1
|
DeLory TJ, Romiguier J, Rueppell O, Kapheim KM. Recombination Rate Variation in Social Insects: An Adaptive Perspective. Annu Rev Genet 2024; 58:159-181. [PMID: 38985963 DOI: 10.1146/annurev-genet-111523-102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Social insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination. We examine the possibility of positive feedback between gene duplication and recombination rate in the context of caste specialization. We introduce a novel hypothesis that recombination rate may be driven up by direct selection on recombination activity in response to increases in lifespan. Finally, we find that the role of population size in recombination rate evolution remains opaque, despite the long-standing popularity of this hypothesis. Moreover, our review emphasizes how the varied life histories of social insect species provide an effective framework for advancing a broader understanding of adaptively driven variation in recombination rates.
Collapse
Affiliation(s)
- Timothy J DeLory
- Department of Biology, Utah State University, Logan, Utah, USA; ,
| | - Jonathan Romiguier
- Institut des Sciences de l'Evolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France;
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Karen M Kapheim
- Department of Biology, Utah State University, Logan, Utah, USA; ,
| |
Collapse
|
2
|
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, Lin W, Goel R, Luptak I, Perissi V, Seidman CE, Seidman J, Chin MT, Chen C, Emili A. Multi-Omics Profiling of Hypertrophic Cardiomyopathy Reveals Altered Mechanisms in Mitochondrial Dynamics and Excitation-Contraction Coupling. Int J Mol Sci 2023; 24:4724. [PMID: 36902152 PMCID: PMC10002553 DOI: 10.3390/ijms24054724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
| | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Matthew Lawton
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raghuveera Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Valentina Perissi
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02145, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Borowicz-Reutt K, Banach M. Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. Int J Mol Sci 2022; 23:ijms231911328. [PMID: 36232629 PMCID: PMC9570019 DOI: 10.3390/ijms231911328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Trimetazidine (TMZ), an anti-ischemic drug for improving cellular metabolism, is mostly administered to patients with poorly controlled ischemic heart disease (IHD). Since IHD is considered the most frequent causative factor of cardiac arrhythmias, and these often coexist with seizure disorders, we decided to investigate the effect of TMZ in the electroconvulsive threshold test (ECT) and its influence on the action of four first-generation antiepileptic drugs in the maximal electroshock test (MES) in mice. The TMZ (up to 120 mg/kg) did not affect the ECT, but applied at doses of 20–120 mg/kg it decreased the antielectroshock action of phenobarbital. The TMZ (50–120 mg/kg) reduced the effect of phenytoin, and, when administered at a dose of 120 mg/kg, it diminished the action of carbamazepine. All of these revealed interactions seem to be pharmacodynamic, since the TMZ did not affect the brain levels of antiepileptic drugs. Furthermore, the combination of TMZ with valproate (but not with other antiepileptic drugs) significantly impaired motor coordination, evaluated using the chimney test. Long-term memory, assessed with a passive-avoidance task, was not affected by either the TMZ or its combinations with antiepileptic drugs. The obtained results suggest that TMZ may not be beneficial as an add-on therapy in patients with IHD and epilepsy.
Collapse
|
4
|
Cardoso-Vera JD, Gómez-Oliván LM, Islas-Flores H, García-Medina S, Orozco-Hernández JM, Heredia-García G, Elizalde-Velázquez GA, Galar-Martínez M, SanJuan-Reyes N. Acute exposure to environmentally relevant concentrations of phenytoin damages early development and induces oxidative stress in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109265. [PMID: 34990834 DOI: 10.1016/j.cbpc.2021.109265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022]
Abstract
Phenytoin (PHE) is an antiepileptic drug that has been widely used in clinical practice for about 80 years. It is mainly used in the treatment of tonic-clonic and partial seizures. The widespread consumption of this drug around the world has led to PHE being introduced into water bodies through municipal, hospital, and industrial effluent discharges. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of low (25-400 ngL-1) and high (500-1500 ngL-1) environmentally relevant concentrations of PHE on the development and oxidative status of zebrafish (Danio rerio) embryos. The toxicity of PHE was evaluated from 12 to 96 h after fertilization in D. rerio at concentrations between 25 and 1500 ngL-1. In both the control group and the 0.05% DMSO system, no malformations were observed, all embryos developed normally after 96 h. The severity and frequency of malformations increased with increasing PHE concentration compared to embryos in the control group. Malformations observed included developmental delay, hypopigmentation, miscellaneous (more than one malformation in the same embryo), modified chorda structure, tail malformation, and yolk deformation. Concerning the biomarkers of oxidative stress, an increase in the degree of lipid peroxidation, protein carbonylation, and hydroperoxide content was observed (p < 0.05) concerning the control. In addition, a significant increase (p < 0.05) in antioxidant enzymes (SOD, CAT, and GPx) was observed at low exposure concentrations (25-400 ngL-1), with a decrease in enzyme activity at high concentrations (500-1500 ngL-1). Our IBR analysis demonstrated that oxidative damage biomarkers got more influence at 500ngL-1 of PHE. The results demonstrated that PHE may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gerardo Heredia-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
5
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
6
|
Nagib MM, Tadros MG, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Ameliorative Effects of α-Tocopherol and/or Coenzyme Q10 on Phenytoin-Induced Cognitive Impairment in Rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox Res 2019; 35:451-462. [PMID: 30374909 DOI: 10.1007/s12640-018-9971-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Phenytoin is one of the most well-known antiepileptic drugs that cause cognitive impairment which is closely related to cAMP response element-binding protein (CREB) brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, vascular endothelial growth factor (VEGF), an endothelial growth factor, has a documented role in neurogenesis and neuronal survival and cognitive impairment. Therefore, this study aimed to investigate the influence of powerful antioxidants: α-Toc and CoQ10 alone or combined in the preservation of brain tissues and the maintenance of memory formation in phenytoin-induced cognitive impairment in rats. The following behavioral test novel object recognition and elevated plus maze were assessed after 14 days of treatment. Moreover, VEGF, BDNF, TrkB, and CREB gene expression levels in the hippocampus and prefrontal cortex were estimated using RT-PCR. Both α-Toc and CoQ10 alone or combined with phenytoin showed improvement in behavioral tests compared to phenytoin. Mechanistically, α-Toc and/or CoQ10 decreases the VEGF mRNA expression, while increases BDNF-TrKB-CREB mRNA levels in hippocampus and cortex of phenytoin-treated rats. Collectively, α-Toc and/or CoQ10 alleviated the phenytoin-induced cognitive impairment through suppressing oxidative damage. The underlying molecular mechanism of the treating compounds is related to the VEGF and enhancing BDNF-TrkB-CREB signaling pathway. Our study indicated the usefulness α-Toc or CoQ10 as an adjuvant to antiepileptic drugs with an advantage of preventing cognitive impairment and oxidative stress.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital, Cairo, Egypt
| | - Somaia I Masoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Onaolapo A, Adebayo A, Onaolapo O. Oral phenytoin protects against experimental cyclophosphamide-chemotherapy induced hair loss. PATHOPHYSIOLOGY 2018; 25:31-39. [DOI: 10.1016/j.pathophys.2017.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/25/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
|
8
|
Yi DG, Kim MJ, Choi JE, Lee J, Jung J, Huh WK, Chung WH. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae. Free Radic Biol Med 2016; 101:424-433. [PMID: 27838435 DOI: 10.1016/j.freeradbiomed.2016.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/17/2016] [Accepted: 11/04/2016] [Indexed: 12/01/2022]
Abstract
Reactive oxygen species (ROS)-mediated DNA adducts as well as DNA strand breaks are highly mutagenic leading to genomic instability and tumorigenesis. DNA damage repair pathways and oxidative stress response signaling have been proposed to be highly associated, but the underlying interaction remains unknown. In this study, we employed mutant strains lacking Rad51, the homolog of E. coli RecA recombinase, and Yap1 or Skn7, two major transcription factors responsive to ROS, to examine genetic interactions between double-strand break (DSB) repair proteins and cellular redox regulators in budding yeast Saccharomyces cerevisiae. Abnormal expression of YAP1 or SKN7 aggravated the mutation rate of rad51 mutants and their sensitivity to DSB- or ROS-generating reagents. Rad51 deficiency exacerbated genome instability in the presence of increased levels of ROS, and the accumulation of DSB lesions resulted in elevated intracellular ROS levels. Our findings suggest that evident crosstalk between DSB repair pathways and ROS signaling proteins contributes to cell survival and maintenance of genome integrity in response to genotoxic stress.
Collapse
Affiliation(s)
- Dae Gwan Yi
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Ju Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji Eun Choi
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jihyun Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Joohee Jung
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea.
| |
Collapse
|
9
|
Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer 2015; 90:121-7. [PMID: 26363803 PMCID: PMC4718929 DOI: 10.1016/j.lungcan.2015.08.017] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
COPD is a risk factor for lung cancer beyond their shared aetiology. Both are driven by oxidative stress. Both are linked to cellular aging, senescence and telomere shortening. Both have been linked to genetic predisposition. Both show altered epigenetic regulation of gene expression.
Both COPD and lung cancer are major worldwide health concerns owing to cigarette smoking, and represent a huge, worldwide, preventable disease burden. Whilst the majority of smokers will not develop either COPD or lung cancer, they are closely related diseases, occurring as co-morbidities at a higher rate than if they were independently triggered by smoking. Lung cancer and COPD may be different aspects of the same disease, with the same underlying predispositions, whether this is an underlying genetic predisposition, telomere shortening, mitochondrial dysfunction or premature aging. In the majority of smokers, the burden of smoking may be dealt with by the body’s defense mechanisms: anti-oxidants such as superoxide dismutases, anti-proteases and DNA repair mechanisms. However, in the case of both diseases these fail, leading to cancer if mutations occur or COPD if damage to the cell and proteins becomes too great. Alternatively COPD could be a driving factor in lung cancer, by increasing oxidative stress and the resulting DNA damage, chronic exposure to pro-inflammatory cytokines, repression of the DNA repair mechanisms and increased cellular proliferation. Understanding the mechanisms that drive these processes in primary cells from patients with these diseases along with better disease models is essential for the development of new treatments.
Collapse
Affiliation(s)
- A L Durham
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK.
| | - I M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| |
Collapse
|
10
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
11
|
Yuan Y, Zhang L, Jin L, Liu J, Li Z, Wang L, Ren A. Markers of macromolecular oxidative damage in maternal serum and risk of neural tube defects in offspring. Free Radic Biol Med 2015; 80:27-32. [PMID: 25542138 DOI: 10.1016/j.freeradbiomed.2014.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/11/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
Neural tube defects (NTDs) are among the most common and severe congenital malformations. To examine the association between markers of macromolecular oxidative damage and risk of NTDs, we measured levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), protein carbonyl (PC), and 8-iso-prostaglandin F2α (8-iso-PGF2α) in maternal serum samples of 117 women with NTD-affected pregnancies and 121 women with healthy term newborns. We found higher levels of 8-OHdG and PC in the NTD group than in the control group; however, we did not observe a statistically significant difference in 8-iso-PGF2α levels between the NTD and the control groups. NTD risk increased with increasing quartiles of 8-OHdG [odds ratio (OR)=1.17; 95% confidence interval (CI) 0.39-3.51; OR=2.19; 95% CI, 0.68-7.01; OR=3.70; 95% CI, 1.30-10.51, for the second, third, and fourth quartile relative to the lowest quartile, respectively; P=0.009], and with increasing quartiles of PC (OR=2.26; 95% CI, 0.66-7.69; OR=3.86; 95% CI, 1.17-12.80; OR=5.98; 95% CI, 1.82-19.66, for the second, third, and fourth quartile relative to the lowest quartile, respectively; P=0.002]. Serum levels of 8-OHdG were higher in women who did not take folic acid supplements during the periconceptional period. These results suggest that oxidative stress is present in women carrying pregnancies affected by NTDs.
Collapse
Affiliation(s)
- Yue Yuan
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | - Le Zhang
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health, Peking University, Beijing 100191, China; Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
12
|
Mostowska A, Hozyasz KK, Wójcicki P, Galas-Filipowicz D, Lasota A, Dunin-Wilczyńska I, Lianeri M, Jagodziński PP. Genetic variants in BRIP1 (BACH1) contribute to risk of nonsyndromic cleft lip with or without cleft palate. ACTA ACUST UNITED AC 2014; 100:670-8. [PMID: 25045080 DOI: 10.1002/bdra.23275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/12/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P) is very complex and still not well elucidated. Given the critical role of DNA damage repair in the embryonic development, we decided to test the hypothesis that polymorphisms of selected DNA repair genes might contribute to the risk of NSCL/P in the Polish population. METHODS Analysis of 36 polymorphisms in 12 DNA damage repair genes (ATM, BLM, BRCA1, BRIP1, E2F1, MLH1, MRE11A, MSH2, MSH6, NBN, RAD50, and RAD51) was conducted using TaqMan assays in a group of 263 NSCL/P patients and matched control group (n = 526). RESULTS Statistical analysis of genotyping results revealed that nucleotide variants in the BRIP1 (BACH1) gene were associated with the risk of NSCL/P. Under assumption of a dominant model, the calculated odds ratios (ORs) for BRIP1 rs8075370 and rs9897121 were 1.689 (95% confidence interval [CI], 1.249-2.282; p = 0.0006) and 1.621 (95% CI, 1.200-2.191; p = 0.0016), respectively. These results were statistically significant even after applying multiple testing correction. Additional evidence for a causative role of BRIP1 in NSCL/P etiology was provided by haplotype analysis. Borderline association with a decreased risk of this anomaly was also observed for BLM rs401549 (ORrecessive = 0.406; 95% CI, 0.223-1.739; p = 0.002) and E2F1 rs2071054 (ORdominant = 0.632; 95% CI, 0.469-0.852; p = 0.003). CONCLUSION Our study suggests that polymorphic variants of DNA damage repair genes play a role in the susceptibility to NSCL/P. BRIP1 might be novel candidate gene for this common developmental anomaly.
Collapse
Affiliation(s)
- Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Owoeye O, Adedara IA, Bakare OS, Adeyemo OA, Egun C, Farombi EO. Kolaviron and vitamin E ameliorate hematotoxicity and oxidative stress in brains of prepubertal rats treated with an anticonvulsant phenytoin. Toxicol Mech Methods 2014; 24:353-61. [DOI: 10.3109/15376516.2014.913752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Erenberk U, Dundaroz R, Gok O, Uysal O, Agus S, Yuksel A, Yilmaz B, Kilic U. Melatonin attenuates phenytoin sodium-induced DNA damage. Drug Chem Toxicol 2013; 37:233-9. [DOI: 10.3109/01480545.2013.838777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Kobayashi GS, Alvizi L, Sunaga DY, Francis-West P, Kuta A, Almada BVP, Ferreira SG, de Andrade-Lima LC, Bueno DF, Raposo-Amaral CE, Menck CF, Passos-Bueno MR. Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate. PLoS One 2013; 8:e65677. [PMID: 23776525 PMCID: PMC3680497 DOI: 10.1371/journal.pone.0065677] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/26/2013] [Indexed: 01/03/2023] Open
Abstract
Non-syndromic cleft lip/palate (NSCL/P) is a complex, frequent congenital malformation, determined by the interplay between genetic and environmental factors during embryonic development. Previous findings have appointed an aetiological overlap between NSCL/P and cancer, and alterations in similar biological pathways may underpin both conditions. Here, using a combination of transcriptomic profiling and functional approaches, we report that NSCL/P dental pulp stem cells exhibit dysregulation of a co-expressed gene network mainly associated with DNA double-strand break repair and cell cycle control (p = 2.88×10(-2)-5.02×10(-9)). This network included important genes for these cellular processes, such as BRCA1, RAD51, and MSH2, which are predicted to be regulated by transcription factor E2F1. Functional assays support these findings, revealing that NSCL/P cells accumulate DNA double-strand breaks upon exposure to H2O2. Furthermore, we show that E2f1, Brca1 and Rad51 are co-expressed in the developing embryonic orofacial primordia, and may act as a molecular hub playing a role in lip and palate morphogenesis. In conclusion, we show for the first time that cellular defences against DNA damage may take part in determining the susceptibility to NSCL/P. These results are in accordance with the hypothesis of aetiological overlap between this malformation and cancer, and suggest a new pathogenic mechanism for the disease.
Collapse
Affiliation(s)
- Gerson Shigeru Kobayashi
- Human Genome Research Center, Institute for Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lucas Alvizi
- Human Genome Research Center, Institute for Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniele Yumi Sunaga
- Human Genome Research Center, Institute for Biosciences, University of São Paulo, São Paulo, Brazil
| | - Philippa Francis-West
- Dental Institute, Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
| | - Anna Kuta
- Dental Institute, Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, United Kingdom
| | | | - Simone Gomes Ferreira
- Human Genome Research Center, Institute for Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Daniela Franco Bueno
- Human Genome Research Center, Institute for Biosciences, University of São Paulo, São Paulo, Brazil
- SOBRAPAR Institute, Campinas, São Paulo, Brazil
| | | | | | - Maria Rita Passos-Bueno
- Human Genome Research Center, Institute for Biosciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Anticonvulsant and antioxidant actions of trimetazidine in pentylenetetrazole-induced kindling model in mice. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:385-92. [DOI: 10.1007/s00210-011-0606-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/26/2011] [Indexed: 01/28/2023]
|
17
|
Wells PG, McCallum GP, Lam KCH, Henderson JT, Ondovcik SL. Oxidative DNA damage and repair in teratogenesis and neurodevelopmental deficits. ACTA ACUST UNITED AC 2010; 90:103-9. [DOI: 10.1002/bdrc.20177] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Reeta K, Mehla J, Gupta YK. Curcumin is protective against phenytoin-induced cognitive impairment and oxidative stress in rats. Brain Res 2009; 1301:52-60. [DOI: 10.1016/j.brainres.2009.09.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 09/04/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
|
19
|
Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJJ, Perstin J, Preston TJ, Wiley MJ, Wong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009; 108:4-18. [PMID: 19126598 DOI: 10.1093/toxsci/kfn263] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the developing embryo and fetus, endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS) like hydroxyl radicals may adversely alter development by oxidatively damaging cellular lipids, proteins and DNA, and/or by altering signal transduction. The postnatal consequences may include an array of birth defects (teratogenesis), postnatal functional deficits, and diseases. In animal models, the adverse developmental consequences of in utero exposure to agents like thalidomide, methamphetamine, phenytoin, benzo[a]pyrene, and ionizing radiation can be modulated by altering pathways that control the embryonic ROS balance, including enzymes that bioactivate endogenous substrates and xenobiotics to free radical intermediates, antioxidative enzymes that detoxify ROS, and enzymes that repair oxidative DNA damage. ROS-mediated signaling via Ras, nuclear factor kappa B and related transducers also may contribute to altered development. Embryopathies can be reduced by free radical spin trapping agents and antioxidants, and enhanced by glutathione depletion. Further modulatory approaches to evaluate such mechanisms in vivo and/or in embryo culture have included the use of knockout mice, transgenic knock-ins and mutant deficient mice with altered enzyme activities, as well as antisense oligonucleotides, protein therapy with antioxidative enzymes, dietary depletion of essential cofactors and chemical enzyme inhibitors. In a few cases, measures anticipated to be protective have conversely enhanced the risk of adverse developmental outcomes, indicating the complexity of development and need for caution in testing therapeutic strategies in humans. A better understanding of the developmental effects of ROS may provide insights for risk assessment and the reduction of adverse postnatal consequences.
Collapse
Affiliation(s)
- Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Foster W, Myllynen P, Winn LM, Ornoy A, Miller RK. Reactive oxygen species, diabetes and toxicity in the placenta - a workshop report. Placenta 2008; 29 Suppl A:S105-7. [PMID: 18281091 DOI: 10.1016/j.placenta.2007.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 12/17/2022]
Abstract
The placenta, in addition to its myriad of functions during development, is recognized as a target for the toxic actions of chemicals. Presentations in this workshop summarized the state of the science with respect to drug metabolizing enzyme expression and activity as well as drug transporter protein expression. Chemical induction of reactive oxygen species (ROS) formation was presented as a unifying mechanism potentially important in the development of teratogenesis, postnatal cancers, and diabetes.
Collapse
Affiliation(s)
- W Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
21
|
Durant ST, Paffett KS, Shrivastav M, Timmins GS, Morgan WF, Nickoloff JA. UV radiation induces delayed hyperrecombination associated with hypermutation in human cells. Mol Cell Biol 2006; 26:6047-55. [PMID: 16880516 PMCID: PMC1592811 DOI: 10.1128/mcb.00444-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation induces delayed genomic instability in human cells, including chromosomal abnormalities and hyperrecombination. Here, we investigate delayed genome instability of cells exposed to UV radiation. We examined homologous recombination-mediated reactivation of a green fluorescent protein (GFP) gene in p53-proficient human cells. We observed an approximately 5-fold enhancement of delayed hyperrecombination (DHR) among cells surviving a low dose of UV-C (5 J/m2), revealed as mixed GFP+/- colonies. UV-B did not induce DHR at an equitoxic (75 J/m2) dose or a higher dose (150 J/m2). UV is known to induce delayed hypermutation associated with increased oxidative stress. We found that hypoxanthine phosphoribosyltransferase (HPRT) mutation frequencies were approximately 5-fold higher in strains derived from GFP+/- (DHR) colonies than in strains in which recombination was directly induced by UV (GFP+ colonies). To determine whether hypermutation was directly caused by hyperrecombination, we analyzed hprt mutation spectra. Large-scale alterations reflecting large deletions and insertions were observed in 25% of GFP+ strains, and most mutants had a single change in HPRT. In striking contrast, all mutations arising in the hypermutable GFP+/- strains were small (1- to 2-base) changes, including substitutions, deletions, and insertions (reminiscent of mutagenesis from oxidative damage), and the majority were compound, with an average of four hprt mutations per mutant. The absence of large hprt deletions in DHR strains indicates that DHR does not cause hypermutation. We propose that UV-induced DHR and hypermutation result from a common source, namely, increased oxidative stress. These two forms of delayed genome instability may collaborate in skin cancer initiation and progression.
Collapse
Affiliation(s)
- Stephen T Durant
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kurbatov L, Albrecht D, Herrmann H, Petruschka L. Analysis of the proteome of Pseudomonas putida KT2440 grown on different sources of carbon and energy. Environ Microbiol 2006; 8:466-78. [PMID: 16478453 DOI: 10.1111/j.1462-2920.2005.00913.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using 2D electrophoresis the protein expression pattern during growth on carbon sources with different impact on carbon catabolite repression of phenol degradation was analysed in a derivative of Pseudomonas putida KT2440. The cytosolic protein pattern of cells growing on phenol or the non-repressive substrate pyruvate was almost identical, but showed significant differences to that of cells growing with the repressive substrates succinate or glucose. Proteins, which were mainly expressed in the presence of phenol or pyruvate, could be assigned to the functional groups of transport, detoxification, stress response, amino acid, energy, carbohydrate and nucleotide metabolism. The addition of succinate to cells growing with phenol ('shift-up') resulted in the inhibition of the synthesis of these proteins. Proteins with enhanced expression at growth with succinate or glucose were proteins for de novo synthesis of nucleotides, amino acids and enzymes of the TCA cycle. The synthesis of proteins, necessary for phenol catabolism was regulated in different manners following the addition of succinate. Whereas the synthesis of Phl-proteins (subunits of the phenolhydroxylase) only decreased slowly, was the translation of the Cat-proteins (catechol 1,2-dioxygenase, cis,cis-muconate cycloisomerase and muconolactone isomerase) repressed immediately and the synthesis of the Pca-proteins (beta-ketoadipate enolactone hydrolase, beta-ketoadipate succinyl-CoA transferase and beta-ketoadipyl CoA thiolase) remained unaffected.
Collapse
Affiliation(s)
- Leonid Kurbatov
- Ernst-Moritz-Arndt-University, Institute for Microbiology, Department of Genetics and Biochemistry, Greifswald, Germany
| | | | | | | |
Collapse
|
23
|
Defoort EN, Kim PM, Winn LM. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects. Mol Pharmacol 2006; 69:1304-10. [PMID: 16377765 DOI: 10.1124/mol.105.017855] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.
Collapse
Affiliation(s)
- Ericka N Defoort
- Department of Pharmacology and Toxicology and School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
24
|
Das UN, Rao KP. Effect of gamma-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot Essent Fatty Acids 2006; 74:165-73. [PMID: 16488586 DOI: 10.1016/j.plefa.2006.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 01/07/2006] [Indexed: 11/27/2022]
Abstract
The effect of gamma-linolenic acid (GLA) and prostaglandin E1 (PGE1) on gamma-radiation, diphenylhydantoin (DPH), benzo(a)pyrene (BP), and 4-alpha-phorbol-induced genetic damage to the bone marrow cells of mice, using the sensitive micronucleus (MN) test was investigated. PGE1 and its precursor GLA prevented gamma-radiation, DPH, BP, and 4-alpha-phorbol-induced genetic damage.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA.
| | | |
Collapse
|
25
|
Kiziltepe T, Yan A, Dong M, Jonnalagadda VS, Dedon PC, Engelward BP. Delineation of the chemical pathways underlying nitric oxide-induced homologous recombination in mammalian cells. ACTA ACUST UNITED AC 2005; 12:357-69. [PMID: 15797220 DOI: 10.1016/j.chembiol.2004.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/20/2004] [Accepted: 12/21/2004] [Indexed: 11/28/2022]
Abstract
Inflammation is an important risk factor for cancer. During inflammation, macrophages secrete nitric oxide (NO*), which reacts with superoxide or oxygen to create ONOO- or N2O3, respectively. Although homologous recombination causes DNA sequence rearrangements that promote cancer, little was known about the ability of ONOO- and N2O3 to induce recombination in mammalian cells. Here, we show that ONOO- is a potent inducer of homologous recombination at an integrated direct repeat substrate, whereas N2O3 is relatively weakly recombinogenic. Furthermore, on a per lesion basis, ONOO(-)-induced oxidative base lesions and single-strand breaks are significantly more recombinogenic than N2O3-induced base deamination products, which did not induce detectable recombination between plasmids. Similar results were observed in mammalian cells from two different species. These results suggest that ONOO(-)-induced recombination may be an important mechanism underlying inflammation-induced cancer.
Collapse
Affiliation(s)
- Tanyel Kiziltepe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
26
|
Jonnalagadda VS, Matsuguchi T, Engelward BP. Interstrand crosslink-induced homologous recombination carries an increased risk of deletions and insertions. DNA Repair (Amst) 2005; 4:594-605. [PMID: 15811631 DOI: 10.1016/j.dnarep.2005.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Homology directed repair (HDR) defends cells against the toxic effects of two-ended double strand breaks (DSBs) and one-ended DSBs that arise when replication progression is inhibited, for example by encounter with DNA lesions such as interstrand crosslinks (ICLs). HDR can occur via various mechanisms, some of which are associated with an increased risk of concurrent sequence rearrangements that can lead to deletions, insertions, translocations and loss of heterozygosity. Here, we compared the risk of HDR-associated sequence rearrangements that occur spontaneously versus in response to exposure to an agent that induces ICLs. We describe the creation of two fluorescence-based direct repeat recombination substrates that have been targeted to the ROSA26 locus of embryonic stem cells, and that detect the major pathways of homologous recombination events, e.g., gene conversions with or without crossing over, repair of broken replication forks, and single strand annealing (SSA). SSA can be distinguished from other pathways by application of a matched pair of site-specifically integrated substrates, one of which allows detection of SSA, and one that does not. We show that SSA is responsible for a significant proportion of spontaneous homologous recombination events at these substrates, suggesting that two-ended DSBs are a common spontaneous recombinogenic lesion. Interestingly, exposure to mitomycin C (an agent that induces ICLs) increases the proportion of HDR events associated with deletions and insertions. Given that many chemotherapeutics induce ICLs, these results have important implications in terms of the risk of chemotherapy-induced deleterious sequence rearrangements that could potentially contribute to secondary tumors.
Collapse
Affiliation(s)
- Vidya S Jonnalagadda
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Ave., 56-631, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
27
|
Chan CYY, Kim PM, Winn LM. TCDD-induced homologous recombination: the role of the Ah receptor versus oxidative DNA damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2004; 563:71-9. [PMID: 15324750 DOI: 10.1016/j.mrgentox.2004.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 05/05/2004] [Accepted: 05/30/2004] [Indexed: 01/10/2023]
Abstract
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits numerous biological responses including carcinogenicity. The molecular mechanism by which TCDD exerts its tumorigenic effects is unclear, since it does not directly damage DNA. TCDD-initiated toxicity can be mediated by the aryl hydrocarbon receptor (AhR) pathway and/or via increased oxidative stress. DNA damage, including DNA oxidation, can induce DNA double-strand breaks, which can be repaired through homologous recombination. Excessive DNA double-strand breaks may promote aberrant DNA recombination, which can lead to detrimental genetic changes and ultimately to carcinogenesis. TCDD has been shown to induce homologous recombination but the molecular mechanism mediating these events are unknown. To investigate the role of the AhR and oxidative DNA damage in mediating TCDD-induced homologous recombination we used a Chinese hamster ovary (CHO) cell line containing a neo direct repeat recombination substrate (CHO 3-6). CHO 3-6 cells were exposed to TCDD (50, 500 or 1000 pM) in the presence or absence of an AhR antagonists (0.1 microM alpha-naphthoflavone (alpha-NF)) for 6 or 24 h and 2 weeks later homologous recombination frequencies were determined by counting the number of neo expressing, G418-resistant colonies per live cells plated. TCDD-initiated DNA oxidation was determined by measuring the formation of 8-hydroxy-2'-deoxyguanosine via HPLC and electrochemical detection. Exposure to 500 pM TCDD for 24 h significantly increased the frequency of homologous recombination. Southern blot analysis on G418-resistant colonies determined that TCDD induced both conservative gene conversion events and deletion events. DNA oxidation was not increased in cells exposed to TCDD for either 6 or 24 h. However, alpha-naphthoflavone exposure resulted in a significant decrease in TCDD-induced homologous recombination frequency. These results suggest that TCDD-initiated homologous recombination in CHO 3-6 cells is mediated by the AhR and not via increased oxidative stress.
Collapse
Affiliation(s)
- Clara Y Y Chan
- Department of Pharmacology and Toxicology, Botterell Hall Room 557, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|