1
|
Li R, Mak WWS, Li J, Zheng C, Shiu PHT, Seto SW, Lee SMY, Leung GPH. Structure-Activity Relationship Studies of 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) Analogues as Inhibitors of Human Equilibrative Nucleoside Transporters. Front Pharmacol 2022; 13:837555. [PMID: 35264969 PMCID: PMC8899516 DOI: 10.3389/fphar.2022.837555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) play a vital role in nucleotide synthesis, regulation of adenosine function and chemotherapy. Current inhibitors of ENTs are mostly ENT1-selective. Our previous study has demonstrated that 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) is a novel inhibitor of ENTs, which is more selective to ENT2 than to ENT1. The present study aimed to screen a series of FPMINT analogues and study their structure-activity relationship. Nucleoside transporter-deficient cells transfected with cloned human ENT1 and ENT2 were used as in vitro models. The results of the [3H]uridine uptake study showed that the replacement of the naphthalene moiety with the benzene moiety could abolish the inhibitory effects on ENT1 and ENT2. The addition of chloride to the meta position of this benzene moiety could restore only the inhibitory effect on ENT1 but had no effect on ENT2. However, the addition of the methyl group to the meta position or the ethyl or oxymethyl group to the para position of this benzene moiety could regain the inhibitory activity on both ENT1 and ENT2. The presence of a halogen substitute, regardless of the position, in the fluorophenyl moiety next to the piperazine ring was essential for the inhibitory effects on ENT1 and ENT2. Among the analogues tested, compound 3c was the most potent inhibitor. Compound 3c reduced V max of [3H]uridine uptake in ENT1 and ENT2 without affecting K m. The inhibitory effect of compound 3c could not be washed out. Compound 3c did not affect cell viability, protein expression and internalization of ENT1 and ENT2. Therefore, similar to FPMINT, compound 3c was an irreversible and non-competitive inhibitor. Molecular docking analysis also showed that the binding site of compound 3c in ENT1 may be different from that of other conventional inhibitors. It is expected that structural modification may further improve its potency and selectivity and lead to the development of useful pharmacological agents.
Collapse
Affiliation(s)
- Renkai Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Winston Wing-Shum Mak
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jingjing Li
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chengwen Zheng
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Polly Ho-Ting Shiu
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sai-Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
2
|
Billat PA, Saint-Marcoux F. Liquid chromatography–mass spectrometry methods for the intracellular determination of drugs and their metabolites: a focus on antiviral drugs. Anal Bioanal Chem 2017; 409:5837-5853. [DOI: 10.1007/s00216-017-0449-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023]
|
3
|
Billat PA, Roger E, Faure S, Lagarce F. Models for drug absorption from the small intestine: where are we and where are we going? Drug Discov Today 2017; 22:761-775. [PMID: 28115264 DOI: 10.1016/j.drudis.2017.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/12/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
The small intestine is a complex organ with movements, flora, mucus and flows. Despite this, the most widely used absorption models consider the organ a cylindrical monoepithelial tube. This review presents the recent evolution of models to take into consideration the complex nature of gut physiology. The most commonly encountered issues are ethical (in vivo models) and differences in drug transport as a result of a modified expression of drug transporters or metabolic enzymes compared with human (in vitro and in vivo models). Finally, this review discusses the way forward to reach an ideal equilibrium between reproducibility, predictability and efficiency for predicting permeability. The features of an ideal model are listed as a guideline for future development.
Collapse
Affiliation(s)
- Pierre-André Billat
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France
| | - Emilie Roger
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France
| | - Frédéric Lagarce
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, France; Pharmacy Department, Angers University Hospital, Angers, France.
| |
Collapse
|
4
|
Tang PCT, Yang C, Li RWS, Lee SMY, Hoi MPM, Chan SW, Kwan YW, Tse CM, Leung GPH. Inhibition of human equilibrative nucleoside transporters by 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine. Eur J Pharmacol 2016; 791:544-551. [PMID: 27388143 DOI: 10.1016/j.ejphar.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 01/07/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) play a crucial role in the transport of nucleoside and nucleoside analogues, which are important for nucleotide synthesis and chemotherapy. In addition, ENTs regulate extracellular adenosine levels in the vicinity of its receptors and hence influence adenosine-related functions. The clinical applications of ENT inhibitors in the treatment of cardiovascular diseases and cancer therapy have been explored in numerous studies. However, all ENT inhibitors to date are selective for ENT1 but not ENT2. In the present study, we investigated the novel compound 4-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-6-imino-N-(naphthalen-2-yl)-1,3,5-triazin-2-amine (FPMINT) as an inhibitor of ENT1 and ENT2. Nucleoside transporter-deficient PK15NTD cells stably expressing ENT1 and ENT2 showed that FPMINT inhibited [3H]uridine and [3H]adenosine transport through both ENT1 and ENT2 in a concentration-dependent manner. The IC50 value of FPMINT for ENT2 was 5-10-fold less than for ENT1, and FPMINT could not be displaced with excess washing. Kinetic studies revealed that FPMINT reduced Vmax of [3H]uridine transport in ENT1 and ENT2 without affecting KM. Therefore, we conclude that FPMINT inhibits ENTs in an irreversible and non-competitive manner. Although already selective for ENT2 over ENT1, further modification of the chemical structure of FPMINT may lead to even better ENT2-selective inhibitors of potential clinical, physiological and pharmacological importance.
Collapse
Affiliation(s)
- Philip C T Tang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Rachel Wai-Sum Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | | | - Maggie Pui-Man Hoi
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung-Ming Tse
- Department of Medicine, Division of Gastroenterology, School of Medicine, The Johns Hopkins University, United States
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol 2013; 170:1706-96. [PMID: 24528242 PMCID: PMC3892292 DOI: 10.1111/bph.12450] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
6
|
Abstract
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patient's need for the treatment of cardiac disease, cancer and viral infections.
Collapse
|
7
|
TRANSPORTERS. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00505.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Nucleoside. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00505_9.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
9
|
Inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity by cimicifugoside, a triterpenoid from Cimicifuga simplex. Eur J Pharm Sci 2009; 38:355-61. [DOI: 10.1016/j.ejps.2009.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/11/2009] [Accepted: 08/29/2009] [Indexed: 11/20/2022]
|
10
|
Li RWS, Seto SW, Au ALS, Kwan YW, Chan SW, Lee SMY, Tse CM, Leung GPH. Inhibitory effect of nonsteroidal anti-inflammatory drugs on adenosine transport in vascular smooth muscle cells. Eur J Pharmacol 2009; 612:15-20. [DOI: 10.1016/j.ejphar.2009.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/02/2009] [Accepted: 04/09/2009] [Indexed: 01/04/2023]
|
11
|
Robillard KR, Bone DBJ, Park JS, Hammond JR. Characterization of mENT1Delta11, a novel alternative splice variant of the mouse equilibrative nucleoside transporter 1. Mol Pharmacol 2008; 74:264-73. [PMID: 18413666 DOI: 10.1124/mol.107.041871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Mammalian cells require specific transport mechanisms for the cellular uptake and release of endogenous nucleosides such as adenosine, and nucleoside analogs used in chemotherapy. We have identified a novel splice variant of the mouse equilibrative nucleoside transporter, mENT1, that results from the exclusion of exon 11 during pre-RNA processing. This variant encodes a truncated protein (mENT1Delta11) missing the last three transmembrane domains of the full-length mENT1. The mENT1Delta11 transcript and protein were found to be differentially distributed among tissues relative to full-length mENT1. PK15-NTD (nucleoside transport deficient) cells were transfected with mENT1 or mENT1Delta11 and assessed for nucleoside transport function. No significant differences were observed between the mENT1 and mENT1Delta11 in terms of transport function or inhibitor binding affinity. PK15-mENT1Delta11 transfected cells bound the ENT1 probe [3H]nitrobenzylthioinosine (NBMPR) with high affinity and mediated the cellular accumulation of both [3H]2-chloroadenosine and [3H]uridine. The only significant differences between the mENT1 variants were that mENT1Delta11 could not be photolabeled with [3H]NBMPR and that mENT1Delta11 was insensitive to the transporter-modifying effects of N-ethylmaleimide. These data suggest that the last three transmembrane domains of mENT1 are not necessary for transport activity, but this region does contain the cysteines responsible for the sensitivity of mENT1 to sulfhydryl reagents, and the residues important for covalent modification of the protein with NBMPR. These results provide important guidelines for future mutagenesis studies aimed at elucidating the tertiary structure of the ENT1 protein and the domains involved in inhibitor binding and substrate translocation.
Collapse
Affiliation(s)
- Kevin R Robillard
- Dept. of Physiology and Pharmacology, M266 Medical Sciences Building, University of Western Ontario, London, Ontario N6A5C1, Canada
| | | | | | | |
Collapse
|
12
|
Li RWS, Tse CM, Man RYK, Vanhoutte PM, Leung GPH. Inhibition of human equilibrative nucleoside transporters by dihydropyridine-type calcium channel antagonists. Eur J Pharmacol 2007; 568:75-82. [PMID: 17512522 DOI: 10.1016/j.ejphar.2007.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Dihydropyridine-type calcium channel antagonists, in addition to having a vasodilatory effect, are known to inhibit cellular uptake of nucleosides such as adenosine. However, the nucleoside transporter subtypes involved and the mechanism by which this occurs are not known. Therefore, we have studied the inhibitory effects of dihydropyridines on both human equilibrative nucleoside transporters, hENT-1 and hENT-2, which are the major transporters mediating nucleoside transport in most tissues. Among the dihydropyridines tested, nimodipine proved to be the most potent inhibitor of hENT-1, with an IC(50) value of 60+/-31 muM, whereas nifedipine, nicardipine, nitrendipine, and felodipine exhibited 100-fold less effective inhibitory activity. Nifedipine, nitrendipine, and nimodipine inhibited hENT-2 with IC(50) values in the micromolar range; however, nicardipine and felodipine had no significant effect on hENT-2. Removal of the 4-aryl ring or changing the nitro group at the 4-aryl ring proved not to be detrimental to the inhibitory effects of dihydropyridines on hENT-1, but resulted in a drastic decrease in their inhibitory effects on hENT-2. Kinetic studies revealed that nimodipine and nifedipine reduced V(max) of [(3)H]uridine transport without affecting K(m). The inhibitory effects of nimodipine and nifedipine could be washed out. In addition, nimodipine and nifedipine inhibited the rate of NBTGR-induced dissociation of [(3)H]NBMPR from hENT-1 cell membrane. We conclude that dihydropyridines are non-competitive inhibitors of hENT-1 and hENT-2, probably working through reversible interactions with the allosteric sites. The inhibitory potencies of dihydropyridines may be associated with the structure of the 4-aryl ring, as well as the ester groups at the C-3 and C-5 positions.
Collapse
Affiliation(s)
- Rachel W S Li
- Department of Pharmacology, The University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
13
|
Nucleoside. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
14
|
Hammond JR, Stolk M, Archer RGE, McConnell K. Pharmacological analysis and molecular cloning of the canine equilibrative nucleoside transporter 1. Eur J Pharmacol 2004; 491:9-19. [PMID: 15102528 DOI: 10.1016/j.ejphar.2004.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 03/04/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
We studied the binding of [3H]nitrobenzylthioinosine (NBMPR) and the uptake of [3H]formycin B by the es (equilibrative inhibitor-sensitive) nucleoside transporter of Madin Darby Canine Kidney (MDCK) cells. NBMPR inhibited [3H]formycin B uptake with a Ki of 2.7+/-0.6 nM, and [3H]NBMPR had a KD of 1.3+/-0.3 nM for binding to these cells; these values are significantly higher than those obtained in human and mouse cell models. In contrast, other recognized es inhibitors, such as dipyridamole, were significantly more effective as inhibitors of [3H]NBMPR binding and [3H]formycin B uptake by MDCK cells relative to that seen for human cells. We isolated a cDNA encoding the canine es nucleoside transporter (designated cENT1), and assessed its function by stable expression in nucleoside transport deficient PK15NTD cells. The PK15-cENT1 cells displayed inhibitor sensitivities that were comparable to those obtained for the endogenous es nucleoside transporter in MDCK cells. These data indicate that the dog es/ENT1 transporter has distinctive inhibitor binding characteristics, and that these characteristics are a function of the protein structure as opposed to the environment in which it is expressed.
Collapse
Affiliation(s)
- James R Hammond
- Department of Physiology and Pharmacology, M216 Medical Sciences Building, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | | | | | | |
Collapse
|
15
|
Noji T, Karasawa A, Kusaka H. Adenosine uptake inhibitors. Eur J Pharmacol 2004; 495:1-16. [PMID: 15219815 DOI: 10.1016/j.ejphar.2004.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/30/2004] [Accepted: 05/10/2004] [Indexed: 12/23/2022]
Abstract
Adenosine is a purine nucleoside and modulates a variety of physiological functions by interacting with cell-surface adenosine receptors. Under several adverse conditions, including ischemia, trauma, stress, seizures and inflammation, extracellular levels of adenosine are increased due to increased energy demands and ATP metabolism. Increased adenosine could protect against excessive cellular damage and organ dysfunction. Indeed, several protective effects of adenosine have been widely reported (e.g., amelioration of ischemic heart and brain injury, seizures and inflammation). However, the effects of adenosine itself are insufficient because extracellular adenosine is rapidly taken up into adjacent cells and subsequently metabolized. Adenosine uptake inhibitors (nucleoside transport inhibitors) could retard the disappearance of adenosine from the extracellular space by blocking adenosine uptake into cells. Therefore, it is expected that adenosine uptake inhibitors will have protective effects in various diseases, by elevating extracellular adenosine levels. Protective or ameliorating effects of adenosine uptake inhibitors in ischemic cardiac and cerebral injury, organ transplantation, seizures, thrombosis, insomnia, pain, and inflammatory diseases have been reported. Preclinical and clinical results indicate the possibility of therapeutic application of adenosine uptake inhibitors.
Collapse
Affiliation(s)
- Tohru Noji
- Pharmaceutical Research Institute, Kyowa Hakko Kogyo Co., Ltd., 1188 Shimotogari, Nagaizumi, Sunto, Shizuoka 411-8731, Japan.
| | | | | |
Collapse
|