the past few years, research has revealed new and mostly unsuspected roles for CAR and PXR in modulating hormone, lipid, and energy homeostasis as well as cancer and liver steatosis. The purpose of this review is to highlight the structural and molecular bases of CAR and PXR impact on human health, providing information on mechanisms through which diet, chemical exposure, and environment ultimately impact health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
31
|
Ghanem CI, Ruiz ML, Villanueva SSM, Luquita M, Llesuy S, Catania VA, Bengochea LA, Mottino AD. Effect of repeated administration with subtoxic doses of acetaminophen to rats on enterohepatic recirculation of a subsequent toxic dose. Biochem Pharmacol 2009; 77:1621-8. [PMID: 19426699 DOI: 10.1016/j.bcp.2009.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 02/05/2023]
Abstract
Development of resistance to toxic effects of acetaminophen (APAP) was reported in rodents and humans, though the mechanism is only partially understood. We examined in rats the effect of administration with subtoxic daily doses (0.2, 0.3, and 0.6g/kg, i.p.) of APAP on enterohepatic recirculation and liver toxicity of a subsequent i.p. toxic dose of 1g/kg, given 24h after APAP pre-treatment. APAP and its major metabolite APAP-glucuronide (APAP-Glu) were determined in bile, urine, serum and liver homogenate. APAP pre-treatment was not toxic, as determined by serum markers of liver damage and neither induced oxidative stress as demonstrated by assessment of ROS generation in liver or glutathione species in liver and bile. APAP pre-treatment induced a partial shift from biliary to urinary elimination of APAP-Glu after administration with the toxic dose, and decreased hepatic content and increased serum content of this conjugate, consistent with a marked up-regulation of its basolateral transporter Mrp3 relative to apical Mrp2. Preferential secretion of APAP-glu into blood decreased enterohepatic recirculation of APAP, thus attenuating liver exposition to the intact drug, as demonstrated 6h after administration with the toxic dose. The beneficial effect of interfering the enterohepatic recirculation was alternatively tested in animals receiving activated charcoal by gavage to adsorb APAP of biliary origin. The data indicated decreased liver APAP content and glutathione consumption. We conclude that selective up-regulation of Mrp3 expression by APAP pre-treatment may contribute to development of resistance to APAP hepatotoxicity, at least in part by decreasing its enterohepatic recirculation.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas-Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hernandez JP, Mota LC, Huang W, Moore DD, Baldwin WS. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 2009; 256:53-64. [PMID: 19041682 PMCID: PMC2798732 DOI: 10.1016/j.tox.2008.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 02/03/2023]
Abstract
The constitutive androstane receptor (CAR) is a xenosensing nuclear receptor and regulator of cytochrome P450s (CYPs). However, the role of CAR as a basal regulator of CYP expression nor its role in sexually dimorphic responses have been thoroughly studied. We investigated basal regulation and sexually dimorphic regulation and induction by the potent CAR activator TCPOBOP and the moderate CAR activator Nonylphenol (NP). NP is an environmental estrogen and one of the most commonly found environmental toxicants in Europe and the United States. Previous studies have demonstrated that NP induces several CYPs in a sexually dimorphic manner, however the role of CAR in regulating NP-mediated sexually dimorphic P450 expression and induction has not been elucidated. Therefore, wild-type and CAR-null male and female mice were treated with honey as a carrier, NP, or TCPOBOP and CYP expression monitored by QPCR and Western blotting. CAR basally regulates the expression of Cyp2c29, Cyp2b13, and potentially Cyp2b10 as demonstrated by QPCR. Furthermore, we observed a shift in the testosterone 6alpha/15alpha-hydroxylase ratio in untreated CAR-null female mice to the male pattern, which indicates an alteration in androgen status and suggests a role for androgens as CAR inverse agonists. Xenobiotic-treatments with NP and TCPOBOP induced Cyp2b10, Cyp2c29, and Cyp3a11 in a CAR-mediated fashion; however NP only induced these CYPs in females and TCPOBOP induced these CYPs in both males and females. Interestingly, Cyp2a4, was only induced in wild-type male mice by TCPOBOP suggesting Cyp2a4 induction is not sensitive to CAR-mediated induction in females. Overall, TCPOBOP and NP show similar CYP induction profiles in females, but widely different profiles in males potentially related to lower sensitivity of males to either indirect or moderate CAR activators such as NP. In summary, CAR regulates the basal and chemically inducible expression of several sexually dimorphic xenobiotic metabolizing P450s in a manner that varies depending on the ligand.
Collapse
Affiliation(s)
- J P Hernandez
- Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The liver is responsible for key metabolic functions, including control of normal homoeostasis in response to diet and xenobiotic metabolism/detoxification. We have shown previously that inactivation of the hepatic cytochrome P450 system through conditional deletion of POR (P450 oxidoreductase) induces hepatic steatosis, liver growth and P450 expression. We have exploited a new conditional model of POR deletion to investigate the mechanism underlying these changes. We demonstrate that P450 induction, liver growth and hepatic triacylglycerol (triglyceride) homoeostasis are intimately linked and provide evidence that the observed phenotypes result from hepatic accumulation of unsaturated fatty acids, which mediate these phenotypes by activation of the nuclear receptor CAR (constitutive androstane receptor) and, to a lesser degree, PXR (pregnane X receptor). To our knowledge this is the first direct evidence that P450s play a major role in controlling unsaturated fatty acid homoeostasis via CAR. The regulation of P450s involved in xenobiotic metabolism by this mechanism has potentially significant implications for individual responses to drugs and environmental chemicals.
Collapse
|
34
|
Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: Relevance to the pharmacotherapy of brain HIV-1 infection. Glia 2008; 56:1711-35. [DOI: 10.1002/glia.20725] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Lambert CB, Spire C, Claude N, Guillouzo A. Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol 2008; 234:345-60. [PMID: 19084549 DOI: 10.1016/j.taap.2008.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/29/2008] [Accepted: 11/05/2008] [Indexed: 12/19/2022]
Abstract
Phenobarbital (PB) induces or represses a wide spectrum of genes in rodent liver. Much less is known about its effects in human liver. We used pangenomic cDNA microarrays to analyze concentration- and time-dependent gene expression profile changes induced by PB in the well-differentiated human HepaRG cell line. Changes in gene expression profiles clustered at specific concentration ranges and treatment times. The number of correctly annotated genes significantly modulated by at least three different PB concentration ranges (spanning 0.5 to 3.2 mM) at 20 h exposure amounted to 77 and 128 genes (p< or =0.01) at 2- and 1.8-fold filter changes, respectively. At low concentrations (0.5 and 1 mM), PB-responsive genes included the well-recognized CAR- and PXR-dependent responsive cytochromes P450 (CYP2B6, CYP3A4), sulfotransferase 2A1 and plasma transporters (ABCB1, ABCC2), as well as a number of genes critically involved in various metabolic pathways, including lipid (CYP4A11, CYP4F3), vitamin D (CYP24A1) and bile (CYP7A1 and CYP8B1) metabolism. At concentrations of 3.2 mM or higher after 20 h, and especially 48 h, increased cytotoxic effects were associated with disregulation of numerous genes related to oxidative stress, DNA repair and apoptosis. Primary human hepatocyte cultures were also exposed to 1 and 3.2 mM PB for 20 h and the changes were comparable to those found in HepaRG cells treated under the same conditions. Taken altogether, our data provide further evidence that HepaRG cells closely resemble primary human hepatocytes and provide new information on the effects of PB in human liver. These data also emphasize the importance of investigating dose- and time-dependent effects of chemicals when using toxicogenomic approaches.
Collapse
|
36
|
Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PRS, Birnbaum LS. Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci 2008; 107:27-39. [PMID: 18978342 DOI: 10.1093/toxsci/kfn230] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies demonstrated that perinatal exposure to polybrominated diphenyl ethers (PBDEs), a major class of brominated flame retardants, may affect thyroid hormone (TH) concentrations by inducing hepatic uridinediphosphate-glucoronosyltransferases (UGTs). This study further examines effects of the commercial penta mixture, DE-71, on genes related to TH metabolism at different developmental time points in male rats. DE-71 is predominately composed of PBDE congeners 47, 99, 100, 153, 154 with low levels of brominated dioxin and dibenzofuran contaminants. Pregnant Long-Evans rats were orally administered 1.7 (low), 10.2 (mid), or 30.6 (high) mg/kg/day of DE-71 in corn oil from gestational day (GD) 6 to postnatal day (PND) 21. Serum and liver were collected from male pups at PND 4, 21, and 60. Total serum thyroxine (T(4)) decreased to 57% (mid) and 51% (high) on PND 4, and 46% (mid) dose and 25% (high) on PND 21. Cyp1a1, Cyp2b1/2, and Cyp3a1 enzyme and mRNA expression, regulated by aryl hydrocarbon receptor, constitutive androstane receptor, and pregnane xenobiotic receptor, respectively, increased in a dose-dependent manner. UGT-T(4) enzymatic activity significantly increased, whereas age and dose-dependent effects were observed for Ugt1a6, 1a7, and 2b mRNA. Sult1b1 mRNA expression increased, whereas that of transthyretin (Ttr) decreased as did both the deiodinase I (D1) enzyme activity and mRNA expression. Hepatic efflux transporters Mdr1 (multidrug resistance), Mrp2 (multidrug resistance-associated protein), and Mrp3 and influx transporter Oatp1a4 mRNA expression increased. In this study the most sensitive responses to PBDEs following DE-71 exposure were CYP2B and D1 activities and Cyb2b1/2, d1, Mdr1, Mrp2, and Mrp3 gene expression. All responses were reversible by PND 60. In conclusion, deiodination, active transport, and sulfation, in addition to glucuronidation, may be involved in disruption of TH homeostasis due to perinatal exposure to DE-71 in male rat offspring.
Collapse
Affiliation(s)
- David T Szabo
- University of North Carolina Curriculum in Toxicology, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | |
Collapse
|
37
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Shayeganpour A, Korashy H, Patel JP, El-Kadi AO, Brocks DR. The impact of experimental hyperlipidemia on the distribution and metabolism of amiodarone in rat. Int J Pharm 2008; 361:78-86. [DOI: 10.1016/j.ijpharm.2008.05.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 10/22/2022]
|
39
|
Sterol regulatory element binding protein 1 interacts with pregnane X receptor and constitutive androstane receptor and represses their target genes. Pharmacogenet Genomics 2008; 18:325-37. [PMID: 18334917 DOI: 10.1097/fpc.0b013e3282f706e0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Sterol regulatory element binding protein 1 (SREBP-1) is a lipogenic transcription factor of the basic helix-loop-helix family. SREBP-1 binds to sterol regulatory elements (SREs) in the promoter of lipogenic genes and induces fatty acid and triglyceride synthesis. Decreased drug clearance has been observed in obese and other dyslipidemic rodents as well as in diabetic, obese or overfed rodents. A hallmark of these conditions is increased expression of SREBP-1 in the liver. We therefore searched for a possible link between regulation of cytochromes P450 (CYPs) and SREBP-1. METHODS We combined gene expression analysis, lipid analysis, effects of high levels of SREBP-1 in hepatocyte cultures to characterize the effects and protein interaction and chromatin immunoprecipitation assays to define the underlying mechanism. Finally, mice were fed a diet enriched in cholesterol to demonstrate the relevance of our data in vivo. By analyzing gene expression and lipids in cholesterol-fed mice or transfection of recombinant SREBP-1 in hepatocyte cultures the effect on CYPs was characterized. By use of protein interaction assays and chromatin immunoprecipitation the underlying mechanism was defined. RESULTS We observed that SREBP-1 represses drug-mediated induction of hepatic CYPs, mainly members of the 2B and the 3A subfamilies. These drugs induce transcription of CYPs and other drug metabolizing enzymes via activation of the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Here we report that the activation of SREBP-1 by insulin or cholesterol in mouse liver and primary human hepatocytes inhibits the transcriptional effects in PXR and CAR. Our results suggest that SREBP-1 functions as a non-DNA binding inhibitor and blocks the interaction of PXR and CAR with cofactors such as steroid receptor coactivator 1. Consequently, mRNA induction of CYPs by drugs and other xenochemicals is impaired. CONCLUSION We conclude that PXR and CAR respond to lipid accumulation by direct interaction with SREBP-1 and show that drug metabolism and lipid metabolism are interconnected within a complex network of transcriptional regulators.
Collapse
|
40
|
Cheng Q, Aleksunes LM, Manautou JE, Cherrington NJ, Scheffer GL, Yamasaki H, Slitt AL. Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol Pharm 2008; 5:77-91. [PMID: 18189363 DOI: 10.1021/mp700114j] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Obesity and type II diabetes pose a serious human health risk. Obese or diabetic patients usually take prescription drugs that require hepatic and renal metabolism and transport, and these patients sometimes display different pharmacokinetics of these drugs. Therefore, mRNA and protein expression of drug-metabolizing enzymes (DMEs) and transporters was measured in livers and kidneys of adult wild-type and ob/ob mice, which model obesity and diabetes. mRNA expression of numerous DMEs increased by at least 2-fold in livers of male ob/ob mice, including Cyp4a14, Cyp2b10, NAD(P)H:quinone oxidoreductase 1 (Nqo1), and sulfotransferase 2a1/2. In general, expression of uptake transporters was decreased in livers of ob/ob mice, namely organic anion-transporting polypeptides (Oatps) and sodium/taurocholate cotransporting polypeptide (Ntcp). In particular, Oatp1a1 mRNA and protein expression in livers of ob/ob mice was diminished to <5% and <15% of that in wild-types, respectively. Generally, the mRNA and protein expression of efflux transporters multidrug resistance-associated proteins (Mrps) was increased in livers of ob/ob mice, particularly with Mrp4 expression being elevated by at least 6-fold and Mrp2 expression at least 3-fold in livers of ob/ob mice. In kidney, Nqo1, Mrp3, 4, Oatp1a1, and organic anion transporter 2 (Oat2) showed significant alterations with mRNA expression levels in ob/ob mice, being increased for Nqo1 and Mrp4 and decreased for Mrp3, Oatp1a1, and Oat2. In summary, the expression of a number of DMEs and transporters was significantly altered in livers and kidneys of ob/ob mice. Since expression of some DMEs and transporters is regulated similarly between mouse and human, the data from this study suggest that transporter expression in liver and kidney may be changed in patients presenting with obesity and/or type II diabetes.
Collapse
Affiliation(s)
- Qiuqiong Cheng
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen W, Cai SY, Xu S, Denson LA, Soroka CJ, Boyer JL. Nuclear receptors RXRalpha:RARalpha are repressors for human MRP3 expression. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1221-7. [PMID: 17272513 PMCID: PMC2605854 DOI: 10.1152/ajpgi.00191.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multidrug resistance-associated protein MRP3/Mrp3 (ABCC3) is upregulated in cholestasis, an adaptive response that may protect the liver from accumulation of toxic compounds, such as bile salts and bilirubin conjugates. However, the mechanism of this upregulation is poorly understood. We and others have previously reported that fetoprotein transcription factor/liver receptor homolog-1 is an activator of MRP3/Mrp3 expression. In searching for additional regulatory elements in the human MRP3 promoter, we have now identified nuclear receptor retinoic X receptor-alpha:retinoic acid receptor-alpha (RXRalpha:RARalpha) as a repressor of MRP3 activation by transcription factor Sp1. A luciferase reporter assay demonstrated that cotransfection of transcription factor Sp1 stimulates the MRP3 promoter activity and that additions of RXRalpha:RARalpha abrogated this activation in a dose-dependent manner. Site mutations and gel shift assays have identified a Sp1 binding GC box motif at -113 to -108 nts upstream from the MRP3 translation start site, where RXRalpha:RARalpha specifically reduced Sp1 binding to this site. Mutation of the GC box also reduced MRP3 promoter activity. The functional role of RXRalpha:RARalpha as a repressor of MRP3 expression was further confirmed by RARalpha small-interfering RNA knockdown in HepG2 cells, which upregulated endogenous MRP3 expression. In summary, our results indicate that activator Sp1 and repressor RXRalpha:RARalpha act in concert to regulate MRP3 expression. Since RXRalpha:RARalpha expression is diminished by cholestatic liver injury, loss of RXRalpha:RARalpha may lead to upregulation of MRP3/Mrp3 expression in these disorders.
Collapse
Affiliation(s)
- Wensheng Chen
- Liver Center, Yale Univ. School of Medicine, P.O. Box 208019, 333 Cedar St., 1080 LMP, New Haven, CT 06520-8019, USA
| | | | | | | | | | | |
Collapse
|
42
|
Kawase A, Tsunokuni Y, Iwaki M. Effects of alterations in CAR on bilirubin detoxification in mouse collagen-induced arthritis. Drug Metab Dispos 2007; 35:256-61. [PMID: 17108061 DOI: 10.1124/dmd.106.011536] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear receptors such as constitutive androstane receptor (CAR) and pregnane X receptor (PXR) regulate the transcription of cytochromes P450 and transporters. We investigated whether quantitative and functional changes in CAR and PXR could affect bilirubin detoxification in chronic arthritis. The CAR mRNA level was significantly decreased in the liver of mice with collagen-induced arthritis (CIA) compared with control mice. In normal mice treated with CAR agonists, relatively rapid elimination of bilirubin was observed after its intravenous injection. Next, we investigated the effects of CAR on bilirubin-detoxifying enzymes and transporters in arthritis. The mRNA levels of organic anion transporter peptide (OATP) 2, glutathione S-transferase (GST) A1, and GSTA2 were decreased in CIA mice, whereas the mRNA levels of OATP4, UDP-glucuronosyl-transferase 1A1, and multidrug resistance-associated protein 2 remained unchanged. The protein levels and transport activities of OATP2 were also decreased in CIA mice. Furthermore, the CIA mice actually exhibited retarded elimination of bilirubin after its intravenous injection. These results indicate that alterations to CAR during arthritis affect the elimination of bilirubin because of changes in multiple bilirubin-detoxifying enzymes and transporters.
Collapse
Affiliation(s)
- Atsushi Kawase
- Faculty of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | | | | |
Collapse
|
43
|
Abstract
The specialized cerebral microvascular endothelium interacts with the cellular milieu of the brain and extracellular matrix to form a neurovascular unit, one aspect of which is a regulated interface between the blood and central nervous system (CNS). The concept of this blood-brain barrier (BBB) as a dynamically regulated system rather than a static barrier has wide-ranging implications for pathophysiology of the CNS. While in vitro models of the BBB are useful for screening drugs targeted to the CNS and indispensable for studies of cerebral endothelial cell biology, the complex interactions of the neurovascular unit make animal-based models and methods essential tools for understanding the pathophysiology of the BBB. BBB dysfunction is a complication of neurodegenerative disease and brain injury. Studies on animal models have shown that diseases of the periphery, such as diabetes and inflammatory pain, have deleterious effects on the BBB which may contribute to neurological complications associated with these conditions. Furthermore, genetic and/or epigenetic abnormalities in constituents of the BBB may be significant contributing factors in disease etiology. Research that approaches the BBB as a dynamic system integrated with both the CNS and the periphery is therefore critical to understanding and treating diseases of the CNS. Herein, we review various methodological approaches used to study BBB function in the context of disease. These include measurement of transport between blood and brain, imaging-based technologies, and genomic/proteomic approaches.
Collapse
|
44
|
Yoshinari K, Takagi S, Sugatani J, Miwa M. Changes in the expression of cytochromes P450 and nuclear receptors in the liver of genetically diabetic db/db mice. Biol Pharm Bull 2006; 29:1634-8. [PMID: 16880618 DOI: 10.1248/bpb.29.1634] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological and pathophysiological conditions often affect the expression of drug metabolizing enzymes such as cytochromes P450 (P450s). Diabetes is one such factor and it is of great interest to understand its effects on drug metabolism, since diabetic patients generally have increased need for pharmacotherapy. We have recently reported the coordinated reduction of CYP2B1/2 and their transcriptional regulator constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, in the liver of genetically obese/diabetic Zucker fatty rats (Xiong, H., Yoshinari, K., et al., Drug Metab. Dispos., 30, 918-923, 2002). In this study, we investigated the expression of P450s and liver-enriched nuclear receptors in the liver of genetically diabetic db/db mice. Surprisingly, both CYP2B10 and CAR levels were increased in db/db mice. CYP4A expression was also increased at both mRNA and protein levels in db/db mice, while those of peroxisome proliferator-activated receptor alpha, a key regulator for the transcriptional activation of CYP4As, were comparable to those in age-matched C57BL/6 mice. Our results demonstrate that db/db mice and Zucker fatty rats exhibit different expression profiles of P450s and nuclear receptors despite their similar characteristics for obesity and diabetes resulting from a defect in the leptin signaling pathway.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | |
Collapse
|
45
|
Jigorel E, Le Vee M, Boursier-Neyret C, Parmentier Y, Fardel O. Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes. Drug Metab Dispos 2006; 34:1756-63. [PMID: 16837569 DOI: 10.1124/dmd.106.010033] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Sinusoidal and canalicular hepatic drug transporters constitute key factors involved in drug elimination from liver. Regulation of their expression via activation of xenosensors, such as aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and nuclear factor E2-related factor 2 (Nrf2), remains incompletely characterized. The present study was therefore designed to carefully analyze expression of major drug transporters in primary human hepatocytes exposed to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) (an AhR activator), rifampicin (RIF) (a PXR activator), phenobarbital (PB) (a CAR activator), and oltipraz (OPZ) (a Nrf2 activator), using mainly reverse transcription-real time polymerase chain reaction assays. With a threshold corresponding to a 1.5-fold factor change in mRNA levels, observed in at least three of seven independent human hepatocyte cultures, efflux transporters such as MDR1, MRP2 and BCRP were up-regulated by PB, RIF, and OPZ, whereas MRP3 was induced by OPZ and RIF. MDR1 and BCRP expression was also increased by TCDD- and RIF-augmented mRNA levels of the influx transporter OATP-C. Bile acid transporters, i.e., bile salt export pump and Na(+)-taurocholate cotransporting polypeptide, and the sinusoidal transporter, OAT2, were down-regulated by all the tested chemicals. Influx transporters such as OCT1, OATP-B, and OATP8 were repressed by PB and TCDD. PB also decreased MRP6 expression, whereas mRNA levels of OCT1 and OATP8 were down-regulated by RIF and OPZ, respectively. Taken together, these data establish a complex pattern of transporter regulation by xenobiotics in human hepatocytes, in addition to interindividual variability in responsiveness. This may deserve further attention with respect to drug-drug interactions and adverse effects of hepatic drugs.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- Adult
- Constitutive Androstane Receptor
- Gene Expression Regulation/drug effects
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Membrane Transport Proteins/genetics
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- NF-E2-Related Factor 2/genetics
- Neoplasm Proteins/genetics
- Phenobarbital/pharmacology
- Polychlorinated Dibenzodioxins/pharmacology
- Pregnane X Receptor
- Pyrazines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/drug effects
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Drug/genetics
- Receptors, Steroid/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rifampin/pharmacology
- Symporters/genetics
- Thiones
- Thiophenes
- Transcription Factors/genetics
- Xenobiotics/pharmacology
Collapse
Affiliation(s)
- Emilie Jigorel
- Institut National de la Santé et de la Recherche Médicale, Faculté de Pharmacie, Rennes, France
| | | | | | | | | |
Collapse
|
46
|
Ding X, Lichti K, Kim I, Gonzalez FJ, Staudinger JL. Regulation of constitutive androstane receptor and its target genes by fasting, cAMP, hepatocyte nuclear factor alpha, and the coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha. J Biol Chem 2006; 281:26540-51. [PMID: 16825189 PMCID: PMC2991045 DOI: 10.1074/jbc.m600931200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal studies reveal that fasting and caloric restriction produce increased activity of specific metabolic pathways involved in resistance to weight loss in liver. Evidence suggests that this phenomenon may in part occur through the action of the constitutive androstane receptor (CAR, NR1I3). Currently, the precise molecular mechanisms that activate CAR during fasting are unknown. We show that fasting coordinately induces expression of genes encoding peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), CAR, cytochrome P-450 2b10 (Cyp2b10), UDP-glucuronosyltransferase 1a1 (Ugt1a1), sulfotransferase 2a1 (Sult2a1), and organic anion-transporting polypeptide 2 (Oatp2) in liver in mice. Treatments that elevate intracellular cAMP levels also produce increased expression of these genes in cultured hepatocytes. Our data show that PGC-1alpha interaction with hepatocyte nuclear factor 4alpha (HNF4alpha, NR2A1) directly regulates CAR gene expression through a novel and evolutionarily conserved HNF4-response element (HNF4-RE) located in its proximal promoter. Expression of PGC-1alpha in cells increases CAR expression and ligand-independent CAR activity. Genetic studies reveal that hepatic expression of HNF4alpha is required to produce fasting-inducible CAR expression and activity. Taken together, our data show that fasting produces increased expression of genes encoding key metabolic enzymes and an uptake transporter protein through a network of interactions involving cAMP, PGC-1alpha, HNF4alpha, CAR, and CAR target genes in liver. Given the recent finding that mice lacking CAR exhibit a profound decrease in resistance to weight loss during extended periods of caloric restriction, our findings have important implications in the development of drugs for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Xunshan Ding
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | - Kristin Lichti
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | - Insook Kim
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeff L. Staudinger
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
47
|
Slitt AL, Cherrington NJ, Fisher CD, Negishi M, Klaassen CD. Induction of genes for metabolism and transport by trans-stilbene oxide in livers of Sprague-Dawley and Wistar-Kyoto rats. Drug Metab Dispos 2006; 34:1190-7. [PMID: 16621935 DOI: 10.1124/dmd.105.007542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
trans-Stilbene oxide (TSO) is a synthetic proestrogen that induces phase I and II drug-metabolizing enzymes in rat liver. The purpose of this study was to determine whether TSO also induces transporter expression in rat liver and whether gene induction in rat liver after TSO occurs in a constitutive androstane receptor (CAR)-dependent manner. Total RNA was isolated from male rat livers after treatment with TSO for up to 4 days (200 mg/kg, i.p., twice daily), and the mRNA levels for each gene were quantified. CYP2B1/2, CYP3A1, epoxide hydrolase, heme oxygenase-1, UGT1A6, UGT2B1, multiple drug resistance protein (Mdr) 1a and 1b, as well as multidrug resistance-associated protein (Mrp) 2, 3, and 4 mRNA were increased in livers after TSO treatment. To determine whether TSO activates gene expression in a CAR-dependent manner, male and female Wistar-Kyoto (WKY) rats were treated with TSO for 3 days. TSO induced CYP2B1/2, UGT2B1, and Mdr1b in males more than in females, suggesting that TSO could increase their expression via CAR. Conversely, TSO induced CYP3A1, epoxide hydrolase, UGT1A6, and Mrp3 similarly in both genders, indicating that induction of these genes occurs independently of CAR. TSO treatment also increased the activity of a CAR binding element luciferase reporter construct in HepG2 cells transfected with rat CAR and in mouse liver. Additionally, TSO increased antioxidant response element/electrophile response element luciferase reporter construct activity in HepG2 cells. In conclusion, in WKY rat liver, TSO increases CYP2B1/2, UGT2B1, and Mdr1b mRNA expression in a gender-dependent manner and CYP3A1, epoxide hydrolase, UGT1A6, and Mrp3 in a gender-independent manner.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Cell Line, Tumor
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2B1/genetics
- Cytochrome P-450 CYP2B1/metabolism
- Cytochrome P-450 CYP3A
- Epoxide Hydrolases/genetics
- Epoxide Hydrolases/metabolism
- Female
- Genes, Reporter
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Humans
- Liver/drug effects
- Liver/enzymology
- Luciferases
- Male
- Mice
- Mice, Inbred C57BL
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Response Elements/drug effects
- Response Elements/genetics
- Sex Factors
- Stilbenes/pharmacology
- Transcription Factors/drug effects
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- A L Slitt
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417, USA
| | | | | | | | | |
Collapse
|
48
|
Yoshinari K, Takagi S, Yoshimasa T, Sugatani J, Miwa M. Hepatic CYP3A Expression is Attenuated in Obese Mice Fed a High-Fat Diet. Pharm Res 2006; 23:1188-200. [PMID: 16715367 DOI: 10.1007/s11095-006-0071-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 01/23/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Changes in physiological, pathophysiological, and/or nutritional conditions often alter the expression of drug-metabolizing enzymes. In this study, we investigated obesity-induced changes in hepatic cytochrome P450 (P450) levels using nutritionally obese mice. METHODS To induce obesity, mice were fed a high-fat diet or treated with gold thioglucose, which impairs ventromedial hypothalamus. Total RNAs and microsomal and nuclear proteins were prepared from the liver of these mice, and mRNA and protein levels of P450s and transcription factors were determined. RESULTS Among P450s examined, the constitutive expression of CYP3As was drastically reduced at both mRNA and protein levels by nutrition-induced obesity. One-week administration of a high-fat diet also reduced hepatic CYP3As. However, changes in nuclear receptors involved in the transcriptional regulation of CYP3A genes were not correlated with that of CYP3As. Obese mice induced by gold thioglucose exhibited a different expression profile of hepatic P450s with no significant change in CYP3As. CONCLUSION High-fat diet-induced changes in energy metabolism, which eventually result in obesity, modulate the hepatic expression profile of P450s, particularly CYP3As. Alternatively, the accumulation of a certain component in a high-fat diet may directly attenuate the CYP3A expression, suggesting a clinically important drug-diet interaction.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | | | | | | | | |
Collapse
|
49
|
Yoshinari K. Roles of Nuclear Receptors in the Gene Expression of Drug-metabolizing Enzymes under Various Physiological Conditions. YAKUGAKU ZASSHI 2006; 126:343-8. [PMID: 16679742 DOI: 10.1248/yakushi.126.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nuclear receptor constitutive androstane receptor (CAR), a key transcription factor for the expression of cytochrome P450 (CYP) 2B genes, resides in the cytoplasm under untreated conditions and translocates into the nucleus upon xenobiotic exposure. CAR forms a multiprotein complex including heat shock protein 90 in the cytoplasm as the glucocorticoid receptor, and it is likely that protein phosphatase 2A plays a critical role in the first step of CAR nuclear translocation. In addition to the xenobiotic induction of CYP2Bs, our recent studies have indicated that CAR is important for sex and strain differences and obesity/diabetes-associated changes in the expression of CYP2B genes. These results have raised the hypothesis that the expression of nuclear receptors varies depending on the physiologic condition, leading to the dysregulation of CYP expression. In obese mice fed a high-fat diet, however, hepatic CYP3A levels are drastically decreased without any significant changes in the expression of nuclear receptors including the pregnane X receptor and hepatocyte nuclear factor-4, which are known to be key transcription factors in the expression of CYP3A genes. These results indicate that it is important to investigate the mechanism of the transcriptional regulation of nuclear receptor genes as well as the activation of nuclear receptors to understand the CYP expression system fully.
Collapse
Affiliation(s)
- Kouichi Yoshinari
- Department of Pharmaco-Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| |
Collapse
|
50
|
Slitt AL, Cherrington NJ, Dieter MZ, Aleksunes LM, Scheffer GL, Huang W, Moore DD, Klaassen CD. trans-Stilbene oxide induces expression of genes involved in metabolism and transport in mouse liver via CAR and Nrf2 transcription factors. Mol Pharmacol 2006; 69:1554-63. [PMID: 16449384 DOI: 10.1124/mol.105.014571] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
trans-Stilbene oxide (TSO) induces drug metabolizing enzymes in rat and mouse liver. TSO is considered a phenobarbital-like compound because it induces Cyp2B mRNA expression in liver. Phenobarbital increases Cyp2B expression in liver via activation of the constitutive androstane receptor (CAR). The purpose of this study was to determine whether TSO induces gene expression in mouse liver via CAR activation. TSO increased CAR nuclear localization in mouse liver, activated the human Cyp2B6 promoter in liver in vivo, and activated a reporter plasmid that contains five nuclear receptor 1 (NR1) binding sites in HepG2 cells. TSO administration increased expression of Cyp2b10, NAD(P)H:quinone oxidoreductase (Nqo1), epoxide hydrolase, heme oxygenase-1, UDP-glucuronosyl-transferase (Ugt) 1a6 and 2b5, and multidrug resistance-associated proteins (Mrp) 2 and 3 mRNA in livers from male mice. Cyp2b10 and epoxide hydrolase induction by TSO was decreased in livers from CAR-null mice, compared with wild-type mice, suggesting CAR involvement. In contrast, TSO administration induced Nqo1 and Mrp3 mRNA expression equally in livers from wild-type and CAR-null mice, suggesting that TSO induces expression of some genes through a mechanism independent of CAR. TSO increased nuclear staining of the transcription factor Nrf2 in liver, and activated an antioxidant/electrophile response element luciferase reporter construct that was transfected into HepG2 cells. In summary, in mice, TSO increases Cyp2b10 and epoxide hydrolase expression in mice via CAR, and potentially induces Nqo1 and Mrp3 expression via Nrf2. Moreover, our data demonstrate that a single compound can activate both CAR and Nrf2 transcription factors in liver.
Collapse
Affiliation(s)
- A L Slitt
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417, USA
| | | | | | | | | | | | | | | |
Collapse
|