1
|
Bonifacino T, Micheli L, Torazza C, Ghelardini C, Farina C, Bonanno G, Milanese M, Di Cesare Mannelli L, Scherz MW. Pharmacological Profile of MP-101, a Novel Non-racemic Mixture of R- and S-dimiracetam with Increased Potency in Rat Models of Cognition, Depression and Neuropathic Pain. Cells 2022; 11:cells11244027. [PMID: 36552791 PMCID: PMC9776800 DOI: 10.3390/cells11244027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The racemic mixture dimiracetam negatively modulates NMDA-induced glutamate release in rat spinal cord synaptosomal preparations and is orally effective in models of neuropathic pain. In this study, we compared the effects of dimiracetam, its R- or S-enantiomers, and the R:S 3:1 non-racemic mixture (MP-101). In vitro, dimiracetam was more potent than its R- or S-enantiomers in reducing the NMDA-induced [3H]D-aspartate release in rat spinal cord synaptosomes. Similarly, acute oral administration of dimiracetam was more effective than a single enantiomer in the sodium monoiodoacetate (MIA) paradigm of painful osteoarthritis. Then, we compared the in vitro effects of a broad range of non-racemic enantiomeric mixtures on the NMDA-induced [3H]D-aspartate release. Dimiracetam was a more potent blocker than each isolated enantiomer but the R:S 3:1 non-racemic mixture (MP-101) was even more potent than dimiracetam, with an IC50 in the picomolar range. In the chronic oxaliplatin-induced neuropathic pain model, MP-101 showed a significantly improved anti-neuropathic profile, and its effect continued one week after treatment suspension. MP-101 also performed better than dimiracetam in animal models of cognition and depression. Based on the benign safety and tolerability profile previously observed with racemic dimiracetam, MP-101 appears to be a novel, promising clinical candidate for the prevention and treatment of several neuropathic and neurological disorders.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Carola Torazza
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
| | - Carlo Farina
- Metys Pharmaceuticals c/o Novaremed AG, 4051 Basel, Switzerland
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, University of Genoa, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (M.M.); (L.D.C.M.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy
- Correspondence: (M.M.); (L.D.C.M.)
| | | |
Collapse
|
2
|
Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells 2020; 9:cells9081906. [PMID: 32824296 PMCID: PMC7465054 DOI: 10.3390/cells9081906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA) signaling is known to play key roles in the initiation and maintenance of various chronic pain models. Here we examined whether LPA signaling is also involved in diabetes-induced abnormal pain behaviors. The high-fat diet (HFD) showing elevation of blood glucose levels and body weight caused thermal, mechanical hyperalgesia, hypersensitivity to 2000 or 250 Hz electrical-stimulation and hyposensitivity to 5 Hz stimulation to the paw in wild-type (WT) mice. These HFD-induced abnormal pain behaviors and body weight increase, but not elevated glucose levels were abolished in LPA1−/− and LPA3−/− mice. Repeated daily intrathecal (i.t.) treatments with LPA1/3 antagonist AM966 reversed these abnormal pain behaviors. Similar abnormal pain behaviors and their blockade by daily AM966 (i.t.) or twice daily Ki16425, another LPA1/3 antagonist was also observed in db/db mice which show high glucose levels and body weight. Furthermore, streptozotocin-induced similar abnormal pain behaviors, but not elevated glucose levels or body weight loss were abolished in LPA1−/− and LPA3−/− mice. These results suggest that LPA1 and LPA3 play key roles in the development of both type I and type II diabetic neuropathic pain.
Collapse
|
3
|
Tsymbalyuk S, Smith M, Gore C, Tsymbalyuk O, Ivanova S, Sansur C, Gerzanich V, Simard JM. Brivaracetam attenuates pain behaviors in a murine model of neuropathic pain. Mol Pain 2020; 15:1744806919886503. [PMID: 31615323 PMCID: PMC6880061 DOI: 10.1177/1744806919886503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background The antiseizure racetams may provide novel molecular insights into
neuropathic pain due to their unique mechanism involving synaptic vesicle
glycoprotein 2A. Anti-allodynic effects of levetiracetam have been shown in
animal models of neuropathic pain. Here, we studied the effect of
brivaracetam, which binds to synaptic vesicle glycoprotein 2A with 20-fold
greater affinity, and has fewer off-target effects. Methods Mice underwent unilateral sciatic nerve cuffing and were evaluated for
mechanical sensitivity using von Frey filaments. Pain behaviors were
assessed with prophylactic treatment using levetiracetam (100 or 10 mg/kg)
or brivaracetam (10 or 1 mg/kg) beginning after surgery and continuing for
21 days, or with therapeutic treatment using brivaracetam (10 or 1 mg/kg)
beginning on day 14, after allodynia was established, and continuing for 28
or 63 days. Spinal cord tissues from the prophylaxis experiment with10 mg/kg
brivaracetam were examined for neuroinflammation (Iba1 and tumor necrosis
factor), T-lymphocyte (CD3) infiltration, and synaptic vesicle glycoprotein
2A expression. Results When used prophylactically, levetiracetam, 100 mg/kg, and brivaracetam,
10 mg/kg, prevented the development of allodynia, with lower doses of each
being less effective. When used therapeutically, brivaracetam extinguished
allodynia, requiring 10 days with 10 mg/kg, and six weeks with 1 mg/kg.
Brivaracetam was associated with reduced neuroinflammation and reduced
T-lymphocyte infiltration in the dorsal horn. After sciatic nerve cuffing,
synaptic vesicle glycoprotein 2A expression was identified in neurons,
activated astrocytes, microglia/macrophages, and T lymphocytes in the dorsal
horn. Conclusion Synaptic vesicle glycoprotein 2A may represent a novel target for neuropathic
pain. Brivaracetam may warrant study in humans with neuropathic pain due to
peripheral nerve injury.
Collapse
Affiliation(s)
- Solomiya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Madeleine Smith
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Gore
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Svetlana Ivanova
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Guerrini G, Ciciani G, Crocetti L, Daniele S, Ghelardini C, Giovannoni MP, Iacovone A, Di Cesare Mannelli L, Martini C, Vergelli C. Identification of a New Pyrazolo[1,5-a]quinazoline Ligand Highly Affine to γ-Aminobutyric Type A (GABAA) Receptor Subtype with Anxiolytic-Like and Antihyperalgesic Activity. J Med Chem 2017; 60:9691-9702. [DOI: 10.1021/acs.jmedchem.7b01151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriella Guerrini
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Giovanna Ciciani
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Letizia Crocetti
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Simona Daniele
- Dipartimento
FARMACIA, Università degli Studi di Pisa, Pisa56126, Italy
| | - Carla Ghelardini
- Dipartimento
NEUROFARBA, Sezione Farmacologia, Università degli Studi di Firenze, Sesto
Fiorentino, Firenze 50019, Italy
| | - Maria Paola Giovannoni
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Antonella Iacovone
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento
NEUROFARBA, Sezione Farmacologia, Università degli Studi di Firenze, Sesto
Fiorentino, Firenze 50019, Italy
| | - Claudia Martini
- Dipartimento
FARMACIA, Università degli Studi di Pisa, Pisa56126, Italy
| | - Claudia Vergelli
- Dipartimento
NEUROFARBA, Sezione Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, Sesto
Fiorentino, Firenze 50019, Italy
| |
Collapse
|
5
|
Di Cesare Mannelli L, Maresca M, Micheli L, Farina C, Scherz MW, Ghelardini C. A rat model of FOLFOX-induced neuropathy: effects of oral dimiracetam in comparison with duloxetine and pregabalin. Cancer Chemother Pharmacol 2017; 80:1091-1103. [PMID: 29026967 DOI: 10.1007/s00280-017-3449-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM The FOLFOX family of chemotherapy regimens are hampered by the development of a painful neuropathy. Current clinical treatments are inadequate, and furthermore, the research of innovative drugs is strongly disadvantaged by the absence of a preclinical model based on the complete mixture of FOLFOX components. The aim of this study was to set up a rat model of FOLFOX-induced neuropathy in rats, validate its predictability by reference drugs, and evaluate the effectiveness of the new anti-neuropathic compound dimiracetam. METHODS Male Sprague-Dawley rats were treated intraperitoneally with the FOLFOX components (6 mg kg-1 oxaliplatin, 50 mg kg-1 5-FU, 90 mg kg-1 leucovorin calcium salt) or oxaliplatin alone (6 mg kg-1) on days 0, 7, 14, and 21, whereas a separate group received one more injection of FOLFOX on day 28. Pain behavioural measurements (paw pressure, cold plate, and electronic Von Frey tests) and motor coordination (Rota-rod test) were assessed before and after treatments. Behavioural, motor, neurological, and autonomic parameters (open field and Irwin tests) were evaluated. RESULTS FOLFOX reduced the pain threshold in response to mechanical noxious and thermal (cold) non-noxious stimuli beginning from day 14 up to day 42 comparably to oxaliplatin alone. A fifth FOLFOX injection enhanced the severity but not the duration of painful alterations. Spontaneous activity, behavioural, autonomic, and neurological functions were also affected, whereas the motor coordination was not altered. On day 22, duloxetine (15 mg kg-1, per os), morphine (10 mg kg-1, subcutaneously), or pregabalin (20 mg kg-1, per os), acutely administered, reduced the FOLFOX-dependent hypersensitivity. Repeated treatments with dimiracetam (150 mg kg-1, per os, twice daily, from day 22) significantly protected rats from FOLFOX-induced alterations of pain threshold as well as from autonomic and neurological impairments taking effect after 7 days treatment. Pregabalin repeatedly administered (20 mg kg-1, per os, twice daily, from day 22) was less effective in reducing mechanical hypersensitivity. CONCLUSION A clinically consistent model of FOLFOX-induced neurotoxicity has been developed in rats. Dimiracetam fully reduced hypersensitivity and neurological alterations showing a relevant profile as anti-neuropathic resource.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139, Firenze, Italy.
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139, Firenze, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139, Firenze, Italy
| | - Carlo Farina
- Metys Pharmaceuticals AG, Leimenstrasse 57, 4055, Basel, Switzerland
| | - Michael W Scherz
- Metys Pharmaceuticals AG, Leimenstrasse 57, 4055, Basel, Switzerland
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba-Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139, Firenze, Italy
| |
Collapse
|
6
|
Guerrini G, Ciciani G, Crocetti L, Daniele S, Ghelardini C, Giovannoni MP, Di Cesare Mannelli L, Martini C, Vergelli C. Synthesis and Pharmacological Evaluation of Novel GABAA
Subtype Receptor Ligands with Potential Anxiolytic-like and Anti-hyperalgesic Effect. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gabriella Guerrini
- Dipartimento NEUROFARBA, sezione Farmaceutica e Nutraceutica; Università degli Studi di Firenze; Florence Italy
| | - Giovanna Ciciani
- Dipartimento NEUROFARBA, sezione Farmaceutica e Nutraceutica; Università degli Studi di Firenze; Florence Italy
| | - Letizia Crocetti
- Dipartimento NEUROFARBA, sezione Farmaceutica e Nutraceutica; Università degli Studi di Firenze; Florence Italy
| | - Simona Daniele
- Dipartimento FARMACIA; Università degli Studi di Pisa; Pisa Italy
| | - Carla Ghelardini
- Dipartimento NEUROFARBA, sezione Farmacologia; Università degli Studi di Firenze; Florence Italy
| | - Maria Paola Giovannoni
- Dipartimento NEUROFARBA, sezione Farmaceutica e Nutraceutica; Università degli Studi di Firenze; Florence Italy
| | | | - Claudia Martini
- Dipartimento FARMACIA; Università degli Studi di Pisa; Pisa Italy
| | - Claudia Vergelli
- Dipartimento NEUROFARBA, sezione Farmaceutica e Nutraceutica; Università degli Studi di Firenze; Florence Italy
| |
Collapse
|
7
|
Kosarmadar N, Ghasemzadeh Z, Rezayof A. Inhibition of microglia in the basolateral amygdala enhanced morphine-induced antinociception: Possible role of GABAA receptors. Eur J Pharmacol 2015; 765:157-63. [DOI: 10.1016/j.ejphar.2015.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/15/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
|
8
|
Di Cesare Mannelli L, Maresca M, Farina C, Scherz MW, Ghelardini C. A model of neuropathic pain induced by sorafenib in the rat: Effect of dimiracetam. Neurotoxicology 2015; 50:101-7. [PMID: 26254739 DOI: 10.1016/j.neuro.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sorafenib is a kinase inhibitor anticancer drug whose repeated administration causes the onset of a peripheral painful neuropathy. Notably, the efficacy of common analgesic drugs is not adequate and this often leads pre-mature discontinuation of anticancer therapy. The aim of this study was to establish a rat model of sorafenib-induced neuropathic pain, and to assess the effect of the new anti-neuropathic compound dimiracetam in comparison with gabapentin, pregabalin and duloxetine. METHODS Male Sprague-Dawley rats were treated i.v. (10 mg kg(-1)), i.p. (10 and 30 mg kg(-1)) or p.o. (80 and 160 mg kg(-1)) with sorafenib once daily for 21 days. Pain behaviour measurements (cold plate, paw pressure, electronic von Frey) were performed on days 0, 7, 14 and 21. RESULTS Sorafenib lowered the paw-licking threshold to non-noxious cold stimuli on day 14 of all protocols evaluated. The i.p. administration resulted in greater efficacy than the other administration routes. Sorafenib treatments did not affect paw-withdrawal responses to non-noxious or to noxious mechanical stimuli. On day 14, dimiracetam (300 mg kg(-1)), gabapentin (100 mg kg(-1)), pregabalin (30 mg kg(-1)) and duloxetine (30 mg kg(-1)) were acutely administered p.o. in sorafenib i.p.-treated rats. A single oral dose of dimiracetam induced a statistically significant increase of the pain threshold 15 min after administration. Pregabalin induced a comparable effect, whereas gabapentin and duloxetine were ineffective. Repeated twice-daily administration of dimiracetam (150 mg kg(-1) p.o.), starting on the first day of i.p sorafenib administration, significantly protected rats from sorafenib-induced decrease in the paw-licking threshold. CONCLUSIONS A rat model of sorafenib-induced hypersensitivity to cold stimulation has been established. Dimiracetam and pregabalin are effective in prevention of sorafenib-induced neuropathy in this model.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139 Firenze, Italy.
| | - Mario Maresca
- Department of Neuroscience, Psychology, Drug Research and Child Health, - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139 Firenze, Italy
| | - Carlo Farina
- Neurotune AG, Wagistrasse 27a, CH-8952 Schlieren, Switzerland; Metys Pharmaceuticals, Friedrichstrasse 6, CH-4055 Basel, Switzerland
| | - Michael W Scherz
- Metys Pharmaceuticals, Friedrichstrasse 6, CH-4055 Basel, Switzerland
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini, 6, 50139 Firenze, Italy
| |
Collapse
|
9
|
Omotuyi OI, Ueda H. Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation. Comput Biol Chem 2015; 55:14-22. [DOI: 10.1016/j.compbiolchem.2015.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/09/2015] [Accepted: 01/22/2015] [Indexed: 01/05/2023]
|
10
|
Mehta AK, Bhati Y, Tripathi CD, Sharma KK. Analgesic Effect of Piracetam on Peripheral Neuropathic Pain Induced by Chronic Constriction Injury of Sciatic Nerve in Rats. Neurochem Res 2014; 39:1433-9. [DOI: 10.1007/s11064-014-1329-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/19/2022]
|
11
|
Fariello RG, Ghelardini C, Di Cesare Mannelli L, Bonanno G, Pittaluga A, Milanese M, Misiano P, Farina C. Broad spectrum and prolonged efficacy of dimiracetam in models of neuropathic pain. Neuropharmacology 2014; 81:85-94. [PMID: 24486381 DOI: 10.1016/j.neuropharm.2014.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 01/11/2023]
Abstract
Dimiracetam, a bicyclic 2-pyrrolidinone derivative originally developed as cognition enhancer, is a member of the nootropic family for which anecdotal efficacy in models of neuropathic pain has been reported. Its antineuropathic activity was evaluated in established models of neuropathic pain induced by nerve injury, chemotherapy or MIA-induced osteoarthritis. Acutely, dimiracetam was very effective in models of antiretroviral drug induced painful neuropathy, oxaliplatin-induced hyperalgesia and in the MIA-osteoarthritis. Chronic dimiracetam dosing in the MIA and ART- induced models completely reverted hyperalgesia back to the level of healthy controls. Once reached, the maximal effect was maintained despite dose diminution and increased inter-dose interval. The effect of the last dose outlasted dimiracetam half-life longer than 12 times. In synaptosomal preparations, dimiracetam counteracted the NMDA-induced release of glutamate with highest potency in the spinal cord, possibly via NMDA receptor isoforms containing pH-sensitive GluN1 and GluN2A subunits. Dimiracetam appears to be a promising and safe treatment for neuropathic pain conditions for which there are very limited therapeutic options.
Collapse
Affiliation(s)
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy.
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, I-50139 Florence, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, I-16148 Genoa, Italy.
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, I-16148 Genoa, Italy.
| | - Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Viale Cembrano 4, I-16148 Genoa, Italy.
| | - Paola Misiano
- NiKem Research, Via Zambeletti 25, I-20021 Baranzate, Milan, Italy.
| | - Carlo Farina
- Neurotune AG, Wagistrasse 27a, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
12
|
Zakaria ZA, Sani MH, Mohammat MF, Mansor NS, Shaameri Z, Kek TL, Salleh MZ, Hamzah AS. Antinociceptive activity of a synthetic oxopyrrolidine-based compound, ASH21374, and determination of its possible mechanisms. Can J Physiol Pharmacol 2013; 91:1143-53. [PMID: 24289087 DOI: 10.1139/cjpp-2013-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was carried out to determine the antinociceptive activity of a novel synthetic oxopyrrolidine-based compound, (2R,3R,4S)-ethyl 4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate (ASH21374), and to elucidate the involvement of the opioid, vanilloid, glutamate, and nitric oxide - cyclic guanosine monophosphate (NO/cGMP) systems in modulating the observed antinociception. ASH21374, in the doses of 2, 10, and 100 mg/kg body mass, was administered orally to mice 60 mins prior to exposure to various antinociceptive assays. From the results obtained, ASH21374 exhibited significant (P < 0.05) antinociceptive activity in the abdominal constriction, hot-plate, and formalin tests that was comparable with 100 mg/kg acetylsalicylic acid or 5 mg/kg morphine, respectively. ASH21374 also attenuated capsaicin- and glutamate-induced paw licking. Pre-treatment with 5 mg/kg naloxone significantly (P < 0.05) inhibited the activity in all assays, while pretreatment with 10 mg/kg β-funaltraxamine, 1 mg/kg naltrindole, or 1 mg/kg nor-binaltorphimine significantly (P < 0.05) reversed the activity in the abdominal constriction test. l-Arginine, N(G)-nitro-l-arginine methyl esters (l-NAME), methylene blue, and their combinations, failed to inhibit the ASH21374 antinociceptive activity. In conclusion, ASH21374 demonstrated antinociceptive activities on the peripheral and central nervous systems, mediated through the activation of opioid receptors, inhibition of the glutamatergic system, and attenuation of vanilloid-mediated nociceptive transmission. Further studies have been planned to determine the pharmacological potential of ASH21374.
Collapse
Affiliation(s)
- Zainul Amiruddin Zakaria
- a Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kumar R, Reeta K, Ray SB. Antinociceptive effect of intrathecal loperamide: Role of mu-opioid receptor and calcium channels. Eur J Pharmacol 2012; 696:77-82. [DOI: 10.1016/j.ejphar.2012.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/31/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
|
14
|
Guerrini G, Ciciani G, Bruni F, Selleri S, Martini C, Daniele S, Ghelardini C, Di Cesare Mannelli L, Costanzo A. Development of ligands at γ-aminobutyrric acid type A (GABAA) receptor subtype as new agents for pain relief. Bioorg Med Chem 2011; 19:7441-52. [DOI: 10.1016/j.bmc.2011.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/07/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
|
15
|
Martini E, Di Cesare Mannelli L, Bartolucci G, Bertucci C, Dei S, Ghelardini C, Guandalini L, Manetti D, Scapecchi S, Teodori E, Romanelli MN. Synthesis and Biological Evaluation of 3,7-Diazabicyclo[4.3.0]nonan-8-ones as Potential Nootropic and Analgesic Drugs. J Med Chem 2011; 54:2512-6. [DOI: 10.1021/jm101376k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elisabetta Martini
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Gianluca Bartolucci
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Carlo Bertucci
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Dei
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Carla Ghelardini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Luca Guandalini
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Dina Manetti
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Serena Scapecchi
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Department of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
|
17
|
Jiménez-Andrade GY, Reyes-García G, Sereno G, Ceballos-Reyes G, Vidal-Cantú GC, Granados-Soto V. Pyritinol reduces nociception and oxidative stress in diabetic rats. Eur J Pharmacol 2008; 590:170-6. [PMID: 18593582 DOI: 10.1016/j.ejphar.2008.06.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 06/06/2008] [Accepted: 06/12/2008] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to assess the antinociceptive and antiallodynic effect of pyritinol as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral acute administration of pyritinol (50-200 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. Moreover, prolonged administration of pyritinol (12.5-50 mg/kg, every 2 days for 2 weeks) reduced formalin-induced nociception. 1H-[1,2,4]-oxadiazolo [4,3-a] quinoxalin-1-one (ODQ, a guanylyl cyclase inhibitor, 2 mg/kg, i.p.), but not naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) or indomethacin (a non-selective cycloxygenase inhibitor, 5 mg/kg, i.p.), blocked the pyritinol-induced antinociception in diabetic rats. Given alone ODQ, naltrexone or indomethacin did not modify formalin-induced nociception in diabetic rats. Oral acute (200 mg/kg) or prolonged (25 mg/kg, every 2 days for 2 weeks) administration of pyritinol significantly reduced streptozotocin-induced changes in free carbonyls, dityrosine, malondialdehyde and advanced oxidative protein products. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of pyritinol (50-200 mg/kg) reduced tactile allodynia in diabetic rats. Results indicate that pyritinol is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that activation of guanylyl cyclase and the scavenger properties of pyritinol, but not improvement in glucose levels, play an important role in these effects.
Collapse
|
18
|
Pabbidi RM, Yu SQ, Peng S, Khardori R, Pauza ME, Premkumar LS. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity. Mol Pain 2008; 4:9. [PMID: 18312687 PMCID: PMC2275252 DOI: 10.1186/1744-8069-4-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 03/01/2008] [Indexed: 12/24/2022] Open
Abstract
A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN). The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ)-induced and transgene-mediated murine models of type 1 diabetes (T1D), we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1) expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL). An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG) neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX) binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG), and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.
Collapse
Affiliation(s)
- Reddy M Pabbidi
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Ueda H. Molecular mechanisms of neuropathic pain–phenotypic switch and initiation mechanisms. Pharmacol Ther 2006; 109:57-77. [PMID: 16023729 DOI: 10.1016/j.pharmthera.2005.06.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 12/29/2022]
Abstract
Many known painkillers are not always effective in the therapy of chronic neuropathic pain manifested by hyperalgesia and tactile allodynia. The mechanisms underlying neuropathic pain appear to be complicated and to differ from acute and inflammatory pain. Recent advances in pain research provide us with a clear picture for the molecular mechanisms of acute pain, and substantial information is available concerning the plasticity that occurs under conditions of neuropathic pain. The most important changes responsible for the mechanisms of neuropathic pain are found in the altered gene/protein expression in primary sensory neurons. After damage to peripheral sensory fibers, up-regulated expression of the Ca(v)alpha(2)delta-(1) channel subunit, the Na(v)1.3 sodium channel, and bradykinin (BK) B1 and capsaicin TRPV1 receptors in myelinated neurons contribute to hyperalgesia; while the down-regulation of the Na(v)1.8 sodium channel, B2 receptor, substance P (SP), and even mu-opioid receptors in unmyelinated neurons is responsible for the phenotypic switch in pain transmission. Clarification of the molecular mechanisms for such complicated plasticity would be extremely valuable when considering the therapeutic design of pain relieving drugs. Although many reports deal with the changes in expression of key molecules related to neuropathic pain, the initiation and the mechanisms that follow remain to be determined. The current study using lysophosphatidic acid (LPA) receptor knockout mice revealed that LPA produced by nerve injury initiates neuropathic pain and demyelination following partial sciatic nerve ligation (PSNL). A single injection of LPA was found to mimic PSNL in terms of neuropathic pain and its underlying mechanisms. This discovery may lead to the subsequent discovery of LPA-induced secondary genes, which would be therapeutic targets for neuropathic pain.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
20
|
Kitano Y, Komiyama C, Makino M, Kasai Y, Takasuna K, Kinoshita M, Yamazaki O, Takazawa A, Yamauchi T, Sakurada S. Effects of Nefiracetam, a novel pyrrolidone-type nootropic agent, on the amygdala-kindled seizures in rats. Epilepsia 2005; 46:1561-8. [PMID: 16190926 DOI: 10.1111/j.1528-1167.2005.00261.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Nefiracetam (NEF) is a novel pyrrolidonetype nootropic agent, and it has been reported to possess various pharmacologic effects as well as cognition-enhancing effects. The present study focused on the effects of NEF in amygdala-kindled seizures and its potential for antiepileptic therapy. METHODS Effects of NEF on fully amygdala-kindled seizures and development of amygdala-kindled seizures were investigated in rats and compared with those of levetiracetam (LEV), a pyrrolidone-type antiepileptic drug (AED). RESULTS In fully amygdala-kindled rats, NEF (25, 50, and 100 mg/kg, p.o.) decreased afterdischarge induction, afterdischarge duration, seizure stage, and motor seizure duration in a dose-dependent manner. LEV (25, 50, and 100 mg/kg, p.o.) had no effects on afterdischarge induction and slightly decreased afterdischarge duration, whereas it markedly decreased seizure stage and motor seizure duration. In contrast to the results in fully amygdala-kindled rats, NEF (25 and 50 mg/kg/day, p.o.) had few or no effects on the development of amygdala-kindled seizures. As well as fully amygdala-kindled seizures, LEV (50 mg/kg/day, p.o.) markedly inhibited the development of behavioral seizures without reducing daily afterdischarge duration. CONCLUSIONS Although NEF possesses potent anticonvulsant effects on fully amygdala-kindled seizures, it has few or no effects on the development of amygdala-kindled seizures. LEV shows marked anticonvulsant effects on both phases of kindling. In fully amygdala-kindled rats, NEF inhibits both electroencephalographic and behavioral seizures, whereas LEV inhibits only behavioral seizures. This double dissociation suggests that NEF has a distinct anticonvulsant spectrum and mechanisms from those of LEV.
Collapse
Affiliation(s)
- Yutaka Kitano
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., Edogawa-ku, Tokyo.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kitano Y, Komiyama C, Makino M, Takasuna K, Takazawa A, Sakurada S. Anticonvulsant properties of the novel nootropic agent nefiracetam in seizure models of mice and rats. Epilepsia 2005; 46:811-8. [PMID: 15946322 DOI: 10.1111/j.1528-1167.2005.66504.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Nefiracetam (NEF) is a novel pyrrolidone-type nootropic agent, and it has been reported to possess various pharmacologic effects as well as cognition-enhancing effects. The present study focused on the anticonvulsant effect of NEF and its potential for antiepileptic therapy. METHODS The anticonvulsant properties of NEF were investigated in experimental seizure models of mice and rats, compared with levetiracetam (LEV) and other standard antiepileptic drugs [AEDs; zonisamide (ZNS), phenytoin (PHT), carbamazepine (CBZ), valproic acid (VPA), diazepam (DZP), and ethosuximide (ESM)]. With reference to standard programs for evaluating potential AEDs, the study included the traditional maximal electroshock seizure and subcutaneous chemoconvulsant (pentylenetetrazole, bicuculline, picrotoxin, strychnine, or N-methyl-D-aspartate) seizure tests and two threshold models (the increasing-current electroshock seizure test and intravenous pentylenetetrazole seizure threshold test). Neurotoxic activities were examined with the rotarod test and traction test. RESULTS NEF inhibited electroshock-induced seizures at nontoxic doses, whereas it had no effect on seizures chemically induced by pentylenetetrazole, bicuculline, picrotoxin, strychnine, or N-methyl-D-aspartate. The anticonvulsant spectrum of NEF paralleled that of ZNS, PHT, and CBZ. The anticonvulsant efficacy of NEF was comparable with that of ZNS and less potent than that of PHT, CBZ, and DZP. However, the safety margin of NEF was superior to that of ZNS, CBZ, VPA, and DZP. LEV showed only slight anticonvulsant effects in threshold models, and it was not effective in conventional screening models. CONCLUSIONS These results suggest that NEF has distinct anticonvulsant spectrum and mechanisms from those of LEV. NEF is an orally active and safe AED, and it possesses a potential for antiepileptic therapy.
Collapse
Affiliation(s)
- Yutaka Kitano
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Rashid MH, Ueda H. Pre-injury administration of morphine prevents development of neuropathic hyperalgesia through activation of descending monoaminergic mechanisms in the spinal cord in mice. Mol Pain 2005; 1:19. [PMID: 15932652 PMCID: PMC1175856 DOI: 10.1186/1744-8069-1-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 06/03/2005] [Indexed: 11/17/2022] Open
Abstract
The present study examined whether pre-injury administration of morphine can prevent partial sciatic nerve injury-induced neuropathic pain in mice. We observed that pre-injury administration of subcutaneous (s.c.) and intracerebroventricular (i.c.v.) morphine dose-dependently prevented the development of both thermal and mechanical hyperalgesia at 7 days following nerve injury in mice. The pre-injury morphine (s.c.)-induced analgesia was significantly blocked by pretreatment with naloxone injected s.c. or i.c.v., but not i.t., suggesting that systemic morphine produced the pre-emptying effects mainly by acting at the supra-spinal sites. Since it is believed that activation of descending monoaminergic mechanisms in spinal cord largely contributes to the supra-spinal analgesic effects of morphine, we investigated the involvement of serotonergic and noradrenergic mechanisms in spinal cord in the pre-injury morphine-induced analgesic effects. We found that pre-injury s.c. morphine-induced analgesic effect was significantly blocked by i.t. pretreatment with serotonergic antagonist, methysergide and noradrenergic antagonist, phentolamine. In addition, pre-injury i.t. injection of serotonin uptake inhibitor, fluoxetine and α2-adrenergic agonist, clonidine significantly prevented the neuropathic hyperalgesia. We next examined whether pre-injury morphine prevented the expression of neuronal hyperactivity markers such as c-Fos and protein kinase C γ (PKCγ) in the spinal dorsal horn. We found that pre-injury administration of s.c. morphine prevented increased expressions of both c-Fos and PKCγ observed following nerve injury. Similar results were obtained with i.t. fluoxetine and clonidine. Altogether these results suggest that pre-injury administration of morphine might prevent the development of neuropathic pain through activation of descending monoaminergic pain inhibitory pathways.
Collapse
Affiliation(s)
- Md Harunor Rashid
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
- Dept of Integrative Physiology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| |
Collapse
|
23
|
Ueda M, Fujita R, Koji T, Ueda H. The cognition-enhancer nefiracetam inhibits both necrosis and apoptosis in retinal ischemic models in vitro and in vivo. J Pharmacol Exp Ther 2004; 309:200-7. [PMID: 14718588 DOI: 10.1124/jpet.103.061127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retinal ischemic-reperfusion stress (130 mm Hg, 45 min) caused neuronal damage throughout all cell layers and reduced the thickness of retinal layer by 30% at 7 days after the stress of mouse retina. The intravitreous injection of 100 pmol of nefiracetam, a cognition-enhancer, completely prevented the damage when it was given 30 min before and 3 h after the stress. Partial prevention was observed when it was given 24 h after the stress, or low dose (10 pmol) nefiracetam was given 30 min before the stress. However, aniracetam had no effect. In the retinal cell line N18-RE-105, the ischemic-reperfusion stress by 2 h culture under the serum-free condition with low oxygen (less of 0.4% O(2)) and low glucose (1 mM) caused necrosis or apoptosis in the low-density (0.5 x 10(4) cell/cm(2))or high-density (5 x 10(4) cell/cm(2)) culture, respectively. The necrosis showed membrane disruption, loss of electron density, and mitochondrial swelling, whereas apoptosis showed nuclear fragmentation and condensation in transmission electron microscopical analyses and in experiments using specific cell death markers. Nefiracetam inhibited both necrosis and apoptosis, whereas brain-derived neurotrophic factor (BDNF) inhibited only apoptosis. The cell-protective actions of nefiracetam were abolished by nifedipine and omega-conotoxin GVIA, L-type and N-type calcium channel blocker, but not by PD98059 or wortmannin, extracellular signal-regulated kinase 1/2 or phosphoinositide 3-kinase inhibitor, respectively, whereas those of BDNF were abolished by PD98059 and wortmannin, but not by nifedipine and omega-conotoxin GVIA. All these findings suggest that nefiracetam inhibit necrosis and apoptosis occurred in the ischemic/hypoxic neuronal injury through an increase in Ca(2+) influx.
Collapse
Affiliation(s)
- Mutsumi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | | | | | | |
Collapse
|
24
|
Sun X, Yokoyama M, Mizobuchi S, Kaku R, Nakatsuka H, Takahashi T, Morita K. The Effects of Pretreatment with Lidocaine or Bupivacaine on the Spatial and Temporal Expression of c-Fos Protein in the Spinal Cord Caused by Plantar Incision in the Rat. Anesth Analg 2004; 98:1093-1098. [PMID: 15041605 DOI: 10.1213/01.ane.0000104580.89717.a2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED We investigated the spatial and temporal patterns of c-Fos protein (Fos) expression in the dorsal horn of the spinal cord caused by plantar incision in the rat and the effects of pretreatment with local anesthetics. Bupivacaine (0.5%), lidocaine (2%), or saline for control was injected for nerve block and local infiltration before the plantar incision was made under anesthesia. Pain behavior and Fos expression in the L4-L5 segments of the spinal cord were assessed at 1, 3, 6, 24, 48, 72, and 120 h after the incision. The withdrawal threshold to mechanical stimulation decreased significantly at 1 h until 120 h (1-72 h, P < 0.01;120 h, P < 0.05), and pretreatment with local anesthetics increased the threshold significantly at 1 h (both groups: P < 0.01), 3 h (both groups: P < 0.01), and 6 h (bupivacaine, P < 0.01; lidocaine, P < 0.05) in comparison with that in the saline group. In the saline group, Fos expression was detected predominantly in laminae I-II and V-VI, and the total Fos expression was maximal at 1 h and then decreased gradually. Pretreatment with local anesthetics suppressed Fos expression significantly in all layers, and this suppression continued for several days. This study provides evidence of spatial and temporal changes in Fos expression induced by plantar incision. Our results indicate that although pretreatment with local anesthetics suppresses Fos expression for several days in the postoperative period, the analgesic effect is observed only for the expected duration of the local anesthetic used. IMPLICATIONS Prevention of early pain by pretreatment with local anesthetics provides little benefit for postoperative pain relief in the plantar incision model, although c-Fos expression is suppressed. The number of c-Fos-expressing neurons is not necessarily correlated with pain behavior.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama City, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Scapecchi S, Martini E, Manetti D, Ghelardini C, Martelli C, Dei S, Galeotti N, Guandalini L, Novella Romanelli M, Teodori E. Structure–activity relationship studies on unifiram (DM232) and sunifiram (DM235), two novel and potent cognition enhancing drugs. Bioorg Med Chem 2004; 12:71-85. [PMID: 14697772 DOI: 10.1016/j.bmc.2003.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structure-activity relationships on two novel potent cognition enhancing drugs, unifiram (DM232, 1) and sunifiram (DM235, 2), are reported. Although none of the compounds synthesised reached the potency of the parent drugs, some fairly active compounds have been identified that may represent new leads to develop other cognition enhancing drugs. An interesting result of this research is the identification of two compounds (13 and 14) that are endowed with amnesing activity (the opposite of the activity of the original molecules) and are nearly equipotent to scopolamine. Moreover, two compounds of the series (5 and 6) were found endowed with analgesic activity on a rat model of neuropathic pain at the dose of 1 mg/kg.
Collapse
Affiliation(s)
- Serena Scapecchi
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via G. Capponi 9, I-50121, Firenze, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Rashid MH, Inoue M, Bakoshi S, Ueda H. Increased expression of vanilloid receptor 1 on myelinated primary afferent neurons contributes to the antihyperalgesic effect of capsaicin cream in diabetic neuropathic pain in mice. J Pharmacol Exp Ther 2003; 306:709-17. [PMID: 12724350 DOI: 10.1124/jpet.103.050948] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Topical capsaicin is believed to alleviate pain by desensitizing the vanilloid receptor 1 (VR1) at the peripheral nerve endings. Here, we report that an up-regulation of VR1 expression on myelinated fibers contributes to the antihyperalgesic effect of capsaicin cream in streptozotocin (STZ)-induced diabetic neuropathic pain. Intravenous injection of STZ (200 mg/kg) in mice caused rapid onset of diabetes within 24 h. Thermal and mechanical hyperalgesia developed by 3 days after STZ injection and persisted at all time points tested until 28 days. There was also hyperalgesic response to intraplantar (i.pl.) prostaglandin I2 (PGI2) agonist-induced nociception in such mice. Application of capsaicin cream dose dependently reversed the thermal, mechanical, and PGI2 agonist-induced hyperalgesia observed in the diabetic mice. The i.pl. injection of capsaicin solution (0.4 microg/20 microl) produced nociceptive biting-licking responses in control mice, and these responses were significantly increased in STZ-induced diabetic mice. After neonatal capsaicin-treatment, which destroys most unmyelinated C-fibers, the i.pl. capsaicin-induced biting-licking responses were almost abolished. However, in neonatal capsaicin-treated diabetic mice, the i.pl. capsaicin-induced biting-licking responses reappeared. The i.pl. capsaicin-induced biting-licking responses were blocked by the competitive VR1 antagonist capsazepine. All these results suggest an increase in capsaicin receptor on myelinated fibers due to diabetes. Finally, we confirmed the up-regulation of VR1 expression on myelinated primary afferent neurons of diabetic mice by immunohistochemistry. Together, our results suggest that increased expression of VR1 on myelinated fibers might contribute to the antihyperalgesic effect of topical capsaicin in diabetic neuropathic pain.
Collapse
Affiliation(s)
- M Harunor Rashid
- Division of Molecular Pharmacology and Neuroscience, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | |
Collapse
|
27
|
Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H. Novel expression of vanilloid receptor 1 on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 2003; 304:940-8. [PMID: 12604668 DOI: 10.1124/jpet.102.046250] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we investigated the mechanism of the antihyperalgesic effect of capsaicin cream in the nerve injury-induced neuropathic pain model in mice. In naive mice, application of capsaicin cream onto footpad caused no significant changes in the thermal latency in contrast to the severe thermal hyperalgesia induced by a capsaicin ointment. On the other hand, application of the cream 3 h before test concentration dependently reversed both thermal and mechanical hyperalgesia observed after partial sciatic nerve injury in mice. In algogenic-induced nociceptive flexion (ANF) test, application of 0.1% capsaicin cream in naive mice blocked intraplantar (i.pl.) nociceptin- and ATP-induced flexion responses, whereas prostaglandin I(2) (PGI(2)) agonist-induced responses were unaffected. After nerve injury PGI(2) agonist-induced flexion responses were hypersensitized, and capsaicin cream concentration dependently blocked these hyperalgesic responses. Intraplantar injection of capsaicin solution in ANF test also produced potent flexion responses in naive mice that were lost after neonatal capsaicin-treatment. Partial sciatic nerve injury in neonatal capsaicin-treated mice caused reappearance of i.pl. capsaicin-induced flexion responses, suggesting novel expression of capsaicin receptors due to injury. The PGI(2) agonist-induced responses were also hypersensitized in such injured mice. Capsaicin cream completely reversed both i.pl. capsaicin- or i.pl. PGI(2) agonist-induced hyperalgesia in neonatal capsaicin-treated injured mice. Finally, novel expression of VR1 receptors on neonatal capsaicin-insensitive neurons after nerve injury was confirmed by immunohistochemistry. The newly expressed VR1 receptors after nerve injury were mainly confined to A-fibers. Together, our results suggest that novel expression of capsaicin receptors in neuropathic condition contributes to the analgesic effects of the capsaicin cream.
Collapse
Affiliation(s)
- Md Harunor Rashid
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|