1
|
Chen Y, Zhou J, Xu S, Liu M, Wang M, Ma Y, Zhao M, Wang Z, Guo Y, Zhao L. Association between the perturbation of bile acid homeostasis and valproic acid-induced hepatotoxicity. Biochem Pharmacol 2019; 170:113669. [DOI: 10.1016/j.bcp.2019.113669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
|
2
|
Cermanova J, Kadova Z, Zagorova M, Hroch M, Tomsik P, Nachtigal P, Kudlackova Z, Pavek P, Dubecka M, Ceckova M, Staud F, Laho T, Micuda S. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms. Toxicol Appl Pharmacol 2015; 285:12-22. [PMID: 25771127 DOI: 10.1016/j.taap.2015.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/22/2022]
Abstract
Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine.
Collapse
Affiliation(s)
- Jolana Cermanova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Zuzana Kadova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic; Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Marie Zagorova
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic; Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Pavel Tomsik
- Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Zdenka Kudlackova
- Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Petr Pavek
- Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Michaela Dubecka
- Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic
| | - Tomas Laho
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
4
|
Yi JH, Cho YJ, Kim WJ, Lee MG, Lee JH. Genetic Variations of ABCC2 Gene Associated with Adverse Drug Reactions to Valproic Acid in Korean Epileptic Patients. Genomics Inform 2013; 11:254-62. [PMID: 24465238 PMCID: PMC3897854 DOI: 10.5808/gi.2013.11.4.254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022] Open
Abstract
The multidrug resistance protein 2 (MRP2, ABCC2) gene may determine individual susceptibility to adverse drug reactions (ADRs) in the central nervous system (CNS) by limiting brain access of antiepileptic drugs, especially valproic acid (VPA). Our objective was to investigate the effect of ABCC2 polymorphisms on ADRs caused by VPA in Korean epileptic patients. We examined the association of ABCC2 single-nucleotide polymorphisms and haplotype frequencies with VPA related to adverse reactions. In addition, the association of the polymorphisms with the risk of VPA related to adverse reactions was estimated by logistic regression analysis. A total of 41 (24.4%) patients had shown VPA-related adverse reactions in CNS, and the most frequent symptom was tremor (78.0%). The patients with CNS ADRs were more likely to have the G allele (79.3% vs. 62.7%, p = 0.0057) and the GG genotype (61.0% vs. 39.7%, p = 0.019) at the g.-1774delG locus. The frequency of the haplotype containing g.-1774Gdel was significantly lower in the patients with CNS ADRs than without CNS ADRs (15.8% vs. 32.3%, p = 0.0039). Lastly, in the multivariate logistic regression analysis, the presence of the GG genotype at the g.-1774delG locus was identified as a stronger risk factor for VPA related to ADRs (odds ratio, 8.53; 95% confidence interval, 1.04 to 70.17). We demonstrated that ABCC2 polymorphisms may influence VPA-related ADRs. The results above suggest the possible usefulness of ABCC2 gene polymorphisms as a marker for predicting response to VPA-related ADRs.
Collapse
Affiliation(s)
- Ji Hyun Yi
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Yang-Je Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ji Hyun Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
5
|
Surendradoss J, Szeitz A, Teng XW, Chang TK, Abbott FS. A rapid and sensitive assay to quantify valproyl 1-O-acyl glucuronide in supernatants of sandwich-cultured rat hepatocytes using ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 932:40-9. [DOI: 10.1016/j.jchromb.2013.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
|
6
|
Padowski JM, Pollack GM. Influence of enterohepatic recycling on the time course of brain-to-blood partitioning of valproic acid in rats. Drug Metab Dispos 2012; 40:1846-53. [PMID: 22715475 PMCID: PMC3422542 DOI: 10.1124/dmd.112.045500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/19/2012] [Indexed: 01/16/2023] Open
Abstract
A widely used metric of substrate exposure in brain is the brain-to-serum partition coefficient (K(p,brain); C(brain)/C(serum)), most appropriately determined at distribution equilibrium between brain tissue and serum. In some cases, C(brain)/C(serum) can peak and then decrease, as opposed to monotonically increasing to a plateau, precluding accurate estimation of partitioning. This "overshoot" has been observed with compounds that undergo enterohepatic recycling (ER), such as valproic acid (VPA). Previous simulation experiments identified a relationship between overshoot in the C(brain)/C(serum) versus time profile and distribution into a peripheral "compartment" (e.g., the ER loop). This study was conducted to evaluate model predictions of that relationship. Initial experiments tested the ability of activated charcoal, antibiotics, or Mrp2 deficiency to impair VPA ER in rats, thereby limiting the apparent volume of distribution associated with ER. Mrp2 deficiency (significantly) and antibiotics (moderately) interrupted VPA ER. Subsequently, brain partitioning was evaluated in the presence versus absence of ER modulation. Although overshoot was not eliminated completely, deconvolution revealed that overshoot was reduced in Mrp2-deficient and antibiotic-treated rats. Consistent with model predictions, overshoot was higher after antibiotic treatment (moderate ER interruption) than in Mrp2 deficiency (substantial ER interruption). Steady-state K(p,brain) was unaffected by experimental manipulation, also consistent with model predictions. These data support the hypothesis that C(brain)/C(serum) may overshoot K(p,brain) based on the extent of peripheral sequestration. Consideration of this information, particularly for compounds that undergo significant extravascular distribution, may be necessary to avoid erroneous estimation of K(p,brain).
Collapse
Affiliation(s)
- Jeannie M Padowski
- Curriculum in Toxicology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
7
|
Page RL, Luna M, Brieke A, Lindenfeld J. Low-dose gabapentin for intractable hiccups in a heart transplant recipient. Prog Transplant 2011. [DOI: 10.7182/prtr.21.4.06j346401831527q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Robert L Page
- University of Colorado, School of Pharmacy, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
8
|
Page RL, Luna M, Brieke A, Lindenfeld J. Low-dose Gabapentin for Intractable Hiccups in a Heart Transplant Recipient. Prog Transplant 2011; 21:340-3. [DOI: 10.1177/152692481102100414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intractable hiccups can be a serious complication in transplant recipients. Unfortunately, many of the pharmacotherapies used to stop hiccups are associated with severe side effects as well as drug-drug interactions with immunosuppressants. We report a case of a heart transplant recipient who had had intractable hiccups for 2 months, resulting in severe insomnia, diminished appetite, and weight loss. To treat the hiccups, treatment with oral baclofen (5–10 mg 3 times daily) was started. After 6 weeks of therapy, the baclofen was titrated down and discontinued because it had not stopped the hiccups and was causing severe central nervous system side effects. Gabapentin (100 mg twice daily) was then prescribed and within 24 hours of the start of that treatment, the hiccups had resolved completely. After 3 weeks of therapy, the patient had no side effects and the gabapentin was subsequently discontinued. One year after stopping the gabapentin, the patient remains free of hiccups. Gabapentin appears to be a promising medication for the treatment of intractable hiccups in thoracic transplant recipients because of its lack of serious side effects at low doses, rapid onset of action, and lack of drug-drug interactions with transplant medications.
Collapse
Affiliation(s)
- Robert L. Page
- University of Colorado (RLP, AB, JL), University of Colorado Hospital (ML), Aurora
| | - Megan Luna
- University of Colorado (RLP, AB, JL), University of Colorado Hospital (ML), Aurora
| | - Andreas Brieke
- University of Colorado (RLP, AB, JL), University of Colorado Hospital (ML), Aurora
| | - JoAnn Lindenfeld
- University of Colorado (RLP, AB, JL), University of Colorado Hospital (ML), Aurora
| |
Collapse
|
9
|
Padowski JM, Pollack GM. The influence of distributional kinetics into a peripheral compartment on the pharmacokinetics of substrate partitioning between blood and brain tissue. J Pharmacokinet Pharmacodyn 2011; 38:743-67. [PMID: 21983688 DOI: 10.1007/s10928-011-9218-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/21/2011] [Indexed: 11/27/2022]
Abstract
Development of CNS-targeted agents often focuses on identifying compounds with "good" CNS exposure (brain-to-blood partitioning >1). Some compounds undergoing enterohepatic recycling (ER) evidence a partition coefficient, K (p,brain) (expressed as C (brain) /C (plasma)), that exceeds and then decreases to (i.e., overshoots) a plateau (distribution equilibrium) value, rather than increasing monotonically to this value. This study tested the hypothesis that overshoot in K (p,brain) is due to substrate residence in a peripheral compartment. Simulations were based on a 3-compartment model with distributional clearances between central and brain (CL (br)) and central and peripheral (CL (d)) compartments and irreversible clearance from the central compartment (CL). Parameters were varied to investigate the relationship between overshoot and peripheral compartment volume (V (p)), and how this relationship was modulated by other model parameters. Overshoot magnitude and duration were characterized as peak C (brain)/C (plasma) relative to the plateau value (%OS) and time to reach plateau (TRP). Except for systems with high CL (d), increasing V (p) increased TRP and %OS. Increasing brain (V (br)) or central (V (c)) distribution volumes eliminated V (p)-related OS. Parallel increases in all clearances shortened TRP, but did not alter %OS. Increasing either CL or CL (d) individually increased %OS related to V (p), while increasing CL (br) decreased %OS. Under realistic peripheral distribution scenarios, C (brain)/C (plasma) may overshoot substantially K (p,brain) at distribution equilibrium. This observation suggests potential for erroneous assessment of brain disposition, particularly for compounds which exhibit a large apparent V (p), and emphasizes the need for complete understanding of distributional kinetics when evaluating brain uptake.
Collapse
Affiliation(s)
- Jeannie M Padowski
- Curriculum in Toxicology, School of Medicine and Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
10
|
Abstract
Pharmacogenomics is the study of the impact of genetic variation on drug effects, with the ultimate goal of achieving "personalised medicine". Since the completion of the Human Genome Project, great strides have been made towards the goal of personalised dosing of drugs in people, as exemplified by the development of gene-guided dosing of the anticoagulant drug, warfarin. Although the pharmacogenomics of domestic animals is still at an early stage of development, there is great potential for advances in the coming years as the direct result of complete genome sequences currently being derived for many of the species of significance to veterinary and comparative medicine. This sequence information is being used to discover sequence variants in candidate genes associated with altered drug response, as well as to develop whole genome high density single nucleotide polymorphism arrays for genotype-phenotype linkage analysis. This review summarises the current state of veterinary pharmacogenomics research, including drug response variability phenotypes with either known genetic aetiology or strong circumstantial evidence for genetic involvement. Polymorphisms and rarer gene variants affecting drug disposition (pharmacokinetics) and drug effect (pharmacodynamics) are discussed. In addition to providing the veterinary clinician with useful information for the practise of therapeutics, it is envisaged that the increasing knowledge base will also provide a resource for individuals involved in veterinary and comparative biomedical research.
Collapse
Affiliation(s)
- Carrie M Mosher
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
11
|
Chen Y, Cameron K, Guzman-Perez A, Perry D, Li D, Gao H. Structure-pharmacokinetic relationship ofin vivorat biliary excretion. Biopharm Drug Dispos 2009; 31:82-90. [DOI: 10.1002/bdd.692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Baltes S, Fedrowitz M, Tortós CL, Potschka H, Löscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther 2007; 320:331-43. [PMID: 17043155 DOI: 10.1124/jpet.106.102491] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The antiepileptic drug valproic acid (VPA) is widely used in the treatment of epilepsy, bipolar disorders, and migraine. However, rather high doses are required for the clinical effects of VPA, which is due to its relatively inefficient delivery to the brain. The poor brain distribution of VPA is thought to reflect an asymmetric transport system at the blood-brain barrier (BBB). Based on recent data from in vitro experiments, multidrug resistance proteins (MRPs) have been proposed to be involved in the efflux transport of VPA at the BBB. In the present study, we used different experimental in vitro and in vivo strategies to evaluate whether VPA is a substrate for MRPs or the efflux transporter P-glycoprotein (Pgp). In contrast to known Pgp or MRP substrates, such as cyclosporin A or vinblastine, no directional transport of VPA was observed in cell monolayer efflux assays using the kidney cell lines Madin Darby canine kidney II and LLC-PK1, which had been transfected with either human or mouse cDNAs for the genes encoding Pgp, MRP1, or MRP2. Likewise, no indication for efflux transport of VPA was obtained in a rat microdialysis model, using inhibitors of either Pgp or MRPs. Furthermore, a significant role of MRP2 in brain efflux of VPA was excluded by using MRP2-deficient rats. Our data do not support the hypothesis that MRP1 or MRP2 is involved in the efflux of VPA from the brain. Thus, the molecular identity of the putative transporter(s) mediating the active efflux of VPA from the brain remains to be elucidated.
Collapse
Affiliation(s)
- Steffen Baltes
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
13
|
Khemawoot P, Maruyama C, Tsukada H, Noda H, Ishizaki J, Yokogawa K, Miyamoto KI. Influence of chronic hepatic failure on disposition kinetics of valproate excretion through a phase II reaction in rats treated with carbon tetrachloride. Biopharm Drug Dispos 2007; 28:331-8. [PMID: 17617793 DOI: 10.1002/bdd.563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The influence of chronic hepatic failure on the disposition kinetics of valproate (VPA) excretion via a phase II reaction was examined in rats treated with carbon tetrachloride (1.0 mg/kg, s.c., 3 times a week) for 2 or 3 months. There was no significant difference in the plasma concentration-time courses of VPA among the control and two treated groups up to 120 min after i.v. administration of VPA (75 mg/kg), but subsequently the plasma concentrations of the treated groups declined significantly below the control levels. Expression of Mrp2 mRNA in the liver of the treated groups was significantly lower than in the control group; conversely that in the kidney was significantly higher. The enzyme activity of UGTs in the liver of the treated groups decreased significantly, but UGT1A8 mRNA expression in the duodenum was increased about 3-fold. Cumulative excretion of VPA glucuronide (VPA-G) in bile of the treated groups was reduced significantly, while that in urine was markedly increased. In conclusion, the area under the VPA plasma concentration-time curve was decreased significantly in rats with chronic hepatic failure owing to increased excretion of VPA-G via the kidney as a result of induction of Mrp2, and inhibition of enterohepatic circulation of VPA-G.
Collapse
Affiliation(s)
- Phisit Khemawoot
- Department of Medicinal Informatics, Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Zamek-Gliszczynski MJ, Hoffmaster KA, Humphreys JE, Tian X, Nezasa KI, Brouwer KLR. Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat. J Pharmacol Exp Ther 2006; 319:459-67. [PMID: 16857726 DOI: 10.1124/jpet.106.101840] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The hepatic excretion of hydrophilic conjugates, end products of phase II metabolism, is not completely understood. In the present studies, transport mechanism(s) responsible for the biliary excretion of 4-methylumbelliferyl glucuronide (4MUG) and 4-methylumbelliferyl sulfate (4MUS) were studied. Isolated perfused livers (IPLs) from Mrp2-deficient (TR(-)) Wistar rats were used to examine the role of Mrp2 in the biliary excretion of 4MUG and 4MUS. After a 30-micromol dose of 4-methylumbelliferone, cumulative biliary excretion of 4MUG was extensive in wild-type rat IPLs (25 +/- 3 micromol) but was negligible in TR(-) livers (0.4 +/- 0.1 micromol); coadministration of the Bcrp and P-glycoprotein inhibitor GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] had no effect on 4MUG biliary excretion in wild-type rat IPLs. In contrast, biliary excretion of 4MUS was partially maintained in Mrp2-deficient rat IPLs. Recovery of 4MUS in bile was approximately 50 to 60% lower in both control TR(-) (149 +/- 8 nmol) and wild-type IPLs with GF120918 coadministration (176 +/- 30 nmol) relative to wild-type control livers (378 +/- 37 nmol) and was nearly abolished in TR(-) IPLs in the presence of GF120918 (13 +/- 8 nmol). These changes were the result of decreased rate constants governing 4MUG and 4MUS biliary excretion. In vitro assays and perfused livers from Bcrp and P-glycoprotein gene-knockout mice indicated that 4MUS did not interact with P-glycoprotein but was transported by Bcrp in a GF120918-sensitive manner. In the rat liver, Mrp2 mediates the biliary excretion of 4MUG, whereas both Mrp2 and Bcrp contribute almost equally to the transport of 4MUS into bile.
Collapse
|
15
|
Zamek-Gliszczynski MJ, Hoffmaster KA, Nezasa KI, Tallman MN, Brouwer KLR. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites. Eur J Pharm Sci 2006; 27:447-86. [PMID: 16472997 DOI: 10.1016/j.ejps.2005.12.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/06/2005] [Indexed: 12/12/2022]
Abstract
The liver is the primary site of drug metabolism in the body. Typically, metabolic conversion of a drug results in inactivation, detoxification, and enhanced likelihood for excretion in urine or feces. Sulfation, glucuronidation, and glutathione conjugation represent the three most prevalent classes of phase II metabolism, which may occur directly on the parent compounds that contain appropriate structural motifs, or, as is usually the case, on functional groups added or exposed by phase I oxidation. These three conjugation reactions increase the molecular weight and water solubility of the compound, in addition to adding a negative charge to the molecule. As a result of these changes in the physicochemical properties, phase II conjugates tend to have very poor membrane permeability, and necessitate carrier-mediated transport for biliary or hepatic basolateral excretion into sinusoidal blood for eventual excretion into urine. This review summarizes sulfation, glucuronidation, and glutathione conjugation reactions, as well as recent progress in elucidating the hepatic transport mechanisms responsible for the excretion of these conjugates from the liver. The discussion focuses on alterations of metabolism and transport by chemical modulators, and disease states, as well as pharmacodynamic and toxicological implications of hepatic metabolism and/or transport modulation for certain active phase II conjugates. A brief discussion of issues that must be considered in the design and interpretation of phase II metabolite transport studies follows.
Collapse
|
16
|
Hesselink DA, van Hest RM, Mathot RAA, Bonthuis F, Weimar W, de Bruin RWF, van Gelder T. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am J Transplant 2005; 5:987-94. [PMID: 15816878 DOI: 10.1046/j.1600-6143.2005.00779.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mycophenolate mofetil (MMF)-treated organ transplant recipients, lower mycophenolic acid (MPA) plasma concentrations have been found in cyclosporine (CsA) compared with tacrolimus (Tac)-based immunosuppressive regimens. We previously demonstrated that CsA decreases exposure to MPA and increases exposure to its metabolite MPA-glucuronide (MPAG), possibly by interfering with the biliary excretion of MPAG. To elucidate the role of the multidrug resistance-associated protein (Mrp)-2 in the interaction between MMF and CsA, we treated three groups of 10 Mrp2-deficient rats (TR- rat) for 6 days with either vehicle, CsA (8 mg/kg) or Tac (4 mg/kg) by oral gavage. Hereafter, co-administration with MMF (20 mg/kg) was started in all groups and continued through day 14. The 24-h MPA/MPAG area under the concentration-time curve (AUC) was determined after single (day 7) and multiple MMF doses (day 14). On both study days, there were no significant differences in the mean MPA and MPAG AUC between CsA and Tac-treated animals. We conclude that the pharmacokinetics of MMF are comparable in Mrp2-deficient rats receiving either CsA or Tac as co-medication. This finding suggests that CsA-mediated inhibition of the biliary excretion of MPAG by the Mrp2 transporter is the mechanism responsible for the interaction between CsA and MMF.
Collapse
Affiliation(s)
- Dennis A Hesselink
- Department of Internal Medicine, Renal Transplant Unit, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|