1
|
Stephens C, Naghavi MH. The host cytoskeleton: a key regulator of early HIV-1 infection. FEBS J 2024; 291:1835-1848. [PMID: 36527282 PMCID: PMC10272291 DOI: 10.1111/febs.16706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Due to its central role in cell biology, the cytoskeleton is a key regulator of viral infection, influencing nearly every step of the viral life cycle. In this review, we will discuss the role of two key components of the cytoskeleton, namely the actin and microtubule networks in early HIV-1 infection. We will discuss key contributions to processes ranging from the attachment and entry of viral particles at the cell surface to their arrival and import into the nucleus and identify areas where further research into this complex relationship may yield new insights into HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mojgan H. Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
2
|
Hopkins BE, Masuho I, Ren D, Iyamu ID, Lv W, Malik N, Martemyanov KA, Schiltz GE, Miller RJ. Effects of Small Molecule Ligands on ACKR3 Receptors. Mol Pharmacol 2022; 102:128-138. [PMID: 35809897 PMCID: PMC9393849 DOI: 10.1124/molpharm.121.000295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Chemokines such as stromal derived factor 1 and their G protein coupled receptors are well-known regulators of the development and functions of numerous tissues. C-X-C motif chemokine ligand 12 (CXCL12) has two receptors: C-X-C chemokine motif receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3). ACKR3 has been described as an atypical "biased" receptor because it does not appear to signal through G proteins and, instead, signals solely through the β-arrestin pathway. In support of this conclusion, we have shown that ACKR3 is unable to signal through any of the known mammalian G α isoforms and have generated a comprehensive map of the G α activation by CXCL12/CXCR4. We also synthesized a series of small molecule ligands which acted as selective agonists for ACKR3 as assessed by their ability to recruit β-arrestin to the receptor. Using select point mutations, we studied the molecular characteristics that determine the ability of small molecules to activate ACKR3 receptors, revealing a key role for the deeper binding pocket composed of residues in the transmembrane domains of ACKR3. The development of more selective ACKR3 ligands should allow us to better appreciate the unique roles of ACKR3 in the CXCL12/CXCR4/ACKR3-signaling axis and better understand the structural determinants for ACKR3 activation. SIGNIFICANCE STATEMENT: We are interested in the signaling produced by the G protein coupled receptor atypical chemokine receptor 3 (ACKR3), which signals atypically. In this study, novel selective ligands for ACKR3 were discovered and the site of interactions between these small molecules and ACKR3 was defined. This work will help to better understand the unique signaling roles of ACKR3.
Collapse
Affiliation(s)
- Brittany E Hopkins
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Ikuo Masuho
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Dongjun Ren
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Iredia D Iyamu
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Wei Lv
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Neha Malik
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Kirill A Martemyanov
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Gary E Schiltz
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Richard J Miller
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| |
Collapse
|
3
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
4
|
Llorente García I, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183158. [PMID: 31863725 PMCID: PMC7156917 DOI: 10.1016/j.bbamem.2019.183158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022]
Abstract
As part of their entry and infection strategy, viruses interact with specific receptor molecules expressed on the surface of target cells. The efficiency and kinetics of the virus-receptor interactions required for a virus to productively infect a cell is determined by the biophysical properties of the receptors, which are in turn influenced by the receptors' plasma membrane (PM) environments. Currently, little is known about the biophysical properties of these receptor molecules or their engagement during virus binding and entry. Here we review virus-receptor interactions focusing on the human immunodeficiency virus type 1 (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), as a model system. HIV is one of the best characterised enveloped viruses, with the identity, roles and structure of the key molecules required for infection well established. We review current knowledge of receptor-mediated HIV entry, addressing the properties of the HIV cell-surface receptors, the techniques used to measure these properties, and the macromolecular interactions and events required for virus entry. We discuss some of the key biophysical principles underlying receptor-mediated virus entry and attempt to interpret the available data in the context of biophysical mechanisms. We also highlight crucial outstanding questions and consider how new tools might be applied to advance understanding of the biophysical properties of viral receptors and the dynamic events leading to virus entry.
Collapse
Affiliation(s)
| | - Mark Marsh
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
5
|
D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020; 528:347-358. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
The chemokines receptor family are membrane-expressed class A-specific seven-transmembrane receptors linked to G proteins. Through interaction with the corresponding ligands, the chemokines, they induce a wide variety of cellular responses including cell polarization, movement, immune and inflammatory responses, as well as the prevention of HIV-1 infection. Like a Russian matryoshka doll, the chemokine receptor system is more complex than initially envisaged. This review focuses on the mechanisms that contribute to this dazzling complexity and how they modulate the signaling events triggered by chemokines. The chemokines and their receptors exist as monomers, dimers and oligomers, their expression pattern is highly regulated, and the ligands can bind distinct receptors with similar affinities. The use of novel imaging-based technologies, particularly real-time imaging modalities, has shed new light on the very dynamic conformations that chemokine receptors adopt depending on the cellular context, and that affect chemokine-mediated responses. This complex scenario presents both challenging and exciting opportunities for drug discovery.
Collapse
Affiliation(s)
- Gianluca D'Agostino
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Eva M García-Cuesta
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Rosa P Gomariz
- Dept. Cell Biology, Complutense University of Madrid, Research Institute Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Mario Mellado
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
6
|
Harnessing CXCL12 signaling to protect and preserve functional β-cell mass and for cell replacement in type 1 diabetes. Pharmacol Ther 2019; 193:63-74. [DOI: 10.1016/j.pharmthera.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Martínez-Muñoz L, Villares R, Rodríguez-Fernández JL, Rodríguez-Frade JM, Mellado M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. J Leukoc Biol 2018; 104:323-331. [PMID: 29719064 DOI: 10.1002/jlb.2mr1217-503r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
The chemokines direct leukocyte recruitment in both homeostatic and inflammatory conditions, and are therefore critical for immune reactions. By binding to members of the class A G protein-coupled receptors, the chemokines play an essential role in numerous physiological and pathological processes. In the last quarter century, the field has accumulated much information regarding the implications of these molecules in different immune processes, as well as mechanistic insight into the signaling events activated through their binding to their receptors. Here, we will focus on chemokine receptors and how new methodological approaches have underscored the role of their conformations in chemokine functions. Advances in biophysical-based techniques show that chemokines and their receptors act in very complex networks and therefore should not be considered isolated entities. In this regard, the chemokine receptors can form homo- and heterodimers as well as oligomers at the cell surface. These findings are changing our view as to how chemokines influence cell biology, identify partners that regulate chemokine function, and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Martínez-Muñoz
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Seville, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (CIB/CSIC), Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. THE JOURNAL OF IMMUNOLOGY 2018; 200:3825-3839. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 02/02/2023]
Abstract
Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H792.45 and W1614.50) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously.
Collapse
Affiliation(s)
- Jeremiah D Heredia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jihye Park
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Riley J Brubaker
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Steven K Szymanski
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kevin S Gill
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
9
|
Gahbauer S, Pluhackova K, Böckmann RA. Closely related, yet unique: Distinct homo- and heterodimerization patterns of G protein coupled chemokine receptors and their fine-tuning by cholesterol. PLoS Comput Biol 2018; 14:e1006062. [PMID: 29529028 PMCID: PMC5864085 DOI: 10.1371/journal.pcbi.1006062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/22/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Chemokine receptors, a subclass of G protein coupled receptors (GPCRs), play essential roles in the human immune system, they are involved in cancer metastasis as well as in HIV-infection. A plethora of studies show that homo- and heterodimers or even higher order oligomers of the chemokine receptors CXCR4, CCR5, and CCR2 modulate receptor function. In addition, membrane cholesterol affects chemokine receptor activity. However, structural information about homo- and heterodimers formed by chemokine receptors and their interplay with cholesterol is limited. Here, we report homo- and heterodimer configurations of the chemokine receptors CXCR4, CCR5, and CCR2 at atomistic detail, as obtained from thousands of molecular dynamics simulations. The observed homodimerization patterns were similar for the closely related CC chemokine receptors, yet they differed significantly between the CC receptors and CXCR4. Despite their high sequence identity, cholesterol modulated the CC homodimer interfaces in a subtype-specific manner. Chemokine receptor heterodimers display distinct dimerization patterns for CXCR4/CCR5 and CXCR4/CCR2. Furthermore, associations between CXCR4 and CCR5 reveal an increased cholesterol-sensitivity as compared to CXCR4/CCR2 heterodimerization patterns. This work provides a first comprehensive structural overview over the complex interaction network between chemokine receptors and indicates how heterodimerization and the interaction with the membrane environment diversifies the function of closely related GPCRs.
Collapse
MESH Headings
- Animals
- Chemokines/metabolism
- Cholesterol/metabolism
- Computer Simulation
- Dimerization
- Humans
- Molecular Dynamics Simulation
- Receptors, CCR2/chemistry
- Receptors, CCR2/metabolism
- Receptors, CCR2/ultrastructure
- Receptors, CCR5/chemistry
- Receptors, CCR5/metabolism
- Receptors, CCR5/ultrastructure
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/ultrastructure
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/genetics
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Stefan Gahbauer
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
The unique structural and functional features of CXCL12. Cell Mol Immunol 2017; 15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
The CXC chemokine CXCL12 is an important factor in physiological and pathological processes, including embryogenesis, hematopoiesis, angiogenesis and inflammation, because it activates and/or induces migration of hematopoietic progenitor and stem cells, endothelial cells and most leukocytes. Therefore, CXCL12 activity is tightly regulated at multiple levels. CXCL12 has the unique property of existing in six splice variants in humans, each having a specific tissue distribution and in vivo activity. Controlled splice variant transcription and mRNA stability determine the CXCL12 expression profile. CXCL12 fulfills its functions in homeostatic and pathological conditions by interacting with its receptors CXC chemokine receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) and by binding to glycosaminoglycans (GAGs) in tissues and on the endothelium to allow a proper presentation to passing leukocytes. Homodimerizaton and heterodimerization of CXCL12 and its receptors can alter their signaling activity, as exemplified by the synergy between CXCL12 and other chemokines in leukocyte migration assays. Receptor binding may also initiate CXCL12 internalization and its subsequent removal from the environment. Furthermore, CXCL12 activity is regulated by posttranslational modifications. Proteolytic removal of NH2- or COOH-terminal amino acids, citrullination of arginine residues by peptidyl arginine deiminases or nitration of tyrosine residues reduce CXCL12 activity. This review summarizes the interactions of CXCL12 with the cellular environment and discusses the different levels of CXCL12 activity regulation.
Collapse
|
11
|
Song Y, Ge B, Lao J, Wang Z, Yang B, Wang X, He H, Li J, Huang F. Regulation of the Oligomeric Status of CCR3 with Binding Ligands Revealed by Single-Molecule Fluorescence Imaging. Biochemistry 2017; 57:852-860. [PMID: 28994588 DOI: 10.1021/acs.biochem.7b00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands. Natural agonists can induce an increase in the level of dimers and oligomers at high concentrations, whereas antagonists do not have a significant influence on the oligomeric status. Moreover, monomeric CCR3 exhibits a stronger chemotactic response in the migration assay of stably transfected CCR3 cells. Together, these data support the notion that CCR3 exists as a mixture of monomers and dimers under nearly physiological conditions and the monomeric CCR3 receptor is the minimal functional unit in cellular signaling transduction. To the best of our knowledge, these results constitute the first report of the oligomeric status of CCR3 and its regulation.
Collapse
Affiliation(s)
- Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
12
|
Lao J, He H, Wang X, Wang Z, Song Y, Yang B, Ullahkhan N, Ge B, Huang F. Single-Molecule Imaging Demonstrates Ligand Regulation of the Oligomeric Status of CXCR4 in Living Cells. J Phys Chem B 2017; 121:1466-1474. [PMID: 28118546 DOI: 10.1021/acs.jpcb.6b10969] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The role of dimerization and oligomerization of G-protein-coupled receptors in their signal transduction is highly controversial. Delineating this issue can greatly facilitate rational drug design. With single-molecule imaging, we show that chemokine receptor CXCR4 exists mainly as a monomer in normal mammalian living cells and forms dimers and higher-order oligomers at a high expression level, such as in cancer cells. Chemotaxis tests demonstrate that the signal transduction activity of CXCR4 does not depend only on its expression level, indicating a close relation with the oligomeric status of CXCR4. Moreover, binding ligands can effectively upregulate or downregulate the oligomeric level of CXCR4, which suggests that binding ligands may realize their pivotal roles by regulating the oligomeric status of CXCR4 rather than by simply inducing conformational changes.
Collapse
Affiliation(s)
- Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Naseer Ullahkhan
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
13
|
Pluhackova K, Gahbauer S, Kranz F, Wassenaar TA, Böckmann RA. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Comput Biol 2016; 12:e1005169. [PMID: 27812115 PMCID: PMC5094716 DOI: 10.1371/journal.pcbi.1005169] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022] Open
Abstract
G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Gahbauer
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Kranz
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Computer Graphics, Department of Computer Science, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Tsjerk A. Wassenaar
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Groningen Biomolecular Sciences and Biotechnology and Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
14
|
Broussas M, Boute N, Akla B, Berger S, Beau-Larvor C, Champion T, Robert A, Beck A, Haeuw JF, Goetsch L, Bailly C, Dumontet C, Matthes T, Corvaia N, Klinguer-Hamour C. A New Anti-CXCR4 Antibody That Blocks the CXCR4/SDF-1 Axis and Mobilizes Effector Cells. Mol Cancer Ther 2016; 15:1890-9. [PMID: 27297868 DOI: 10.1158/1535-7163.mct-16-0041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/29/2016] [Indexed: 11/16/2022]
Abstract
The type IV C-X-C-motif chemokine receptor (CXCR4) is expressed in a large variety of human cancers, including hematologic malignancies, and this receptor and its ligand, stromal cell-derived factor-1 (SDF-1), play a crucial role in cancer progression. We generated a humanized immunoglobulin G1 mAb, hz515H7, which binds human CXCR4, efficiently competes for SDF-1 binding, and induces a conformational change in CXCR4 homodimers. Furthermore, it inhibits both CXCR4 receptor-mediated G-protein activation and β-arrestin-2 recruitment following CXCR4 activation. The binding of the hz515H7 antibody to CXCR4 inhibits the SDF-1-induced signaling pathway, resulting in reduced phosphorylation of downstream effectors, such as Akt, Erk1/2, p38, and GSK3β. Hz515H7 also strongly inhibits cell migration and proliferation and, while preserving normal blood cells, induces both antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against neoplastic cells. In mouse xenograft models, hz515H7 displays antitumor activities with multiple hematologic tumor cell lines, with its Fc-mediated effector functions proving essential in this context. Furthermore, hz515H7 binds to primary tumor cells from acute myeloid leukemia and multiple myeloma patients. Collectively, our results demonstrate two major mechanisms of action, making hz515H7 unique in this regard. Its potential as a best-in-class molecule is currently under investigation in a phase I clinical trial. Mol Cancer Ther; 15(8); 1890-9. ©2016 AACR.
Collapse
Affiliation(s)
- Matthieu Broussas
- Department of Experimental Oncology, Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Nicolas Boute
- Unit of Molecular and Cellular Biology, CIPF, Saint-Julien-en-Genevois, France
| | - Barbara Akla
- Department of Experimental Oncology, Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sven Berger
- Unit of Molecular and Cellular Biology, CIPF, Saint-Julien-en-Genevois, France
| | - Charlotte Beau-Larvor
- Department of Experimental Oncology, Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Thierry Champion
- Department of Physico-chemistry, CIPF, Saint-Julien-en-Genevois, France
| | - Alain Robert
- Unit of Molecular and Cellular Biology, CIPF, Saint-Julien-en-Genevois, France
| | - Alain Beck
- Department of Physico-chemistry, CIPF, Saint-Julien-en-Genevois, France
| | | | - Liliane Goetsch
- Department of Experimental Oncology, Centre d'Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Christian Bailly
- Contract Development and Manufacturing Organization, Toulouse, France
| | | | - Thomas Matthes
- Hematology Service and Service of Clinical Pathology, University Hospital Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
15
|
Liu B, Liu X, Tang SJ. Interactions of Opioids and HIV Infection in the Pathogenesis of Chronic Pain. Front Microbiol 2016; 7:103. [PMID: 26903982 PMCID: PMC4748029 DOI: 10.3389/fmicb.2016.00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Over 50% of HIV-1/AIDS patients suffer chronic pain. Currently, opioids are the cornerstone medications for treating severe pain in these patients. Ironically, emerging clinical data indicates that repeated use of opiate pain medicines might in fact heighten the chronic pain states in HIV patients. Both laboratory-based and clinical studies strongly suggest that opioids exacerbate the detrimental effects of HIV-1 infection on the nervous system, both on neurons and glia. The combination of opioids and HIV-1infection may promote the damage of neurons, including those in the pain sensory and transmission pathway, by activating both caspase-dependent and caspase-independent pro-apoptotic pathways. In addition, the opiate-HIV-1 interaction may also cause widespread disturbance of glial function and elicit glial-derived pro-inflammatory responses that dysregulate neuronal function. The deregulation of neuron-glia cross-talk that occurs with the combination of HIV-1 and opioids appears to play an important role in the development of the pathological pain state. In this article, we wish to provide an overview of the potential molecular and cellular mechanisms by which opioids may interact with HIV-1 to cause neurological problems, especially in the context of HIV-associated pathological pain. Elucidating the underlying mechanisms will help researchers and clinicians to understand how chronic use of opioids for analgesia enhances HIV-associated pain. It will also assist in optimizing therapeutic approaches to prevent or minimize this significant side effect of opiate analgesics in pain management for HIV patients.
Collapse
Affiliation(s)
- Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, GalvestonTX, USA; Department of Urology, Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, China
| | - Xin Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| |
Collapse
|
16
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|
17
|
Ge B, Wang M, Li J, Liu J, Huang F. Maltose binding protein facilitates functional production of engineered human chemokine receptor 3 in Escherichia coli. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci U S A 2014; 111:E5363-72. [PMID: 25468967 DOI: 10.1073/pnas.1417037111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.
Collapse
|
19
|
Stephens B, Handel TM. Chemokine receptor oligomerization and allostery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 115:375-420. [PMID: 23415099 DOI: 10.1016/b978-0-12-394587-7.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oligomerization of chemokine receptors has been reported to influence many aspects of receptor function through allosteric communication between receptor protomers. Allosteric interactions within chemokine receptor hetero-oligomers have been shown to cause negative cooperativity in the binding of chemokines and to inhibit receptor activation in the case of some receptor pairs. Other receptor pairs can cause enhanced signaling and even activate entirely new, hetero-oligomer-specific signaling complexes and responses downstream of receptor activation. Many mechanisms contribute to these effects including direct allosteric coupling between the receptors, G protein-mediated allostery, G protein stealing, ligand sequestration, and recruitment of new intracellular proteins by exposing unique binding interfaces on the oligomerized receptors. These effects present both challenges as well as exciting opportunities for drug discovery. One of the most difficult challenges will involve determining if and when hetero-oligomers versus homomeric receptors are involved in specific disease states.
Collapse
Affiliation(s)
- Bryan Stephens
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
20
|
CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci U S A 2014; 111:E1960-9. [PMID: 24778234 DOI: 10.1073/pnas.1322887111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.
Collapse
|
21
|
Guyon A. CXCL12 chemokine and GABA neurotransmitter systems crosstalk and their putative roles. Front Cell Neurosci 2014; 5:115. [PMID: 24808825 PMCID: PMC4009426 DOI: 10.3389/fncel.2014.00115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022] Open
Abstract
Since CXCL12 and its receptors, CXCR4 and CXCR7, have been found in the brain, the role of this chemokine has been expanded from chemoattractant in the immune system to neuromodulatory in the brain. Several pieces of evidence suggest that this chemokine system could crosstalk with the GABAergic system, known to be the main inhibitory neurotransmitter system in the brain. Indeed, GABA and CXCL12 as well as their receptors are colocalized in many cell types including neurons and there are several examples in which these two systems interact. Several mechanisms can be proposed to explain how these systems interact, including receptor–receptor interactions, crosstalk at the level of second messenger cascades, or direct pharmacological interactions, as GABA and GABAB receptor agonists/antagonists have been shown to be allosteric modulators of CXCR4. The interplay between CXCL12/CXCR4-CXCR7 and GABA/GABAA-GABAB receptors systems could have many physiological implications in neurotransmission, cancer and inflammation. In addition, the GABAB agonist baclofen is currently used in medicine to treat spasticity in patients with spinal cord injury, cerebral palsy, traumatic brain injury, multiple sclerosis, and other disorders. More recently it has also been used in the treatment of alcohol dependence and withdrawal. The allosteric effects of this agent on CXCR4 could contribute to these beneficial effects or at the opposite, to its side effects.
Collapse
Affiliation(s)
- Alice Guyon
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Nice Sophia Antipolis Valbonne, France
| |
Collapse
|
22
|
Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci 2014; 8:65. [PMID: 24639628 PMCID: PMC3944789 DOI: 10.3389/fncel.2014.00065] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
The chemokine CXCL12/stromal cell-derived factor 1 alpha has first been described in the immune system where it functions include chemotaxis for lymphocytes and macrophages, migration of hematopoietic cells from fetal liver to bone marrow and the formation of large blood vessels. Among other chemokines, CXCL12 has recently attracted much attention in the brain as it has been shown that it can be produced not only by glial cells but also by neurons. In addition, its receptors CXCR4 and CXCR7, which are belonging to the G protein-coupled receptors family, are abundantly expressed in diverse brain area, CXCR4 being a major co-receptor for human immunodeficiency virus 1 entry. This chemokine system has been shown to play important roles in brain plasticity processes occurring during development but also in the physiology of the brain in normal and pathological conditions. For example, in neurons, CXCR4 stimulation has been shown regulate the synaptic release of glutamate and γ-aminobutyric acid (GABA). It can also act post-synaptically by activating a G protein activated inward rectifier K+ (GIRK), a voltage-gated K channel Kv2.1 associated to neuronal survival, and by increasing high voltage activated Ca2+ currents. In addition, it has been recently evidenced that there are several cross-talks between the CXCL12/CXCR4–7 system and other neurotransmitter systems in the brain (such as GABA, glutamate, opioids, and cannabinoids). Overall, this chemokine system could be one of the key players of the neuro-immune interface that participates in shaping the brain in response to changes in the environment.
Collapse
Affiliation(s)
- Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275 Centre National de la Recherche Scientifique/Université Nice Sophia Antipolis Valbonne, France
| |
Collapse
|
23
|
Nakano Y, Monde K, Terasawa H, Yuan Y, Yusa K, Harada S, Maeda Y. Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1. Virology 2014; 452-453:117-24. [DOI: 10.1016/j.virol.2013.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
|
24
|
Anselmo A, Mazzon C, Borroni EM, Bonecchi R, Graham GJ, Locati M. Flow cytometry applications for the analysis of chemokine receptor expression and function. Cytometry A 2014; 85:292-301. [DOI: 10.1002/cyto.a.22439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/16/2013] [Accepted: 12/27/2013] [Indexed: 02/03/2023]
Affiliation(s)
- Achille Anselmo
- Humanitas Clinical and Research Center; Rozzano Milan 20089 Italy
| | - Cristina Mazzon
- Humanitas Clinical and Research Center; Rozzano Milan 20089 Italy
| | - Elena Monica Borroni
- Humanitas Clinical and Research Center; Rozzano Milan 20089 Italy
- Department of Medical Biotechnologies and Translational Medicine; University of Milan; Rozzano Milan 20089 Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center; Rozzano Milan 20089 Italy
- Department of Medical Biotechnologies and Translational Medicine; University of Milan; Rozzano Milan 20089 Italy
| | - Gerard J. Graham
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation; University of Glasgow; Glasgow G12 8TA United Kingdom
| | - Massimo Locati
- Humanitas Clinical and Research Center; Rozzano Milan 20089 Italy
- Department of Medical Biotechnologies and Translational Medicine; University of Milan; Rozzano Milan 20089 Italy
| |
Collapse
|
25
|
|
26
|
Differential expression of the alternatively spliced OPRM1 isoform μ-opioid receptor-1K in HIV-infected individuals. AIDS 2014; 28:19-30. [PMID: 24413261 DOI: 10.1097/qad.0000000000000113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We previously examined the expression of specific C-terminal μ-opioid receptor (MOR) splice variants in human central nervous system cell types and HIV-infected brain tissue from individuals with neurocognitive impairment ± HIV encephalitis (HIVE). In the present study, we examined the N-terminal splice variant MOR-1K, which mediates excitatory cellular signaling. METHODS AND RESULTS We found segregation of expression ranging from undetectable to seemingly exclusive across nervous system cell types compared to the pool of C-terminal MOR splice variants using the real-time polymerase chain reaction (RT-PCR). Expression of MOR-1K mRNA was also increased in HIV-infected individuals with combined neurocognitive impairment and HIVE compared with the other groups. MOR-1K expression correlated with the level of patient neurocognitive impairment, whereas the pool of C-terminal MOR splice variants did not. HIVE was also associated with increased expression of the inflammatory mediators MCP-1, MCP-2, and RANTES, but not the host HIV coreceptors CXCR4 and CCR5 or the CD4 receptor using qRT-PCR. Network analysis of microarray data from these same patients revealed filamin A (FLNA) as a possible interaction partner with MOR-1K, and FLNA gene expression was also found to be upregulated in HIVE using qRT-PCR. Overexpression of FLNA in HEK293 cells redistributed MOR-1K from intracellular compartments to the cell surface. CONCLUSION These results suggest that HIVE, and neurocognitive impairment depending on its severity, are associated with enhanced MOR-1K signaling through both increased expression and trafficking to the cell surface, which may alter the contribution of MOR receptor isoforms and exacerbate the effects of MOR activation in neuroAIDS.
Collapse
|
27
|
Nash B, Meucci O. Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:105-28. [PMID: 25175863 PMCID: PMC4369781 DOI: 10.1016/b978-0-12-801284-0.00005-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the G protein-coupled receptor CXCR4 by its chemokine ligand CXCL12 regulates a number of physiopathological functions in the central nervous system, during development as well as later in life. In addition to the more classical roles of the CXCL12/CXCR4 axis in the recruitment of immune cells or migration and proliferation of neural precursor cells, recent studies suggest that CXCR4 signaling also modulates synaptic function and neuronal survival in the mature brain, through direct and indirect effects on neurons and glia. These effects, which include regulation of glutamate receptors and uptake, and of dendritic spine density, can significantly alter the ability of neurons to face excitotoxic insults. Therefore, they are particularly relevant to neurodegenerative diseases featuring alterations of glutamate neurotransmission, such as HIV-associated neurocognitive disorders. Importantly, CXCR4 signaling can be dysregulated by HIV viral proteins, host HIV-induced factors, and opioids. Potential mechanisms of opioid regulation of CXCR4 include heterologous desensitization, transcriptional regulation and changes in receptor expression levels, opioid-chemokine receptor dimer or heteromer formation, and the newly described modulation by the protein ferritin heavy chain-all leading to inhibition of CXCR4 signaling. After reviewing major effects of chemokines and opioids in the CNS, this chapter discusses chemokine-opioid interactions in neuronal and immune cells, focusing on their potential contribution to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
28
|
Rapp C, Snow S, Laufer T, McClendon CL. The role of tyrosine sulfation in the dimerization of the CXCR4:SDF-1 complex. Protein Sci 2013; 22:1025-36. [PMID: 23740770 PMCID: PMC3832039 DOI: 10.1002/pro.2288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/18/2013] [Accepted: 05/20/2013] [Indexed: 11/09/2022]
Abstract
Oligomerization of G protein-coupled receptors is a recognized mode of regulation of receptor activities, with alternate oligomeric states resulting in different signaling functions. The CXCR4 chemokine receptor is a G protein-coupled receptor that is post-translationally modified by tyrosine sulfation at three sites on its N-terminus (Y7, Y12, Y21), leading to enhanced affinity for its ligand, stromal cell derived factor (SDF-1, also called CXCL12). The complex has been implicated in cancer metastasis and is a therapeutic target in cancer treatment. Using molecular dynamics simulation of NMR-derived structures of the CXCR4 N-terminus in complex with SDF-1, and calculations of electrostatic binding energies for these complexes, we address the role of tyrosine sulfation in this complex. Our results show that sulfation stabilizes the dimeric state of the CXCR4:SDF-1 complex through hydrogen bonding across the dimer interface, conformational changes in residues at the dimer interface, and an enhancement in electrostatic binding energies associated with dimerization. These findings suggest a mechanism through which post-translational modifications such as tyrosine sulfation might regulate downstream function through modulation of the oligomeric state of the modified system.
Collapse
Affiliation(s)
- Chaya Rapp
- Department of Chemistry and Biochemistry, Stern College for Women, Yeshiva University, New York, New York, USA.
| | | | | | | |
Collapse
|
29
|
de Poorter C, Baertsoen K, Lannoy V, Parmentier M, Springael JY. Consequences of ChemR23 heteromerization with the chemokine receptors CXCR4 and CCR7. PLoS One 2013; 8:e58075. [PMID: 23469143 PMCID: PMC3585228 DOI: 10.1371/journal.pone.0058075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/30/2013] [Indexed: 02/05/2023] Open
Abstract
Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.
Collapse
Affiliation(s)
- Cédric de Poorter
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium
| | - Kevin Baertsoen
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium
| | | | - Marc Parmentier
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium
- * E-mail:
| | - Jean-Yves Springael
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM) Université Libre de Bruxelles (U.L.B.), Campus Erasme, Brussels, Belgium
| |
Collapse
|
30
|
Muñoz LM, Holgado BL, Martínez-A C, Rodríguez-Frade JM, Mellado M. Chemokine receptor oligomerization: a further step toward chemokine function. Immunol Lett 2012; 145:23-9. [PMID: 22698180 DOI: 10.1016/j.imlet.2012.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/13/2012] [Indexed: 12/14/2022]
Abstract
A broad array of biological responses including cell polarization, movement, immune and inflammatory responses, as well as prevention of HIV-1 infection, are triggered by the chemokines, a family of secreted and structurally related chemoattractant proteins that bind to class A-specific seven-transmembrane receptors linked to G proteins. Chemokines and their receptors should not be considered isolated entities, as they act in complex networks. Chemokines bind as oligomers, or oligomerize after binding to glycosaminoglycans on endothelial cells, and are then presented to their receptors on target cells, facilitating the generation of chemoattractant gradients. The chemokine receptors form homo- and heterodimers, as well as higher order structures at the cell surface. These structures are dynamic and are regulated by receptor expression and ligand levels. Complexity is even greater, as in addition to regulation by cytokines and decoy receptors, chemokine and receptor levels are affected by proteolytic cleavage and other protein modifications. This complex scenario should be considered when analyzing chemokine biology and the ability of their antagonists to act in vivo. Strategies based on blocking or stabilizing ligand and receptor dimers could be alternative approaches that might have broad therapeutic potential.
Collapse
Affiliation(s)
- Laura Martínez Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus de Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | |
Collapse
|
31
|
Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R. Pharmacological modulation of chemokine receptor function. Br J Pharmacol 2012; 165:1617-1643. [PMID: 21699506 DOI: 10.1111/j.1476-5381.2011.01551.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Canals
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - D Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - L Roumen
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Wijtmans
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - C de Graaf
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - H F Vischer
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - R Leurs
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology 2012; 9:45. [PMID: 22640593 PMCID: PMC3416652 DOI: 10.1186/1742-4690-9-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model of how HIV utilizes actin dynamics to initiate infection.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | | | | |
Collapse
|
33
|
Mithal DS, Banisadr G, Miller RJ. CXCL12 signaling in the development of the nervous system. J Neuroimmune Pharmacol 2012; 7:820-34. [PMID: 22270883 DOI: 10.1007/s11481-011-9336-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Chemokines are small, secreted proteins that have been shown to be important regulators of leukocyte trafficking and inflammation. All the known effects of chemokines are transduced by action at a family of G protein coupled receptors. Two of these receptors, CCR5 and CXCR4, are also known to be the major cellular receptors for HIV-1. Consideration of the evolution of the chemokine family has demonstrated that the chemokine Stromal cell Derived Factor-1 or SDF1 (CXCL12) and its receptor CXCR4 are the most ancient members of the family and existed in animals prior to the development of a sophisticated immune system. Thus, it appears that the original function of chemokine signaling was in the regulation of stem cell trafficking and development. CXCR4 signaling is important in the development of many tissues including the nervous system. Here we discuss the manner in which CXCR4 signaling can regulate the development of different structures in the central and peripheral nervous systems and the different strategies employed to achieve these effects.
Collapse
Affiliation(s)
- Divakar S Mithal
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
34
|
Xu H, Bae M, Tovar-y-Romo LB, Patel N, Bandaru VVR, Pomerantz D, Steiner JP, Haughey NJ. The human immunodeficiency virus coat protein gp120 promotes forward trafficking and surface clustering of NMDA receptors in membrane microdomains. J Neurosci 2011; 31:17074-90. [PMID: 22114277 PMCID: PMC3254245 DOI: 10.1523/jneurosci.4072-11.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022] Open
Abstract
Infection by the human immunodeficiency virus (HIV) can result in debilitating neurological syndromes collectively known as HIV-associated neurocognitive disorders. Although the HIV coat protein gp120 has been identified as a potent neurotoxin that enhances NMDA receptor function, the exact mechanisms for this effect are not known. Here we provide evidence that gp120 activates two separate signaling pathways that converge to enhance NMDA-evoked calcium flux by clustering NMDA receptors in modified membrane microdomains. gp120 enlarged and stabilized the structure of lipid microdomains on dendrites by mechanisms that involved a redox-regulated translocation of a sphingomyelin hydrolase (neutral sphingomyelinase-2) to the plasma membrane. A concurrent pathway was activated that accelerated the forward traffic of NMDA receptors by a PKA-dependent phosphorylation of the NR1 C-terminal serine 897 (masks an ER retention signal), followed by a PKC-dependent phosphorylation of serine 896 (important for surface expression). NMDA receptors were preferentially targeted to synapses and clustered in modified membrane microdomains. In these conditions, NMDA receptors were unable to laterally disperse and did not internalize, even in response to strong agonist induction. Focal NMDA-evoked calcium bursts were enhanced by threefold in these regions. Inhibiting membrane modification or NR1 phosphorylation prevented gp120 from accelerating the surface localization of NMDA receptors. Disrupting the structure of membrane microdomains after gp120 treatments restored the ability of NMDA receptors to disperse and internalize. These findings demonstrate that gp120 contributes to synaptic dysfunction in the setting of HIV infection by interfering with NMDA receptor trafficking.
Collapse
Affiliation(s)
- Hangxiu Xu
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Mihyun Bae
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Luis B. Tovar-y-Romo
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Neha Patel
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | | | - Daniel Pomerantz
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Joseph P. Steiner
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
| | - Norman J. Haughey
- Departments of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections and
- Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| |
Collapse
|
35
|
Podhaizer EM, Zou S, Fitting S, Samano KL, El-Hage N, Knapp PE, Hauser KF. Morphine and gp120 toxic interactions in striatal neurons are dependent on HIV-1 strain. J Neuroimmune Pharmacol 2011; 7:877-91. [PMID: 22101471 DOI: 10.1007/s11481-011-9326-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
A rigorously controlled, cell culture paradigm was used to assess the role of HIV-1 gp120 ± morphine in mediating opioid-HIV interactive toxicity in striatal neurons. Computerized time-lapse microscopy tracked the fate of individual neurons co-cultured with mixed-glia from mouse striata during opioid and gp120 exposure. Subpopulations of neurons and astroglia displayed μ-opioid receptor, CXCR4, and CCR5 immunoreactivity. While gp120 alone was or tended to be neurotoxic irrespective of whether X4-tropic gp120(IIIB), R5-tropic gp120(ADA), or dual-tropic gp120(MN) was administered, interactive toxicity with morphine differed depending on HIV-1 strain. For example, morphine only transiently exacerbated gp120(IIIB)-induced neuronal death; however, in combination with gp120(MN), morphine caused sustained increases in the rate of neuronal death compared to gp120(MN) alone that were prevented by naloxone. Alternatively, gp120(ADA) significantly increased the rate of neuron death, but gp120(ADA) toxicity was unaffected by morphine. The transient neurotoxic interactions between morphine and gp120(IIIB) were abrogated in the absence of glia suggesting that glia contribute significantly to the interactive pathology with chronic opiate abuse and neuroAIDS. To assess how mixed-glia might contribute to the neurotoxicity, the effects of morphine and/or gp120 on the production of reactive oxygen species (ROS) and on glutamate buffering were examined. All gp120 variants, and to a lesser extent morphine, increased ROS and/or decreased glutamate buffering, but together failed to show any interaction with morphine. Our findings indicate that HIV-1 strain-specific differences in gp120 are critical determinants in shaping both the timing and pattern of neurotoxic interactions with opioid drugs.
Collapse
Affiliation(s)
- Elizabeth M Podhaizer
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0613, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bennett LD, Fox JM, Signoret N. Mechanisms regulating chemokine receptor activity. Immunology 2011; 134:246-56. [PMID: 21977995 PMCID: PMC3209565 DOI: 10.1111/j.1365-2567.2011.03485.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/04/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
Co-ordinated movement and controlled positioning of leucocytes is key to the development, maintenance and proper functioning of the immune system. Chemokines and their receptors play an essential role in these events by mediating directed cell migration, often referred to as chemotaxis. The chemotactic property of these molecules is also thought to contribute to an array of pathologies where inappropriate recruitment of specific chemokine receptor-expressing leucocytes is observed, including cancer and inflammatory diseases. As a result, chemokine receptors have become major targets for therapeutic intervention, and during the past 15 years much research has been devoted to understanding the regulation of their biological activity. From these studies, processes which govern the availability of functional chemokine receptors at the cell surface have emerged as playing a central role. In this review, we summarize and discuss current knowledge on the molecular mechanisms contributing to the regulation of chemokine receptor surface expression, from gene transcription and protein degradation to post-translational modifications, multimerization, intracellular transport and cross-talk.
Collapse
Affiliation(s)
- Laura D Bennett
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, UK
| | | | | |
Collapse
|
37
|
Darbandi-Tehrani K, Hermand P, Carvalho S, Dorgham K, Couvineau A, Lacapère JJ, Combadière C, Deterre P. Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays. FASEB J 2010; 24:4585-4598. [PMID: 20667981 DOI: 10.1096/fj.10-156612] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The chemokine CX3CL1 is expressed as a membrane protein that forms a potent adhesive pair with its unique receptor CX3CR1. This receptor has 3 natural variants, V249-T280 (VT), I249-T280 (IT), and I249-M280 (IM), whose relative frequencies are significantly associated with the incidence of various inflammatory diseases. To assess the adhesive potency of CX3CR1 and the molecular diversity of its variants, we assayed their clustering status and their possible structural differences by fluorescence/bioluminescence resonance energy transfer (FRET or BRET) techniques. FRET assays by flow cytometry showed that the CX3CR1 variants cluster, in comparison with appropriate controls. BRET assays showed low nonspecific signals for VT and IT variants and high specific signals for IM, and thus pointed out a structural difference in this variant. We used molecular modeling to show how natural point mutations of CX3CR1 affect the packing of the 6th and 7th helices of this G-protein coupled receptor. Moreover, we found that the BRET technique is sensitive enough to detect these tiny changes. Consistently with our previous finding that CX3CL1 aggregates, our data here indicate that CX3CR1 clustering may contribute to the adhesiveness of the CX3CL1-CX3CR1 pair and may thus represent a new target for anti-inflammatory therapies.
Collapse
|
38
|
Ratliff BB, Singh N, Yasuda K, Park HC, Addabbo F, Ghaly T, Rajdev M, Jasmin JF, Plotkin M, Lisanti MP, Goligorsky MS. Mesenchymal stem cells, used as bait, disclose tissue binding sites: a tool in the search for the niche? THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:873-83. [PMID: 20558574 PMCID: PMC2913365 DOI: 10.2353/ajpath.2010.090984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2010] [Indexed: 01/16/2023]
Abstract
We developed an ex vivo approach characterizing renal mesenchymal stem cell (MSC) adhesion to kidney sections. Specificity of MSC adhesion was confirmed by demonstrating a) 3T3 cells displayed 10-fold lower adhesion, and b) MSC adhesion was CXCR4/stromal-derived factor-1 (SDF-1)-dependent. MSC adhesion was asymmetrical, with postischemic sections exhibiting more than twofold higher adhesion than controls, and showed preference to perivascular areas. Pretreating kidney sections with cyclic arginine-glycine-aspartic acid peptide resulted in increased MSC adhesion (by displacing resident cells), whereas blockade of CXCR4 with AMD3100 and inhibition of alpha4beta1(VLA4) integrin or vascular cellular adhesion molecule-1, reduced adhesion. The difference between adhered cells under cyclic arginine-glycine-aspartic acid peptide-treated and control conditions reflected prior occupancy of binding sites with endogenous cells. The AMD3100-inhibitable fraction of adhesion reflected CXCR4-dependent adhesion, whereas maximal adhesion was interpreted as kidney MSC-lodging capacity. MSC obtained from mice overexpressing caveolin-1 exhibited more robust adhesion than those obtained from knockout animals, consistent with CXCR4 dimerization in caveolae. These data demonstrate a) CXCR4/SDF-1-dependent adhesion increases in ischemia; b) CXCR4/SDF-1 activation is dependent on MSC surface caveolin-1; and c) occupancy of MSC binding sites is decreased, while d) capacity of MSC binding sites is expanded in postischemic kidneys. In conclusion, we developed a cell-bait strategy to unmask renal stem cell binding sites, which may potentially shed light on the MSC niche(s) and its characteristics.
Collapse
Affiliation(s)
- Brian B Ratliff
- Department of Medicine, New York Medical College, Renal Research Institute, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Park HC, Yasuda K, Ratliff B, Stoessel A, Sharkovska Y, Yamamoto I, Jasmin JF, Bachmann S, Lisanti MP, Chander P, Goligorsky MS. Postobstructive regeneration of kidney is derailed when surge in renal stem cells during course of unilateral ureteral obstruction is halted. Am J Physiol Renal Physiol 2009; 298:F357-64. [PMID: 19906947 DOI: 10.1152/ajprenal.00542.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unilateral ureteral obstruction (UUO), a model of tubulointerstitial scarring (TIS), has a propensity toward regeneration of renal parenchyma after release of obstruction (RUUO). No information exists on the contribution of stem cells to this process. We performed UUO in FVB/N mice, reversed it after 10 days, and examined kidneys 3 wk after RUUO. UUO resulted in attenuation of renal parenchyma. FACS analysis of endothelial progenitor (EPC), mesenchymal stem (MSC) and hematopoietic stem (HSC) cells obtained from UUO kidneys by collagenase-dispersed single-cell suspension showed significant increase in EPC, MSC, and HSC compared with control. After RUUO cortical parenchyma was nearly restored, and TIS score improved by 3 wk. This reversal process was associated with return of stem cells toward baseline level. When animals were chronically treated with nitric oxide synthase (NOS) inhibitor at a dose that did not induce hypertension but resulted in endothelial dysfunction, TIS scores were not different from control UUO, but EPC number in the kidney decreased significantly; however, parenchymal regeneration in these mice was similar to control. Blockade of CXCR4-mediated engraftment resulted in dramatic worsening of UUO and RUUO. Similar results were obtained in caveolin-1-deficient but not -overexpressing mice, reflecting the fact that activation of CXCR4 occurs in caveolae. The present data show increase in EPC, HSC, and MSC population during UUO and a tendency for these cells to decrease to control level during RUUO. These processes are minimally affected by chronic NOS inhibition. Blockade of CXCR4-stromal cell-derived factor-1 (SDF-1) interaction by AMD3100 or caveolin-1 deficiency significantly reduced the UUO-associated surge in stem cells and prevented parenchymal regeneration after RUUO. We conclude that the surge in stem cell accumulation during UUO is a prerequisite for regeneration of renal parenchyma.
Collapse
Affiliation(s)
- H C Park
- Departments of Medicine, Pharmacology, and Pathology, Renal Research Institute, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martínez Muñoz L, Lucas P, Navarro G, Checa AI, Franco R, Martínez-A C, Rodríguez-Frade JM, Mellado M. Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers. THE JOURNAL OF IMMUNOLOGY 2009; 183:7337-46. [PMID: 19890050 DOI: 10.4049/jimmunol.0901802] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although homo- and heterodimerization are reported for some chemokine receptors, it remains unclear whether these functional states are in dynamic equilibrium and how receptor/ligand levels influence oligomerization. In human neutrophils and in cell lines that coexpress the chemokine receptors CXCR1 and CXCR2, we used fluorescence resonance energy transfer techniques to show that these two receptors form homo- and heterodimers. Receptor expression and ligand activation were found to regulate the balance between these complexes, adapting the response to changes in the milieu. CXCL8, a ligand for both receptors, alters heterodimeric complexes, whereas it stabilizes homodimers and promotes receptor internalization. Oligomerization of receptors, together with the regulation of their expression and desensitization, could thus contribute to the fine control of chemokine functions.
Collapse
Affiliation(s)
- Laura Martínez Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Chemokines are small, secreted proteins that bind to the chemokine receptor subfamily of class A G protein-coupled receptors. Collectively, these receptor-ligand pairs are responsible for diverse physiological responses including immune cell trafficking, development and mitogenic signaling, both in the context of homeostasis and disease. However, chemokines and their receptors are not isolated entities, but instead function in complex networks involving homo- and heterodimer formation as well as crosstalk with other signaling complexes. Here the functional consequences of chemokine receptor activity, from the perspective of both direct physical associations with other receptors and indirect crosstalk with orthogonal signaling pathways, are reviewed. Modulation of chemokine receptor activity through these mechanisms has significant implications in physiological and pathological processes, as well as drug discovery and drug efficacy. The integration of signals downstream of chemokine and other receptors will be key to understanding how cells fine-tune their response to a variety of stimuli, including therapeutics.
Collapse
Affiliation(s)
- C. L. Salanga
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| | - M. O’Hayre
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| | - T. Handel
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA 92093-0684 USA
| |
Collapse
|
42
|
Rubin JB. Chemokine signaling in cancer: one hump or two? Semin Cancer Biol 2009; 19:116-22. [PMID: 18992347 PMCID: PMC2694237 DOI: 10.1016/j.semcancer.2008.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/08/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Chemokines and their receptors play essential roles in the development and function of multiple tissues. Chemokine expression, particularly CXCL12 and its receptor CXCR4, has prognostic significance in several cancers apparently due to chemokine mediated growth and metastatic spread. These observations provide the rationale for pursuing CXCR4 inhibition for cancer chemotherapy. However, the multiple homeostatic functions of CXCR4 may preclude global inhibition as a therapeutic strategy. Here I review CXCR4 signaling and how it might differ in normal and transformed cells with special emphasis on the role that altered CXCR4 counter-regulation might play in tumor biology. I propose that CXCR4 mediates unique signals in cancer cells as a consequence of abnormal counter-regulation and that this results in novel biological responses. The importance of testing this hypothesis lies in the possibility that targeting abnormal CXCR4 signaling might provide an anti-tumor effect without disturbing normal CXCR4 functions.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics/Division of Pediatric Hematology and Oncology, Campus Box 8208, 660 South Euclid Avenue, Washington University School of Medicine, St Louis, MO 63110, USA. rubin
| |
Collapse
|
43
|
Sengupta R, Burbassi S, Shimizu S, Cappello S, Vallee RB, Rubin JB, Meucci O. Morphine increases brain levels of ferritin heavy chain leading to inhibition of CXCR4-mediated survival signaling in neurons. J Neurosci 2009; 29:2534-44. [PMID: 19244528 PMCID: PMC2664553 DOI: 10.1523/jneurosci.5865-08.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/15/2009] [Accepted: 01/22/2009] [Indexed: 12/17/2022] Open
Abstract
This study focuses on the effect of mu-opioid receptor agonists on CXCR4 signaling in neurons and the mechanisms involved in regulation of neuronal CXCR4 by opiates. The data show that CXCR4 is negatively modulated by long-term morphine treatments both in vitro and in vivo; CXCR4 inhibition is caused by direct stimulation of mu-opioid receptors in neurons, leading to alterations of ligand-induced CXCR4 phosphorylation and upregulation of protein ferritin heavy chain (FHC), a negative intracellular regulator of CXCR4. Reduced coupling of CXCR4 to G-proteins was found in the brain of morphine-treated rats, primarily cortex and hippocampus. CXCR4-induced G alpha(i)/G betagamma activities were suppressed after 24 h treatment of cortical neurons with morphine or the selective mu-opioid agonist DAMGO (D-Ala2-N-Me-Phe(4)-glycol(5)-enkephalin), as shown by analysis of downstream targets of CXCR4 (i.e., cAMP, Akt, and ERK1/2). These agonists also prevented CXCL12-induced phosphorylation of CXCR4, indicating a deficit of CXCR4 activation in these conditions. Indeed, morphine (or DAMGO) inhibited prosurvival signaling in neurons. These effects are not attributable to a reduction in CXCR4 expression or surface levels but rather to upregulation of FHC by opioids. The crucial role of FHC in inhibition of neuronal CXCR4 was confirmed by in vitro and in vivo RNA interference studies. Overall, these findings suggest that opiates interfere with normal CXCR4 function in the brain. By this mechanism, opiates could reduce the neuroprotective functions of CXCR4 and exacerbate neuropathology in opiate abusers who are affected by neuroinflammatory/infectious disorders, including neuroAIDS.
Collapse
Affiliation(s)
- Rajarshi Sengupta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Silvia Burbassi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Saori Shimizu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Silvia Cappello
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, and
| | - Richard B. Vallee
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, and
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
44
|
Abstract
Although traditionally assumed to be monomeric signaling units, G-protein-coupled receptors (GPCRs) have been shown to exist as dimers/oligomers. Many chemokine receptors have been demonstrated to form homo-oligomers, and hetero-oligomerization between both pairs of chemokine receptors and chemokine receptors and other GPCRs has also been demonstrated. This chapter highlights some of the most common techniques used to investigate chemokine receptor oligomerization.
Collapse
Affiliation(s)
- Shirley Appelbe
- Neuroscience and Molecular Pharmacology, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | |
Collapse
|
45
|
Hamatake M, Aoki T, Futahashi Y, Urano E, Yamamoto N, Komano J. Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci 2009; 100:95-102. [PMID: 19018754 PMCID: PMC11159631 DOI: 10.1111/j.1349-7006.2008.00997.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 09/01/2008] [Accepted: 09/07/2008] [Indexed: 11/30/2022] Open
Abstract
CXCR4, a G-protein-coupled receptor of CXCL12/stromal cell-derived factor-1alpha, mediates a wide range of physiological and pathological processes, including the targeted metastasis of cancer cells. CXCR4 has been shown to homo-oligomerize in several experimental systems. However, it remains unclear with which domains CXCR4 interacts homotypically, and whether it dimerizes or forms a higher-order complex. To address these issues, we used bioluminescent resonance energy transfer and bimolecular fluorescence complementation analyses to measure the homotypic interactions of CXCR4 in living cells. Both assays indicated that CXCR4 interacts homotypically, which is consistent with previous studies. By studying CXCR4 mutants lacking various domains, we found that multiple transmembrane domains probably serve as potential molecular interaction surfaces for oligomerization. The relative contribution of the amino- or carboxy-termini to oligomerization was small. To differentiate between a dimer and a multimer consisting of more than two molecules, bioluminescent resonance energy transfer-bimolecular fluorescence complementation analysis was conducted. It revealed that CXCR4 engages in higher-order oligomerization in a ligand-independent fashion. This is the first report providing direct experimental evidence for the higher-order multimerization of CXCR4 in vivo. We hypothesize that CXCR4 distributes to the cell surface as a multimer, in order to effectively sense, with increased avidity, the chemotaxis-inducing ligand in the microenvironment. Studying the structure and function of the oligomeric state of CXCR4 may lead us to develop novel CXCR4 inhibitors that disassemble the molecular cluster of CXCR4.
Collapse
Affiliation(s)
- Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Pain normally subserves a vital role in the survival of the organism, prompting the avoidance of situations associated with tissue damage. However, the sensation of pain can become dissociated from its normal physiological role. In conditions of neuropathic pain, spontaneous or hypersensitive pain behavior occurs in the absence of the appropriate stimuli. Our incomplete understanding of the mechanisms underlying chronic pain hypersensitivity accounts for the general ineffectiveness of currently available options for the treatment of chronic pain syndromes. Despite its complex pathophysiological nature, it is clear that neuropathic pain is associated with short- and long-term changes in the excitability of sensory neurons in the dorsal root ganglia (DRG) as well as their central connections. Recent evidence suggests that the upregulated expression of inflammatory cytokines in association with tissue damage or infection triggers the observed hyperexcitability of pain sensory neurons. The actions of inflammatory cytokines synthesized by DRG neurons and associated glial cells, as well as by astrocytes and microglia in the spinal cord, can produce changes in the excitability of nociceptive sensory neurons. These changes include rapid alterations in the properties of ion channels expressed by these neurons, as well as longer-term changes resulting from new gene transcription. In this chapter we review the diverse changes produced by inflammatory cytokines in the behavior of sensory neurons in the context of chronic pain syndromes.
Collapse
Affiliation(s)
- Richard J Miller
- Molecular Pharmacology and Structural Biochemistry, Northwestern University, Chicago, IL, USA.
| | | | | | | |
Collapse
|
47
|
Navarro-Borelly L, Somasundaram A, Yamashita M, Ren D, Miller RJ, Prakriya M. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J Physiol 2008; 586:5383-401. [PMID: 18832420 PMCID: PMC2655373 DOI: 10.1113/jphysiol.2008.162503] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 09/26/2008] [Indexed: 02/06/2023] Open
Abstract
Ca(2+) entry through store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels initiates key functions such as gene expression and exocytosis of inflammatory mediators. Activation of CRAC channels by store depletion involves the redistribution of the ER Ca(2+) sensor, stromal interaction molecule 1 (STIM1), to peripheral sites where it co-clusters with the CRAC channel subunit, Orai1. However, how STIM1 communicates with the CRAC channel and initiates the subsequent events culminating in channel opening is unclear. Here, we show that redistribution of STIM1 and Orai1 occurs in parallel with a pronounced increase in fluorescence resonance energy transfer (FRET) between STIM1 and Orai1, supporting the idea that activation of CRAC channels occurs through physical interactions with STIM1. Co-expression of Orai1-CFP and Orai1-YFP results in a high degree of FRET in resting cells, indicating that Orai1 exists as a multimer. However, store depletion triggers molecular rearrangements in Orai1 resulting in a decline in Orai1-Orai1 FRET. The decline in Orai1-Orai1 FRET is not seen in the absence of STIM1 co-expression and is abolished in Orai1 mutants with impaired STIM1 interaction. Both the STIM1-Orai1 interaction as well as the molecular rearrangements in Orai1 are altered by two powerful modulators of CRAC channel activity: extracellular Ca(2+) and 2-APB. These studies identify a STIM1-dependent conformational change in Orai1 during the activation of CRAC channels and reveal that STIM1-Orai1 interaction and the downstream Orai1 conformational change can be independently modulated to fine-tune CRAC channel activity.
Collapse
Affiliation(s)
- Laura Navarro-Borelly
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Avenue, Ward 8-296, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
48
|
Luker KE, Gupta M, Luker GD. Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 2008; 23:823-34. [PMID: 19001056 DOI: 10.1096/fj.08-116749] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Seven-transmembrane (G-protein coupled) receptors are key regulators of normal physiology and a large number of diseases, and this family of receptors is the target for almost half of all drugs. Cell culture models suggest that homodimerization and heterodimerization of 7-transmembrane receptors regulate processes including specificity of ligand binding and activation of downstream signaling pathways, making receptor dimerization a critical determinant of receptor biology and a promising new therapeutic target. To monitor receptor dimerization in cell-based assays and living animals, we developed a protein fragment complementation assay based on firefly luciferase to investigate dimerization of chemokine receptors CXCR4 and CXCR7, two 7-transmembrane receptors with central functions in normal development, cancer, and other diseases. Treatment with chemokine ligands and pharmacologic agents produced time- and dose-dependent changes in reporter signal. Chemokines regulated reporter bioluminescence for CXCR4 or CXCR7 homodimers without affecting signals from receptor heterodimers. In a tumor xenograft model of breast cancer, we used bioluminescence imaging to measure changes in receptor homodimerization in response to pharmacologic agents. This technology should be valuable for analyzing function and therapeutic modulation of receptor dimerization in intact cells and living mice.
Collapse
Affiliation(s)
- Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, 109 Zina Pitcher Pl., A526 BSRB, Ann Arbor, MI 48109-2200, USA.
| | | | | |
Collapse
|
49
|
Fuxe KG, Tarakanov AO, Goncharova LB, Agnati LF. A new road to neuroinflammation in Parkinson's disease? ACTA ACUST UNITED AC 2008; 58:453-8. [DOI: 10.1016/j.brainresrev.2008.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 04/04/2008] [Indexed: 11/24/2022]
|
50
|
Receptor mosaics of neural and immune communication: Possible implications for basal ganglia functions. ACTA ACUST UNITED AC 2008; 58:400-14. [DOI: 10.1016/j.brainresrev.2007.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 12/22/2022]
|