1
|
Uusi-Oukari M, Korpi ER. GABAergic mechanisms in alcohol dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:75-123. [PMID: 38555121 DOI: 10.1016/bs.irn.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Huang YH, Lee MT, Hsueh HY, Knutson DE, Cook J, Mihovilovic MD, Sieghart W, Chiou LC. Cerebellar α6GABA A Receptors as a Therapeutic Target for Essential Tremor: Proof-of-Concept Study with Ethanol and Pyrazoloquinolinones. Neurotherapeutics 2023; 20:399-418. [PMID: 36696034 PMCID: PMC10121996 DOI: 10.1007/s13311-023-01342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Ethanol has been shown to suppress essential tremor (ET) in patients at low-to-moderate doses, but its mechanism(s) of action remain unknown. One of the ET hypotheses attributes the ET tremorgenesis to the over-activated firing of inferior olivary neurons, causing synchronic rhythmic firings of cerebellar Purkinje cells. Purkinje cells, however, also receive excitatory inputs from granule cells where the α6 subunit-containing GABAA receptors (α6GABAARs) are abundantly expressed. Since ethanol is a positive allosteric modulator (PAM) of α6GABAARs, such action may mediate its anti-tremor effect. Employing the harmaline-induced ET model in male ICR mice, we evaluated the possible anti-tremor effects of ethanol and α6GABAAR-selective pyrazoloquinolinone PAMs. The burrowing activity, an indicator of well-being in rodents, was measured concurrently. Ethanol significantly and dose-dependently attenuated action tremor at non-sedative doses (0.4-2.4 g/kg, i.p.). Propranolol and α6GABAAR-selective pyrazoloquinolinones also significantly suppressed tremor activity. Neither ethanol nor propranolol, but only pyrazoloquinolinones, restored burrowing activity in harmaline-treated mice. Importantly, intra-cerebellar micro-injection of furosemide (an α6GABAAR antagonist) had a trend of blocking the effect of pyrazoloquinolinone Compound 6 or ethanol on harmaline-induced tremor. In addition, the anti-tremor effects of Compound 6 and ethanol were synergistic. These results suggest that low doses of ethanol and α6GABAAR-selective PAMs can attenuate action tremor, at least partially by modulating cerebellar α6GABAARs. Thus, α6GABAARs are potential therapeutic targets for ET, and α6GABAAR-selective PAMs may be a potential mono- or add-on therapy.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Ming Tatt Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Han-Yun Hsueh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - James Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | | | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, 1090, Austria
| | - Lih-Chu Chiou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
3
|
DiLeo A, Antonoudiou P, Ha S, Maguire JL. Sex Differences in the Alcohol-Mediated Modulation of BLA Network States. eNeuro 2022; 9:ENEURO.0010-22.2022. [PMID: 35788104 PMCID: PMC9275151 DOI: 10.1523/eneuro.0010-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
Alcohol use, reported by 85% of adults in the United States, is highly comorbid with mood disorders, like generalized anxiety disorder and major depression. The basolateral amygdala (BLA) is an area of the brain that is heavily implicated in both mood disorders and alcohol use disorder. Importantly, the modulation of BLA network/oscillatory states via parvalbumin (PV)-positive GABAergic interneurons has been shown to control the behavioral expression of fear and anxiety. Further, PV interneurons express a high density of δ subunit-containing GABAA receptors (GABAARs), which are sensitive to low concentrations of alcohol. Therefore, we hypothesized that the effects of alcohol may modulate BLA network states that have been associated with fear and anxiety behaviors via δ-GABAARs on PV interneurons in the BLA. Given the impact of ovarian hormones on the expression of δ-GABAARs, we also examined the ability of alcohol to modulate local field potentials in the BLA from male and female C57BL/6J and Gabrd-/- mice after acute and repeated exposure to alcohol. Here, we demonstrate that acute and repeated alcohol can differentially modulate oscillatory states in male and female C57BL/6J mice, a process that involves δ-GABAARs. This is the first study to demonstrate that alcohol is capable of altering network states implicated in both anxiety and alcohol use disorders.
Collapse
Affiliation(s)
- Alyssa DiLeo
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Pantelis Antonoudiou
- Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
| | - Spencer Ha
- Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
| | - Jamie L Maguire
- Department of Neuroscience, Tufts School of Medicine, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
4
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
5
|
Shu HJ, Lu X, Bracamontes J, Steinbach JH, Zorumski CF, Mennerick S. Pharmacological and Biophysical Characteristics of Picrotoxin-Resistant, δSubunit-Containing GABA A Receptors. Front Synaptic Neurosci 2021; 13:763411. [PMID: 34867260 PMCID: PMC8636460 DOI: 10.3389/fnsyn.2021.763411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
GABAA receptors (GABAARs) play a crucial role in inhibition in the central nervous system. GABAARs containing the δ subunit mediate tonic inhibition, have distinctive pharmacological properties and are associated with disorders of the nervous system. To explore this receptor sub-class, we recently developed mice with δ-containing receptors rendered resistant to the common non-competitive antagonist picrotoxin (PTX). Resistance was achieved with a knock-in point mutation (T269Y; T6’Y) in the mouse genome. Here we characterize pharmacological and biophysical features of GABAARs containing the mutated subunit to contextualize results from the KI mice. Recombinant receptors containing δ T6’Y plus WT α4 and WT β2 subunits exhibited 3-fold lower EC50 values for GABA but not THIP. GABA EC50 values in native receptors containing the mutated subunit were in the low micromolar range, in contrast with some published results that have suggested nM sensitivity of recombinant receptors. Rectification properties of δ-containing GABAARs were similar to γ2-containing receptors. Receptors containing δ T6’Y had marginally weaker sensitivity to positive allosteric modulators, likely a secondary consequence of differing GABA sensitivity. Overexpression of δT6’Y in neurons resulted in robust PTX-insensitive IPSCs, suggesting that δ-containing receptors are readily recruited by synaptically released GABA. Overall, our results give context to the use of δ receptors with the T6’Y mutation to explore the roles of δ-containing receptors in inhibition.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - John Bracamontes
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
6
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
7
|
Grotell M, Abdurakhmanova S, Elsilä LV, Korpi ER. Mice Lacking GABA A Receptor δ Subunit Have Altered Pharmaco-EEG Responses to Multiple Drugs. Front Pharmacol 2021; 12:706894. [PMID: 34234684 PMCID: PMC8255781 DOI: 10.3389/fphar.2021.706894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the brain, extrasynaptically expressed ionotropic, δ subunit-containing γ-aminobutyric acid A-type receptors (δ-GABAARs) have been implicated in drug effects at both neuronal and behavioral levels. These alterations are supposed to be caused via drug-induced modulation of receptor ionophores affecting chloride ion-mediated inhibitory tonic currents. Often, a transgenic mouse model genetically lacking the δ-GABAARs (δ-KO) has been used to study the roles of δ-GABAARs in brain functions, because a specific antagonist of the δ-GABAARs is still lacking. We have previously observed with these δ-KO mice that activation of δ-GABAARs is needed for morphine-induced conditioning of place preference, and others have suggested that δ-GABAARs act as targets selectively for low doses of ethanol. Furthermore, activation of these receptors via drug-mediated agonism induces a robust increase in the slow-wave frequency bands of electroencephalography (EEG). Here, we tested δ-KO mice (compared to littermate wild-type controls) for the pharmaco-EEG responses of a broad spectrum of pharmacologically different drug classes, including alcohol, opioids, stimulants, and psychedelics. Gaboxadol (THIP), a known superagonist of δ-GABAARs, was included as the positive control, and as expected, δ-KO mice produced a blunted pharmaco-EEG response to 6 mg/kg THIP. Pharmaco-EEGs showed notable differences between treatments but also differences between δ-KO mice and their wild-type littermates. Interestingly mephedrone (4-MMC, 5 mg/kg), an amphetamine-like stimulant, had reduced effects in the δ-KO mice. The responses to ethanol (1 g/kg), LSD (0.2 mg/kg), and morphine (20 mg/kg) were similar in δ-KO and wild-type mice. Since stimulants are not known to act on δ-GABAARs, our findings on pharmaco-EEG effects of 4-MMC suggest that δ-GABAARs are involved in the secondary indirect regulation of the brain rhythms after 4-MMC.
Collapse
Affiliation(s)
- Milo Grotell
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Lauri V Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Liao VWY, Chebib M, Ahring PK. Efficient expression of concatenated α1β2δ and α1β3δ GABA A receptors, their pharmacology and stoichiometry. Br J Pharmacol 2021; 178:1556-1573. [PMID: 33491192 DOI: 10.1111/bph.15380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE GABAA receptors containing δ-subunits are notorious for being difficult to study in vitro due to heterogeneity of expressed receptor populations and low GABA-evoked current amplitudes. Thus, there are some published misconceptions and contradictory conclusions made regarding the pharmacology and stoichiometry of δ-containing receptors. The aim of this study was to obtain robust homogenous expression of α1βδ receptors for in-depth investigation. EXPERIMENTAL APPROACH Novel δ-containing pentameric concatenated constructs were designed. The resulting α1β2δ and α1β3δ GABAA receptor concatemers were investigated by two-electrode voltage-clamp electrophysiology using Xenopus laevis oocytes. KEY RESULTS First, while homogenous α1βδ GABAA receptor pools could not be obtained by manipulating the ratio of injected cRNAs of free α1, β2/3, and δ subunits, concatenated pentameric α1β2δ and α1β3δ constructs resulted in robust expression levels of concatemers. Second, by using optimised constructs that give unidirectional assembly of concatemers, we found that the δ subunit cannot directly participate in GABA binding and receptor activation. Hence, functional δ-containing receptors are likely to all have a conventional 2α:2β:1δ stoichiometry arranged as βαβαδ when viewed counterclockwise from the extracellular side. Third, α1β2/3δ receptors were found to express efficiently in X. laevis oocytes but have a low estimated open probability of ~0.5% upon GABA activation. Because of this, these receptors are uniquely susceptible to positive allosteric modulation by, for example, neurosteroids. CONCLUSION AND IMPLICATIONS Our data answer important outstanding questions regarding the pharmacology and stoichiometry of α1δ-containing GABAA receptors and pave the way for future analysis and drug discovery efforts.
Collapse
Affiliation(s)
- Vivian Wan Yu Liao
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mary Chebib
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Philip Kiaer Ahring
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Benkherouf AY, Eerola K, Soini SL, Uusi-Oukari M. Humulone Modulation of GABA A Receptors and Its Role in Hops Sleep-Promoting Activity. Front Neurosci 2020; 14:594708. [PMID: 33177986 PMCID: PMC7591795 DOI: 10.3389/fnins.2020.594708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Humulus lupulus L. (hops) is a major constituent of beer. It exhibits neuroactive properties that make it useful as a sleeping aid. These effects are hypothesized to be mediated by an increase in GABAA receptor function. In the quest to uncover the constituents responsible for the sedative and hypnotic properties of hops, recent evidence revealed that humulone, a prenylated phloroglucinol derivative comprising 35-70% of hops alpha acids, may act as a positive modulator of GABAA receptors at low micromolar concentrations. This raises the question whether humulone plays a key role in hops pharmacological activity and potentially interacts with other modulators such as ethanol, bringing further enhancement in GABAA receptor-mediated effects of beer. Here we assessed electrophysiologically the positive modulatory activity of humulone on recombinant GABAA receptors expressed in HEK293 cells. We then examined humulone interactions with other active hops compounds and ethanol on GABA-induced displacement of [3H]EBOB binding to native GABAA receptors in rat brain membranes. Using BALB/c mice, we assessed humulone's hypnotic behavior with pentobarbital- and ethanol-induced sleep as well as sedation in spontaneous locomotion with open field test. We demonstrated for the first time that humulone potentiates GABA-induced currents in α1β3γ2 receptors. In radioligand binding to native GABAA receptors, the inclusion of ethanol enhanced humulone modulation of GABA-induced displacement of [3H]EBOB binding in rat forebrain and cerebellum as it produced a leftward shift in [3H]EBOB displacement curves. Moreover, the additive modulatory effects between humulone, isoxanthohumol and 6-prenylnaringenin were evident and corresponded to the sum of [3H]EBOB displacement by each compound individually. In behavioral tests, humulone shortened sleep onset and increased the duration of sleep induced by pentobarbital and decreased the spontaneous locomotion in open field at 20 mg/kg (i.p.). Despite the absence of humulone effects on ethanol-induced sleep onset, sleep duration was increased dose-dependently down to 10 mg/kg (i.p.). Our findings confirmed humulone's positive allosteric modulation of GABAA receptor function and displayed its sedative and hypnotic behavior. Humulone modulation can be potentially enhanced by ethanol and hops modulators suggesting a probable enhancement in the intoxicating effects of ethanol in hops-enriched beer.
Collapse
Affiliation(s)
| | | | | | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Lu X, Zorumski CF, Mennerick S. Lack of Neurosteroid Selectivity at δ vs. γ2-Containing GABA A Receptors in Dentate Granule Neurons. Front Mol Neurosci 2020; 13:6. [PMID: 32038169 PMCID: PMC6989425 DOI: 10.3389/fnmol.2020.00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
GABAA receptors mediate a large fraction of inhibitory neurotransmission in the central nervous system. Two major classes of GABAA receptors are γ2-containing receptors and δ-containing receptors, which are largely located synaptically and extrasynaptically, respectively. Neuroactive steroids such as allopregnanolone (3α5αP) and allotetrahydrodeoxycorticosterone (THDOC) are hypothesized to selectively affect δ-containing receptors over γ2-containing receptors. However, the selectivity of neurosteroids on GABAA receptor classes is controversial. In this study, we re-examined this issue using mice with picrotoxin resistance associated with either the δ or γ2 subunit. Our results show that 3α5αP potentiated phasic inhibition of GABAA receptors, and this is mainly through γ2-containing receptors. 3α5αP, with or without exogenous GABA, potentiated tonic inhibition through GABAA receptors. Surprisingly, potentiation arose from both γ2- and δ-containing receptors, even when a δ selective agonist THIP was used to activate current. Although ethanol has been proposed to act through neurosteroids and to act selectively at δ receptors, we found no evidence for ethanol potentiation of GABAA receptor function at 50 mM under our experimental conditions. Finally, we found that the actions of pentobarbital exhibited very similar effects on tonic current as 3α5αP, emphasizing the broad spectrum nature of neurosteroid potentiation. Overall, using chemogenetic analysis, our evidence suggests that in a cell population enriched for δ-containing receptors, neurosteroids act through both δ-containing and non-δ-containing receptors.
Collapse
Affiliation(s)
- Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States.,Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Darnieder LM, Melón LC, Do T, Walton NL, Miczek KA, Maguire JL. Female-specific decreases in alcohol binge-like drinking resulting from GABA A receptor delta-subunit knockdown in the VTA. Sci Rep 2019; 9:8102. [PMID: 31147611 PMCID: PMC6542821 DOI: 10.1038/s41598-019-44286-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Binge drinking is short-term drinking that achieves blood alcohol levels of 0.08 g/dl or above. It exhibits well-established sex differences in GABAergic inhibitory neurotransmission, including extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) that mediate tonic inhibition, or synaptic γ2-containing GABAARs which underlie fast, synaptic, phasic inhibition have been implicated in sex differences in binge drinking. Ovarian hormones regulate δ-GABAARs, further implicating these receptors in potential sex differences. Here, we explored the contribution of extrasynaptic δ-GABAARs to male and female binge-like drinking in a critical area of mesolimbic circuitry-the ventral tegmental area (VTA). Quantitative PCR revealed higher Gabrd transcript levels and larger tonic currents in the VTA of females compared to males. In contrast, male and female Gabrg2 transcript levels and measures of phasic inhibition were equivalent. Intra-VTA infusion of AAV-Cre-GFP in floxed Gabrd mice downregulated δ-GABAARs and decreased binge-like drinking in females. There was no significant difference in either male or female mice after GABAAR γ2 subunit reduction in the VTA following AAV-Cre-GFP infusion in floxed Gabrg2 mice. Collectively, these findings suggest sex differences and GABAAR subunit specificity in alcohol intake.
Collapse
Affiliation(s)
- L M Darnieder
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - L C Melón
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
| | - T Do
- Northeastern University, Bouvé College of Health Sciences, Boston, MA, 02115, USA
| | - N L Walton
- University of Massachusetts Boston, Honors College of Nursing and Health Sciences, Boston, MA, 02125, USA
| | - K A Miczek
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
- Tufts University, Psychology Department, Medford, MA, 02155, USA
| | - J L Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Siivonen MS, de Miguel E, Aaltio J, Manner AK, Vahermo M, Yli-Kauhaluoma J, Linden AM, Aitta-Aho T, Korpi ER. Conditioned Reward of Opioids, but not Psychostimulants, is Impaired in GABA-A Receptor δ Subunit Knockout Mice. Basic Clin Pharmacol Toxicol 2018; 123:558-566. [PMID: 29781560 DOI: 10.1111/bcpt.13043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
Abstract
Extrasynaptic δ subunit-containing γ-aminobutyric acid type A receptors (δ-GABAA Rs) are emerging as targets for a number of neuropsychopharmacological drugs, including the direct GABA site agonist gaboxadol and neuroactive steroids. Among other regions, these δ-GABAA Rs are functionally expressed in the ventral tegmental area (VTA), the cell body region of mesocorticolimbic dopamine (DA) system important for motivated behaviours, and in the target region, the nucleus accumbens. Gaboxadol and neurosteroids induce VTA DA neuron plasticity ex vivo, by inhibiting the VTA GABA neurons, and aversive place conditioning, which are absent in the δ-GABAA R knockout mice (δ-KO). It is not known whether δ-GABAA Rs are important for the effects of other drugs, such as opioids (that also inhibit GABA neurons) and stimulants (that primarily elevate monoamine levels). Here, we used δ-KO mice and conditioned place preference (CPP) test to study the rewarding effects of morphine (20 mg/kg), methamphetamine (1 mg/kg) and mephedrone (5 mg/kg). Morphine-induced nociception was also assessed using tail-flick and hot-plate tests. We found that the δ-KO mice failed to express morphine-induced CPP, but that they were more sensitive to morphine-induced analgesia in the tail-flick test. In contrast, stimulant-induced CPP in the δ-KO mice was similar to that in the wild-type controls. Thus, the conditioned rewarding effect by opioids, but not that of stimulants, was impaired in the absence of δ-GABAA Rs. Further studies are warranted to assess the potential of δ-GABAA R antagonists as possible targets for reducing morphine reward and potentiating morphine analgesia.
Collapse
Affiliation(s)
- Milo S Siivonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Aaltio
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aino K Manner
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Vahermo
- Drug Discovery Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Discovery Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Teemu Aitta-Aho
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Olsen RW. GABA A receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136:10-22. [PMID: 29407219 PMCID: PMC6027637 DOI: 10.1016/j.neuropharm.2018.01.036] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABAAR) and Type B (GABABR) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABABR is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABAAR pharmacology, the topic of this article. GABAAR are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABAAR the targets of agonist depressants and antagonist convulsants, but most GABAAR drugs act at other (allosteric) binding sites on the GABAAR proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABAAR subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABAAR subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABAAR subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABAAR subtype-dependent extracellular domain sites. Thus GABAAR subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of clinically important neuropharmacological agents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Kim S, Kim SM, Oh B, Tak J, Yang E, Jin YH. Allopregnanolone Effects on Transmission in the Brain Stem Solitary Tract Nucleus (NTS). Neuroscience 2018; 379:219-227. [PMID: 29604384 DOI: 10.1016/j.neuroscience.2018.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
During pregnancy, the progesterone metabolite, allopregnanolone (ALLO), becomes elevated and has been associated with altered levels within the CNS and resulting changes in GABAA receptor function. Pregnant animals poorly compensate reflexes for a decrease in blood pressure during hemorrhage. Previous works suggested that ALLO decreases baroreflex responses by central actions, however, the underlying mechanisms are poorly understood. In this study, we tested ALLO actions on visceral afferent synaptic transmission at second-order neurons within medial portions of the nucleus tractus solitarius (NTS) using hindbrain slices from non-pregnant female rats. Solitary tract (ST) stimulation-evoked excitatory postsynaptic currents (ST-eEPSCs) in NTS neurons directly connected to vagal afferents within the ST. ST-eEPSCs were functionally identified as monosynaptic by the latency characteristics (low jitter = standard deviation of latency, ≤200 μs) to ST stimulation. Such second-order neurons all displayed spontaneous inhibitory postsynaptic currents (sIPSCs), and low micromolar concentrations of ALLO increased frequency and decay time. At submicromolar concentrations, ALLO induced a tonic, GABAergic inhibitory current and suppressed ST-eEPSCs' amplitude. While GABAA receptor antagonist, bicuculline, blocked all ALLO effects, gabazine only blocked sIPSC actions. In current-clamp mode, ALLO perfusion increased failure of ST stimulation to trigger action potentials in most neurons. Thus, our results indicate that ALLO acts to suppress visceral afferent ST synaptic transmission at first synapses by activating pharmacologically distinct GABAA subtypes at different concentration ranges. This ALLO-mediated attenuated visceral afferent signal integration in NTS may underlie reflex changes in blood pressure during gestation.
Collapse
Affiliation(s)
- Sojin Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Moon Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jihoon Tak
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eunhee Yang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
16
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
17
|
Cuzon Carlson VC. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum. Handb Exp Pharmacol 2018; 248:79-112. [PMID: 29460153 DOI: 10.1007/164_2018_98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.
Collapse
|
18
|
Olsen RW, Liang J. Role of GABA A receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 2017; 10:45. [PMID: 28931433 PMCID: PMC5605989 DOI: 10.1186/s13041-017-0325-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
GABAergic inhibitory transmission is involved in the acute and chronic effects of ethanol on the brain and behavior. One-dose ethanol exposure induces transient plastic changes in GABAA receptor subunit levels, composition, and regional and subcellular localization. Rapid down-regulation of early responder δ subunit-containing GABAA receptor subtypes mediating ethanol-sensitive tonic inhibitory currents in critical neuronal circuits corresponds to rapid tolerance to ethanol's behavioral responses. Slightly slower, α1 subunit-containing GABAA receptor subtypes mediating ethanol-insensitive synaptic inhibition are down-regulated, corresponding to tolerance to additional ethanol behaviors plus cross-tolerance to other GABAergic drugs including benzodiazepines, anesthetics, and neurosteroids, especially sedative-hypnotic effects. Compensatory up-regulation of synaptically localized α4 and α2 subunit-containing GABAA receptor subtypes, mediating ethanol-sensitive synaptic inhibitory currents follow, but exhibit altered physio-pharmacology, seizure susceptibility, hyperexcitability, anxiety, and tolerance to GABAergic positive allosteric modulators, corresponding to heightened alcohol withdrawal syndrome. All these changes (behavioral, physiological, and biochemical) induced by ethanol administration are transient and return to normal in a few days. After chronic intermittent ethanol (CIE) treatment the same changes are observed but they become persistent after 30 or more doses, lasting for at least 120 days in the rat, and probably for life. We conclude that the ethanol-induced changes in GABAA receptors represent aberrant plasticity contributing critically to ethanol dependence and increased voluntary consumption. We suggest that the craving, drug-seeking, and increased consumption in the rat model are tied to ethanol-induced plastic changes in GABAA receptors, importantly the development of ethanol-sensitive synaptic GABAA receptor-mediating inhibitory currents that participate in maintained positive reward actions of ethanol on critical neuronal circuits. These probably disinhibit nerve endings of inhibitory GABAergic neurons on dopamine reward circuit cells, and limbic system circuits mediating anxiolysis in hippocampus and amygdala. We further suggest that the GABAA receptors contributing to alcohol dependence in the rat and presumably in human alcohol use disorders (AUD) are the ethanol-induced up-regulated subtypes containing α4 and most importantly α2 subunits. These mediate critical aspects of the positive reinforcement of ethanol in the dependent chronic user while alleviating heightened withdrawal symptoms experienced whenever ethanol is absent. The speculative conclusions based on firm observations are readily testable.
Collapse
Affiliation(s)
- Richard W. Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
| | - Jing Liang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 USA
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
19
|
Lindemeyer AK, Shen Y, Yazdani F, Shao XM, Spigelman I, Davies DL, Olsen RW, Liang J. α2 Subunit-Containing GABA A Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus. Mol Pharmacol 2017; 92:101-112. [PMID: 28536106 PMCID: PMC5508196 DOI: 10.1124/mol.116.107797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Alcohol (EtOH) intoxication causes changes in the rodent brain γ-aminobutyric acid receptor (GABAAR) subunit composition and function, playing a crucial role in EtOH withdrawal symptoms and dependence. Building evidence indicates that withdrawal from acute EtOH and chronic intermittent EtOH (CIE) results in decreased EtOH-enhanced GABAAR δ subunit-containing extrasynaptic and EtOH-insensitive α1βγ2 subtype synaptic GABAARs but increased synaptic α4βγ2 subtype, and increased EtOH sensitivity of GABAAR miniature postsynaptic currents (mIPSCs) correlated with EtOH dependence. Here we demonstrate that after acute EtOH intoxication and CIE, upregulation of hippocampal α4βγ2 subtypes, as well as increased cell-surface levels of GABAAR α2 and γ1 subunits, along with increased α2β1γ1 GABAAR pentamers in hippocampal slices using cell-surface cross-linking, followed by Western blot and coimmunoprecipitation. One-dose and two-dose acute EtOH treatments produced temporal plastic changes in EtOH-induced anxiolysis or withdrawal anxiety, and the presence or absence of EtOH-sensitive synaptic currents correlated with cell surface peptide levels of both α4 and γ1(new α2) subunits. CIE increased the abundance of novel mIPSC patterns differing in activation/deactivation kinetics, charge transfer, and sensitivity to EtOH. The different mIPSC patterns in CIE could be correlated with upregulated highly EtOH-sensitive α2βγ subtypes and EtOH-sensitive α4βγ2 subtypes. Naïve α4 subunit knockout mice express EtOH-sensitive mIPSCs in hippocampal slices, correlating with upregulated GABAAR α2 (and not α4) subunits. Consistent with α2, β1, and γ1 subunits genetically linked to alcoholism in humans, our findings indicate that these new α2-containing synaptic GABAARs could mediate the maintained anxiolytic response to EtOH in dependent individuals, rat or human, contributing to elevated EtOH consumption.
Collapse
Affiliation(s)
- A Kerstin Lindemeyer
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Yi Shen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Ferin Yazdani
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Xuesi M Shao
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Igor Spigelman
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Daryl L Davies
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| | - Jing Liang
- Department of Molecular and Medical Pharmacology (A.K.L., Y.S., F.Y., R.W.O., J.L.), and Department of Neurobiology (X.M.S.), David Geffen School of Medicine at University of California at Los Angeles, and Division of Oral Biology and Medicine, School of Dentistry (I.S.), University of California and Titus Family Department of Clinical Pharmacy, University of Southern California School of Pharmacy (D.L.D., J.L.), Los Angeles, California
| |
Collapse
|
20
|
Novel Molecule Exhibiting Selective Affinity for GABA A Receptor Subtypes. Sci Rep 2017; 7:6230. [PMID: 28740086 PMCID: PMC5524711 DOI: 10.1038/s41598-017-05966-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/06/2017] [Indexed: 01/06/2023] Open
Abstract
Aminoquinoline derivatives were evaluated against a panel of receptors/channels/transporters in radioligand binding experiments. One of these derivatives (DCUK-OEt) displayed micromolar affinity for brain γ-aminobutyric acid type A (GABAA) receptors. DCUK-OEt was shown to be a positive allosteric modulator (PAM) of GABA currents with α1β2γ2, α1β3γ2, α5β3γ2 and α1β3δ GABAA receptors, while having no significant PAM effect on αβ receptors or α1β1γ2, α1β2γ1, α4β3γ2 or α4β3δ receptors. DCUK-OEt modulation of α1β2γ2 GABAA receptors was not blocked by flumazenil. The subunit requirements for DCUK-OEt actions distinguished DCUK-OEt from other currently known modulators of GABA function (e.g., anesthetics, neurosteroids or ethanol). Simulated docking of DCUK-OEt at the GABAA receptor suggested that its binding site may be at the α + β- subunit interface. In slices of the central amygdala, DCUK-OEt acted primarily on extrasynaptic GABAA receptors containing the α1 subunit and generated increases in extrasynaptic “tonic” current with no significant effect on phasic responses to GABA. DCUK-OEt is a novel chemical structure acting as a PAM at particular GABAA receptors. Given that neurons in the central amygdala responding to DCUK-OEt were recently identified as relevant for alcohol dependence, DCUK-OEt should be further evaluated for the treatment of alcoholism.
Collapse
|
21
|
Falk-Petersen CB, Søgaard R, Madsen KL, Klein AB, Frølund B, Wellendorph P. Development of a Robust Mammalian Cell-based Assay for Studying Recombinant α 4 β 1/3 δ GABA A Receptor Subtypes. Basic Clin Pharmacol Toxicol 2017; 121:119-129. [PMID: 28299900 DOI: 10.1111/bcpt.12778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/10/2017] [Indexed: 11/29/2022]
Abstract
δ-Containing GABAA receptors are located extrasynaptically and mediate tonic inhibition. Their involvement in brain physiology positions them as interesting drug targets. There is thus a continued interest in establishing reliable recombinant expression systems for δ-containing GABAA receptors. Inconveniently, the recombinant expression of especially α4 β1/3 δ receptors has been found to be notoriously difficult, resulting in mixed receptor populations and/or stoichiometries and differential pharmacology depending on the expression system used. With the aim of developing a facile and robust 96-well format cell-based assay for extrasynaptic α4 β1/3 δ receptors, we have engineered and validated a HEK293 Flp-In™ cell line stably expressing the human GABAA δ-subunit. Upon co-transfection of α4 and β1/3 subunits, at optimized ratios, we have established a well-defined system for expressing α4 β1/3 δ receptors and used the fluorescence-based FLIPR Membrane Potential (FMP) assay to evaluate their pharmacology. Using the known reference compounds GABA and THIP, ternary α4 β1/3 δ and binary α4 β1/3 receptors could be distinguished based on potency and kinetic profiles but not efficacy. As expected, DS2 was able to potentiate only δ-containing receptors, whereas Zn2+ had an inhibitory effect only at binary receptors. By contrast, the hitherto reported δ-selective compounds, AA29504 and 3-OH-2'MeO6MF, were non-selective. The expression system was further validated using patch clamp electrophysiology, in which the superagonism of THIP was confirmed. The established FMP assay set-up, based on transient expression of human α4 and β1/3 subunits into a δ-subunit stable HEK293 Flp-In™ cell line, portrays a simple 96-well format assay as a useful supplement to electrophysiological recordings on δ-containing GABAA receptors.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Søgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Klein
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Popoola DO, Nizhnikov ME, Cameron NM. Strain-specific programming of prenatal ethanol exposure across generations. Alcohol 2017; 60:191-199. [PMID: 28433421 DOI: 10.1016/j.alcohol.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/05/2023]
Abstract
Behavioral consequences of prenatal alcohol exposure (PAE) can be transmitted from in utero-exposed F1 generation to their F2 offspring. This type of transmission is modulated by genetic and epigenetic mechanisms. This study investigated the intergenerational consequences of prenatal exposure to a low ethanol dose (1 g/kg) during gestational days 17-20, on ethanol-induced hypnosis in adolescent male F1 and F2 generations, in two strains of rats. Adolescent Long-Evans and Sprague-Dawley male rats were tested for sensitivity to ethanol-induced hypnosis at a 3.5-g/kg or 4.5-g/kg ethanol dose using the loss of righting reflex (LORR) paradigm. We hypothesized that PAE would attenuate sensitivity to ethanol-induced hypnosis in the ethanol-exposed animals in these two strains and in both generations. Interestingly, we only found this effect in Sprague-Dawley rats. Lastly, we investigated PAE related changes in expression of GABAA receptor α1, α4, and δ subunits in the cerebral cortex of the PAE sensitive Sprague-Dawley strain. We hypothesized a reduction in the cerebral cortex GABAA receptor subunits' expression in the F1 and F2 PAE groups compared to control animals. GABAA receptor α1, α4, and δ subunits protein expressions were quantified in the cerebral cortex of F1 and F2 male adolescents by western blotting. PAE did not alter cerebral cortical GABAA receptor subunit expressions in the F1 generation, but it decreased GABAA receptor α4 and δ subunits' expressions in the F2 generation, and had a tendency to decrease α1 subunit expression. We also found correlations between some of the subunits in both generations. These strain-dependent vulnerabilities to ethanol sensitivity, and intergenerational PAE-mediated changes in sensitivity to alcohol indicate that genetic and epigenetic factors interact to determine the outcomes of PAE animals and their offspring.
Collapse
Affiliation(s)
- Daniel O Popoola
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Michael E Nizhnikov
- Southern Connecticut State University, 501 Crescent Street, New Haven, CT, 06515-1355, USA
| | - Nicole M Cameron
- Psychology Department, Center for Developmental and Behavioral Neuroscience, Developmental Exposure Alcohol Research Center, Binghamton University- SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| |
Collapse
|
23
|
Cui C, Koob GF. Titrating Tipsy Targets: The Neurobiology of Low-Dose Alcohol. Trends Pharmacol Sci 2017; 38:556-568. [PMID: 28372826 DOI: 10.1016/j.tips.2017.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Limited attention has been given to our understanding of how the brain responds to low-dose alcohol (ethanol) and what molecular and cellular targets mediate these effects. Even at concentrations lower than 10mM (0.046 g% blood alcohol concentration, BAC), below the legal driving limit in the USA (BAC 0.08 g%), alcohol impacts brain function and behavior. Understanding what molecular and cellular targets mediate the initial effects of alcohol and subsequent neuroplasticity could provide a better understanding of vulnerability or resilience to developing alcohol use disorders. We review here what is known about the neurobiology of low-dose alcohol, provide insights into potential molecular targets, and discuss future directions and challenges in further defining targets of low-dose alcohol at the molecular, cellular, and circuitry levels.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Newman EL, Gunner G, Huynh P, Gachette D, Moss S, Smart T, Rudolph U, DeBold JF, Miczek KA. Effects of Gabra2 Point Mutations on Alcohol Intake: Increased Binge-Like and Blunted Chronic Drinking by Mice. Alcohol Clin Exp Res 2016; 40:2445-2455. [PMID: 27717041 PMCID: PMC5073020 DOI: 10.1111/acer.13215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alcohol use disorders are associated with single-nucleotide polymorphisms in GABRA2, the gene encoding the GABAA receptor α2-subunit in humans. Deficient GABAergic functioning is linked to impulse control disorders, intermittent explosive disorder, and to drug abuse and dependence, yet it remains unclear whether α2-containing GABAA receptor sensitivity to endogenous ligands is involved in excessive alcohol drinking. METHODS Male wild-type (Wt) C57BL/6J and point-mutated mice rendered insensitive to GABAergic modulation by benzodiazepines (BZD; H101R), allopregnanolone (ALLO) or tetrahydrodeoxycorticosterone (THDOC; Q241M), or high concentrations of ethanol (EtOH) (S270H/L277A) at α2-containing GABAA receptors were assessed for their binge-like, moderate, or escalated chronic drinking using drinking in the dark, continuous access (CA) and intermittent access (IA) to alcohol protocols, respectively. Social approach by mutant and Wt mice in forced alcohol abstinence was compared to approach by EtOH-naïve controls. Social deficits in forced abstinence were treated with allopregnanolone (0, 3.0, 10.0 mg/kg, intraperitoneal [i.p.]) or midazolam (0, 0.56, 1.0 mg/kg, i.p.). RESULTS Mice with BZD-insensitive α2-containing GABAA receptors (H101R) escalated their binge-like drinking. Mutants harboring the Q241M point substitution in Gabra2 showed blunted chronic intake in the CA and IA protocols. S270H/L277A mutants consumed excessive amounts of alcohol but, unlike wild-types, they did not show forced abstinence-induced social deficits. CONCLUSIONS These findings suggest a role for: (i) H101 in species-typical binge-like drinking, (ii) Q241 in escalated chronic drinking, and (iii) S270 and/or L277 in the development of forced abstinence-associated social deficits. Clinical findings report reduced BZD-binding sites in the cortex of dependent patients; the present findings suggest a specific role for BZD-sensitive α2-containing receptors. In addition, amino acid residue 241 in Gabra2 is necessary for positive modulation and activation of GABAA receptors by ALLO and THDOC; we postulate that neurosteroid action on α2-containing receptor may be necessary for escalated chronic EtOH intake.
Collapse
Affiliation(s)
| | | | | | | | | | - Trevor Smart
- Dept. of Neuroscience, Physiology and Pharmacology, University College London
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital,Dept. of Psychiatry, Harvard Medical School
| | | | - Klaus A. Miczek
- Dept. of Psychology, Tufts University,Dept. of Neuroscience, Tufts University
| |
Collapse
|
25
|
Activin Controls Ethanol Potentiation of Inhibitory Synaptic Transmission Through GABAA Receptors and Concomitant Behavioral Sedation. Neuropsychopharmacology 2016; 41:2024-33. [PMID: 26717882 PMCID: PMC4908639 DOI: 10.1038/npp.2015.372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 01/01/2023]
Abstract
Activin, a member of the transforming growth factor-β family, exerts multiple functions in the nervous system. Originally identified as a neurotrophic and -protective agent, increasing evidence implicates activin also in the regulation of glutamatergic and GABAergic neurotransmission in brain regions associated with cognitive and affective functions. To explore how activin impacts on ethanol potentiation of GABA synapses and related behavioral paradigms, we used an established transgenic model of disrupted activin receptor signaling, in which mice express a dominant-negative activin receptor IB mutant (dnActRIB) under the control of the CaMKIIα promoter. Comparison of GABAA receptor currents in hippocampal neurons from dnActRIB mice and wild-type mice showed that all concentrations of ethanol tested (30-150 mM) produced much stronger potentiation of phasic inhibition in the mutant preparation. In dentate granule cells of dnActRIB mice, tonic GABA inhibition was more pronounced than in wild-type neurons, but remained insensitive to low ethanol (30 mM) in both preparations. The heightened ethanol sensitivity of phasic inhibition in mutant hippocampi resulted from both pre- and postsynaptic mechanisms, the latter probably involving PKCɛ. At the behavioral level, ethanol produced significantly stronger sedation in dnActRIB mice than in wild-type mice, but did not affect consumption of ethanol or escalation after withdrawal. We link the abnormal narcotic response of dnActRIB mice to ethanol to the excessive potentiation of inhibitory neurotransmission. Our study suggests that activin counteracts oversedation from ethanol by curtailing its augmenting effect at GABA synapses.
Collapse
|
26
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
27
|
Zanettini C, Pressly JD, Ibarra MH, Smith KR, Gerak LR. Comparing the discriminative stimulus effects of modulators of GABAA receptors containing α4-δ subunits with those of gaboxadol in rats. Psychopharmacology (Berl) 2016; 233:2005-13. [PMID: 26900079 PMCID: PMC5054722 DOI: 10.1007/s00213-016-4243-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/06/2016] [Indexed: 12/11/2022]
Abstract
RATIONALE Gaboxadol is a selective agonist at γ-aminobutyric acidA (GABAA) receptors that contain α4-δ subunits, and it produces anxiolytic and sedative effects. Although adverse effects preclude its clinical use, its mechanism of action suggests that those receptors might provide novel therapeutic targets, particularly for modulators of those GABAA receptor subtypes, by retaining therapeutic effects of gaboxadol and not adverse effects. OBJECTIVES The current study compared discriminative stimulus effects of gaboxadol with those of modulators acting at GABAA receptors containing α4-δ subunits. MATERIALS Eight rats discriminated 5.6 mg/kg gaboxadol from vehicle while responding under a fixed - ratio 10 schedule for food. Modulators acting at GABAA receptors containing α4-δ subunits (pregnanolone, ethanol, and flumazenil) and receptors that do not contain those subunits (midazolam) were studied alone; pregnanolone and ethanol were also combined with gaboxadol. In addition, gaboxadol was studied in separate groups discriminating 0.32 mg/kg midazolam, 3.2 mg/kg pregnanolone, or 0.75 g/kg ethanol from vehicle. RESULTS Gaboxadol produced ≥80 % gaboxadol-lever responding and did not alter rates. No other drug produced, on average, ≥80 % drug-lever responding up to doses that decreased rates, although 1.78 mg/kg midazolam produced 32 % gaboxadol-lever responding. Ethanol and pregnanolone did not enhance the effects of gaboxadol. Rats discriminating midazolam, pregnanolone, or ethanol from vehicle responded predominantly on the vehicle lever after receiving gaboxadol. CONCLUSIONS Drugs that modulate GABAA receptors containing α4-δ subunits neither mimicked nor enhanced the discriminative stimulus effects of gaboxadol, indicating that at least some effects of gaboxadol are not shared with modulators of that GABAA receptor subtype.
Collapse
Affiliation(s)
- Claudio Zanettini
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr.-mail code 7764, San Antonio, TX, 78229-3900, USA
- Medication Development Program, Molecular Targets and Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jeffrey D Pressly
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr.-mail code 7764, San Antonio, TX, 78229-3900, USA
| | - Miguel H Ibarra
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr.-mail code 7764, San Antonio, TX, 78229-3900, USA
| | - Kelsey R Smith
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr.-mail code 7764, San Antonio, TX, 78229-3900, USA
| | - Lisa R Gerak
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr.-mail code 7764, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
28
|
Bohnsack JP, Carlson SL, Morrow AL. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons. Neuropharmacology 2016; 105:124-132. [PMID: 26767953 DOI: 10.1016/j.neuropharm.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599-7178, USA
| | - Stephen L Carlson
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599-7178, USA
| | - A Leslie Morrow
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599-7178, USA.
| |
Collapse
|
29
|
Carlson SL, Bohnsack JP, Patel V, Morrow AL. Regulation of Extrasynaptic GABAA α4 Receptors by Ethanol-Induced Protein Kinase A, but Not Protein Kinase C Activation in Cultured Rat Cerebral Cortical Neurons. J Pharmacol Exp Ther 2016; 356:148-56. [PMID: 26483396 PMCID: PMC4702069 DOI: 10.1124/jpet.115.228056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/14/2015] [Indexed: 01/14/2023] Open
Abstract
Ethanol produces changes in GABAA receptor trafficking and function that contribute to ethanol dependence symptomatology. Extrasynaptic γ-aminobutyric acid A receptors (GABAA-R) mediate inhibitory tonic current and are of particular interest because they are potentiated by physiologically relevant doses of ethanol. Here, we isolate GABAA α4δ receptors by western blotting in subsynaptic fractions to investigate protein kinase A (PKA) and protein kinase C (PKC) modulation of ethanol-induced receptor trafficking, while extrasynaptic receptor function is determined by measurement of tonic inhibition and responses evoked by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). Rat cerebral cortical neurons were grown for 18 days in vitro and exposed to ethanol and/or PKA/PKC modulators. Ethanol exposure (1 hour) did not alter GABAA α4 receptor abundance, but it increased tonic current amplitude, an effect that was prevented by inhibiting PKA, but not PKC. Direct activation of PKA, but not PKC, increased the abundance and tonic current of extrasynaptic α4δ receptors. In contrast, prolonged ethanol exposure (4 hours) reduced α4δ receptor abundance as well as tonic current, and this effect was also PKA dependent. Finally, PKC activation by ethanol or phorbol-12,13-dibutyrate (PdBu) had no effect on extrasynaptic α4δ subunit abundance or activity. We conclude that ethanol alters extrasynaptic α4δ receptor function and expression in cortical neurons in a PKA-dependent manner, but ethanol activation of PKC does not influence these receptors. These results could have clinical relevance for therapeutic strategies to restore normal GABAergic functioning for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Stephen L Carlson
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Peyton Bohnsack
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Vraj Patel
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies and Departments of Psychiatry and Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Draberova L, Paulenda T, Halova I, Potuckova L, Bugajev V, Bambouskova M, Tumova M, Draber P. Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome. PLoS One 2015; 10:e0144596. [PMID: 26658290 PMCID: PMC4686000 DOI: 10.1371/journal.pone.0144596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/21/2015] [Indexed: 12/12/2022] Open
Abstract
Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane.
Collapse
Affiliation(s)
- Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail: (LD); (PD)
| | - Tomas Paulenda
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ivana Halova
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Potuckova
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Bambouskova
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail: (LD); (PD)
| |
Collapse
|
31
|
Fuhl A, Müller-Dahlhaus F, Lücke C, Toennes SW, Ziemann U. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex. Neuropsychopharmacology 2015; 40:2969-80. [PMID: 26038159 PMCID: PMC4864632 DOI: 10.1038/npp.2015.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022]
Abstract
Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.
Collapse
Affiliation(s)
- Anna Fuhl
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany,Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Caroline Lücke
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University, Frankfurt am Main, Germany
| | - Stefan W Toennes
- Department of Forensic Toxicology, Goethe-University, Frankfurt am Main, Germany
| | - Ulf Ziemann
- Department of Neurology, Goethe-University, Frankfurt am Main, Germany,Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany,Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, Tübingen, D-72076, Germany, Tel: +49 7071 2982049, Fax: +49 7071 295260, E-mail:
| |
Collapse
|
32
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
33
|
Miczek KA, DeBold JF, Hwa LS, Newman EL, de Almeida RMM. Alcohol and violence: neuropeptidergic modulation of monoamine systems. Ann N Y Acad Sci 2015; 1349:96-118. [PMID: 26285061 DOI: 10.1111/nyas.12862] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neurobiological processes underlying the epidemiologically established link between alcohol and several types of social, aggressive, and violent behavior remain poorly understood. Acute low doses of alcohol, as well as withdrawal from long-term alcohol use, may lead to escalated aggressive behavior in a subset of individuals. An urgent task will be to disentangle the host of interacting genetic and environmental risk factors in individuals who are predisposed to engage in escalated aggressive behavior. The modulation of 5-hydroxytryptamine impulse flow by gamma-aminobutyric acid (GABA) and glutamate, acting via distinct ionotropic and metabotropic receptor subtypes in the dorsal raphe nucleus during alcohol consumption, is of critical significance in the suppression and escalation of aggressive behavior. In anticipation and reaction to aggressive behavior, neuropeptides such as corticotropin-releasing factor, neuropeptide Y, opioid peptides, and vasopressin interact with monoamines, GABA, and glutamate to attenuate and amplify aggressive behavior in alcohol-consuming individuals. These neuromodulators represent novel molecular targets for intervention that await clinical validation. Intermittent episodes of brief social defeat during aggressive confrontations are sufficient to cause long-lasting neuroadaptations that can lead to the escalation of alcohol consumption.
Collapse
Affiliation(s)
- Klaus A Miczek
- Departments of Pharmacology, Psychiatry, and Neuroscience, Tufts University, Boston, Massachusetts.,Department of Psychology, Tufts University, Medford, Massachusetts
| | - Joseph F DeBold
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Lara S Hwa
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Emily L Newman
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Rosa M M de Almeida
- Department of Psychology, LPNeC, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Oxytocin prevents ethanol actions at δ subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats. Proc Natl Acad Sci U S A 2015; 112:3104-9. [PMID: 25713389 DOI: 10.1073/pnas.1416900112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even moderate doses of alcohol cause considerable impairment of motor coordination, an effect that substantially involves potentiation of GABAergic activity at δ subunit-containing GABA(A) receptors (δ-GABA(A)Rs). Here, we demonstrate that oxytocin selectively attenuates ethanol-induced motor impairment and ethanol-induced increases in GABAergic activity at δ-GABA(A)Rs and that this effect does not involve the oxytocin receptor. Specifically, oxytocin (1 µg i.c.v.) given before ethanol (1.5 g/kg i.p.) attenuated the sedation and ataxia induced by ethanol in the open-field locomotor test, wire-hanging test, and righting-reflex test in male rats. Using two-electrode voltage-clamp electrophysiology in Xenopus oocytes, oxytocin was found to completely block ethanol-enhanced activity at α4β1δ and α4β3δ recombinant GABA(A)Rs. Conversely, ethanol had no effect when applied to α4β1 or α4β3 cells, demonstrating the critical presence of the δ subunit in this effect. Oxytocin had no effect on the motor impairment or in vitro effects induced by the δ-selective GABA(A)R agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, which binds at a different site on δ-GABA(A)Rs than ethanol. Vasopressin, which is a nonapeptide with substantial structural similarity to oxytocin, did not alter ethanol effects at δ-GABA(A)Rs. This pattern of results confirms the specificity of the interaction between oxytocin and ethanol at δ-GABA(A)Rs. Finally, our in vitro constructs did not express any oxytocin receptors, meaning that the observed interactions occur directly at δ-GABA(A)Rs. The profound and direct interaction observed between oxytocin and ethanol at the behavioral and cellular level may have relevance for the development of novel therapeutics for alcohol intoxication and dependence.
Collapse
|
35
|
Probing α4βδ GABAA receptor heterogeneity: differential regional effects of a functionally selective α4β1δ/α4β3δ receptor agonist on tonic and phasic inhibition in rat brain. J Neurosci 2015; 34:16256-72. [PMID: 25471566 DOI: 10.1523/jneurosci.1495-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the present study, the orthosteric GABAA receptor (GABAAR) ligand 4,5,6,7-tetrahydroisothiazolo[5,4-c]pyridin-3-ol (Thio-THIP) was found to possess a highly interesting functional profile at recombinant human GABAARs and native rat GABAARs. Whereas Thio-THIP displayed weak antagonist activity at α1,2,5β2,3γ2S and ρ1 GABAARs and partial agonism at α6β2,3δ GABAARs expressed in Xenopus oocytes, the pronounced agonism exhibited by the compound at α4β1δ and α4β3δ GABAARs was contrasted by its negligible activity at the α4β2δ subtype. To elucidate to which extent this in vitro profile translated into functionality at native GABAARs, we assessed the effects of 100 μm Thio-THIP at synaptic and extrasynaptic receptors in principal cells of four different brain regions by slice electrophysiology. In concordance with its α6β2,3δ agonism, Thio-THIP evoked robust currents through extrasynaptic GABAARs in cerebellar granule cells. In contrast, the compound did not elicit significant currents in dentate gyrus granule cells or in striatal medium spiny neurons (MSNs), indicating predominant expression of extrasynaptic α4β2δ receptors in these cells. Interestingly, Thio-THIP evoked differential degrees of currents in ventrobasal thalamus neurons, a diversity that could arise from differential expression of extrasynaptic α4βδ subtypes in the cells. Finally, whereas 100 μm Thio-THIP did not affect the synaptic currents in ventrobasal thalamus neurons or striatal MSNs, it reduced the current amplitudes recorded from dentate gyrus granule cells, most likely by targeting perisynaptic α4βδ receptors expressed at distal dendrites of these cells. Being the first published ligand capable of discriminating between β2- and β3-containing receptor subtypes, Thio-THIP could be a valuable tool in explorations of native α4βδ GABAARs.
Collapse
|
36
|
Bhandage AK, Jin Z, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B. GABA-A and NMDA receptor subunit mRNA expression is altered in the caudate but not the putamen of the postmortem brains of alcoholics. Front Cell Neurosci 2014; 8:415. [PMID: 25538565 PMCID: PMC4257153 DOI: 10.3389/fncel.2014.00415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/15/2014] [Indexed: 01/16/2023] Open
Abstract
Chronic consumption of alcohol by humans has been shown to lead to impairment of executive and cognitive functions. Here, we have studied the mRNA expression of ion channel receptors for glutamate and GABA in the dorsal striatum of post-mortem brains from alcoholics (n = 29) and normal controls (n = 29), with the focus on the caudate nucleus that is associated with the frontal cortex executive functions and automatic thinking and on the putamen area that is linked to motor cortices and automatic movements. The results obtained by qPCR assay revealed significant changes in the expression of specific excitatory ionotropic glutamate and inhibitory GABA-A receptor subunit genes in the caudate but not the putamen. Thus, in the caudate we found reduced levels of mRNAs encoding the GluN2A glutamate receptor and the δ, ε, and ρ2 GABA-A receptor subunits, and increased levels of the mRNAs encoding GluD1, GluD2, and GABA-A γ1 subunits in the alcoholics as compared to controls. Interestingly in the controls, 11 glutamate and 5 GABA-A receptor genes were more prominently expressed in the caudate than the putamen (fold-increase varied from 1.24 to 2.91). Differences in gene expression patterns between the striatal regions may underlie differences in associated behavioral outputs. Our results suggest an altered balance between caudate-mediated voluntarily controlled and automatic behaviors in alcoholics, including diminished executive control on goal-directed alcohol-seeking behavior.
Collapse
Affiliation(s)
- Amol K Bhandage
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Zhe Jin
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| | - Igor Bazov
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Olga Kononenko
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Georgy Bakalkin
- Pharmacology, Institute of Biomedicine, University of Helsinki Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmaceutical Bioscience (Biological Research on Drug Dependence), Biomedical Center, Uppsala University Uppsala, Sweden
| | - Bryndis Birnir
- Molecular Physiology and Neuroscience, Biomedical Center, Uppsala University Uppsala, Sweden
| |
Collapse
|
37
|
Fritz BM, Boehm SL. Site-specific microinjection of Gaboxadol into the infralimbic cortex modulates ethanol intake in male C57BL/6J mice. Behav Brain Res 2014; 273:8-15. [PMID: 25043731 DOI: 10.1016/j.bbr.2014.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/27/2022]
Abstract
Extrasynaptic GABAA receptors, often identified as those containing both α4 and δ subunits, demonstrate super-sensitivity to GABA and are involved in tonic inhibitory processes regulating activity within mesolimbocortical circuitry. Rodent studies testing the effects of the δ-subunit selective agonist Gaboxadol (THIP) on alcohol consumption have produced mixed results. The goal of this study was to determine the role of extrasynaptic GABAA receptors located in the infralimbic cortex (ILC) in the alcohol consumption of male C57BL/6J (B6) mice. The ILC is of interest due to its demonstrated involvement in stress reactivity. Furthermore, alcohol exposure has been shown to interfere with extinction learning; impairments of which may be related to inflexible behavior (i.e., problematic alcohol consumption). Adult male B6 mice were bilaterally implanted with guide cannulas aimed at the ILC and were subsequently offered daily limited access to 20% ethanol or 5% sucrose for 7 days. Immediately prior to ethanol or sucrose access on day 7, mice were bilaterally injected with 50 or 100ng THIP (25 or 50ng per side respectively) or saline vehicle into the ILC. The highest dose of intra-ILC THIP (100ng/mouse) increased alcohol intake relative to vehicle controls, although control animals consumed relatively little ethanol following infusion. Intra-ILC THIP had no effect on sucrose consumption (p>0.05), suggesting that the effect of THIP was selective for ethanol consumption. Together, these findings suggest that THIP may have effectively prevented the decrease in ethanol intake on day 7 induced by the microinjection process, perhaps supporting a suggested role for the ILC in adaptive learning processes and behavioral flexibility.
Collapse
Affiliation(s)
- Brandon M Fritz
- Indiana Alcohol Research Center, Department of Psychology Indiana University - Purdue University Indianapolis, IN, United States.
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology Indiana University - Purdue University Indianapolis, IN, United States
| |
Collapse
|
38
|
Mutations in the Gabrb1 gene promote alcohol consumption through increased tonic inhibition. Nat Commun 2014; 4:2816. [PMID: 24281383 PMCID: PMC3843143 DOI: 10.1038/ncomms3816] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023] Open
Abstract
Alcohol-dependence is a common, complex and debilitating disorder with genetic and environmental influences. Here we show that alcohol consumption increases following mutations to the γ-aminobutyric acidA receptor (GABAAR) β1 subunit gene (Gabrb1). Using N-ethyl-N-nitrosourea mutagenesis on an alcohol-averse background (F1 BALB/cAnN × C3H/HeH), we develop a mouse model exhibiting strong heritable preference for ethanol resulting from a dominant mutation (L285R) in Gabrb1. The mutation causes spontaneous GABA ion channel opening and increases GABA sensitivity of recombinant GABAARs, coupled to increased tonic currents in the nucleus accumbens, a region long-associated with alcohol reward. Mutant mice work harder to obtain ethanol, and are more sensitive to alcohol intoxication. Another spontaneous mutation (P228H) in Gabrb1 also causes high ethanol consumption accompanied by spontaneous GABA ion channel opening and increased accumbal tonic current. Our results provide a new and important link between GABAAR function and increased alcohol consumption that could underlie some forms of alcohol abuse.
Collapse
|
39
|
Deleterious effects of a low amount of ethanol on LTP-like plasticity in human cortex. Neuropsychopharmacology 2014; 39:1508-18. [PMID: 24385131 PMCID: PMC3988555 DOI: 10.1038/npp.2013.350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/28/2013] [Accepted: 12/28/2013] [Indexed: 11/08/2022]
Abstract
Ingesting ethanol (EtOH) at low doses during social drinking is a common human behavior for its facilitating effects on social interactions. However, low-dose EtOH may have also detrimental effects that so far are underexplored. Here we sought to test the effects of low-dose EtOH on long-term potentiation (LTP)-like plasticity in human motor cortex. Previous cellular experiments showed that low-dose EtOH potentiates extrasynaptic GABAAR and reduces NMDAR-mediated currents, processes that would limit the expression of LTP. Paired associative transcranial magnetic stimulation (PASLTP) was employed in nine healthy subjects for induction of LTP-like plasticity, indexed by a long-term increase in motor-evoked potential input-output curves. Synaptic α1-GABAAR function was measured by saccadic peak velocity (SPV). Very low doses of EtOH (resulting in blood concentrations of <5 mM) suppressed LTP-like plasticity but did not affect SPV when compared with a placebo condition. In contrast, 1 mg of alprazolam, a classical benzodiazepine, or 10 mg of zolpidem, a non-benzodiazepine hypnotic, decreased SPV but did not significantly affect LTP-like plasticity when compared with placebo. This double dissociation of low-dose EtOH vs alprazolam/zolpidem effects is best explained by the putatively high affinity of EtOH but not alprazolam/zolpidem to extrasynaptic GABAARs and to NMDARs. Findings suggest that enhancement of extrasynaptic GABAAR-mediated tonic inhibition and/or reduction of NMDAR-mediated neurotransmission by EtOH blocks LTP-like plasticity in human cortex at very low doses that are easily reached during social drinking. Therefore, low-dose EtOH may jeopardize LTP-dependent processes, such as learning and memory formation.
Collapse
|
40
|
Marowsky A, Vogt KE. Delta-subunit-containing GABAA-receptors mediate tonic inhibition in paracapsular cells of the mouse amygdala. Front Neural Circuits 2014; 8:27. [PMID: 24723854 PMCID: PMC3971179 DOI: 10.3389/fncir.2014.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/04/2014] [Indexed: 11/13/2022] Open
Abstract
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of their activity is thus thought to affect amygdala output and the generation of fear and anxiety. Recent evidence indicates that pcs express benzodiazepine (BZ)-sensitive GABAA receptor (GABAAR) variants containing the α2- and α3-subunit for transmission of post-synaptic currents, yet little is known about the expression of extrasynaptic GABAARs, mediating tonic inhibition and regulating neuronal excitability. Here, we show that pcs from the lateral and medial intercalated cell cluster (l- and mITC, respectively) express a tonic GABAergic conductance that could be significantly increased in a concentration-dependent manner by the δ-preferring GABAAR agonist THIP (0.5-10 μM), but not by the BZ diazepam (1 μM). The neurosteroid THDOC (300 nM) also increased tonic currents in pcs significantly, but only in the presence of additional GABA (5 μM). Immunohistochemical stainings revealed that both the δ-GABAAR and the α4-GABAAR subunit are expressed throughout all ITCs, while no staining for the α5-GABAAR subunit could be detected. Moreover, 1 μM THIP dampened excitability in pcs most likely by increasing shunting inhibition. In line with this, THIP significantly decreased lITC-generated inhibition in target cells residing in the BLA nucleus by 30%. Taken together these results demonstrate for the first time that pcs express a tonic inhibitory conductance mediated most likely by α4/δ-containing GABAARs. This data also suggest that δ-GABAAR targeting compounds might possibly interfere with pcs-related neuronal processes such as fear extinction.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
41
|
Wallner M, Hanchar HJ, Olsen RW. Alcohol selectivity of β3-containing GABAA receptors: evidence for a unique extracellular alcohol/imidazobenzodiazepine Ro15-4513 binding site at the α+β- subunit interface in αβ3δ GABAA receptors. Neurochem Res 2014; 39:1118-26. [PMID: 24500446 DOI: 10.1007/s11064-014-1243-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/08/2023]
Abstract
GABAA receptors (GABARs) have long been the focus for acute alcohol actions with evidence for behaviorally relevant low millimolar alcohol actions on tonic GABA currents and extrasynaptic α4/6, δ, and β3 subunit-containing GABARs. Using recombinant expression in oocytes combined with two electrode voltage clamp, we show with chimeric β2/β3 subunits that differences in alcohol sensitivity among β subunits are determined by the extracellular N-terminal part of the protein. Furthermore, by using point mutations, we show that the β3 alcohol selectivity is determined by a single amino acid residue in the N-terminus that differs between GABAR β subunits (β3Y66, β2A66, β1S66). The β3Y66 residue is located in a region called "loop D" which in γ subunits contributes to the imidazobenzodiazepine (iBZ) binding site at the classical α+γ2- subunit interface. In structural homology models β3Y66 is the equivalent of γ2T81 which is one of three critical residues lining the benzodiazepine binding site in the γ2 subunit loop D, opposite to the "100H/R-site" benzodiazepine binding residue in GABAR α subunits. We have shown that the α6R100Q mutation at this site leads to increased alcohol-induced motor in-coordination in alcohol non-tolerant rats carrying the α6R100Q mutated allele. Based on the identification of these two amino acid residues α6R100 and β66 we propose a model in which β3 and δ containing GABA receptors contain a unique ethanol site at the α4/6+β3- subunit interface. This site is homologous to the classical benzodiazepine binding site and we propose that it not only binds ethanol at relevant concentrations (EC50-17 mM), but also has high affinity for a few selected benzodiazepine site ligands including alcohol antagonistic iBZs (Ro15-4513, RY023, RY024, RY80) which have in common a large moiety at the C7 position of the benzodiazepine ring. We suggest that large moieties at the C7-BZ ring compete with alcohol for its binding pocket at a α4/6+β3- EtOH/Ro15-4513 site. This model reconciles many years of alcohol research on GABARs and provides a plausible explanation for the competitive relationship between ethanol and iBZ alcohol antagonists in which bulky moieties at the C7 position compete with ethanol for its binding site. We conclude with a critical discussion to suggest that much of the controversy surrounding this issue might be due to fundamental species differences in alcohol and alcohol antagonist responses in rats and mice.
Collapse
Affiliation(s)
- M Wallner
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Room 23-338 CHS, Charles Young Drive South, Los Angeles, CA, 90095-1735, USA,
| | | | | |
Collapse
|
42
|
Patel B, Mortensen M, Smart TG. Stoichiometry of δ subunit containing GABA(A) receptors. Br J Pharmacol 2014; 171:985-94. [PMID: 24206220 PMCID: PMC3925037 DOI: 10.1111/bph.12514] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/24/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. EXPERIMENTAL APPROACH Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. KEY RESULTS Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. CONCLUSIONS AND IMPLICATIONS Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ.
Collapse
Affiliation(s)
- B Patel
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - M Mortensen
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - T G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| |
Collapse
|
43
|
Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014; 48:1-17. [PMID: 24447472 DOI: 10.1016/j.alcohol.2013.09.045] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol's acute and long-term pharmacological consequences.
Collapse
|
44
|
Mohr C, Kolotushkina O, Kaplan JS, Welsh J, Daunais JB, Grant KA, Rossi DJ. Primate cerebellar granule cells exhibit a tonic GABAAR conductance that is not affected by alcohol: a possible cellular substrate of the low level of response phenotype. Front Neural Circuits 2013; 7:189. [PMID: 24324408 PMCID: PMC3840389 DOI: 10.3389/fncir.2013.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/08/2013] [Indexed: 11/13/2022] Open
Abstract
In many rodent brain regions, alcohol increases vesicular release of GABA, resulting in an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and the magnitude of tonic GABAA receptor (GABAAR) currents. A neglected issue in translating the rodent literature to humans is the possibility that phylogenetic differences alter the actions of alcohol. To address this issue we made voltage-clamp recordings from granule cells (GCs) in cerebellar slices from the non-human primate (NHP), Macaca fascicularis. We found that similar to Sprague Dawley rats (SDRs), NHP GCs exhibit a tonic conductance generated by α6δ subunit containing GABAARs, as evidenced by its blockade by the broad spectrum GABAAR antagonist, GABAzine (10 μM), inhibition by α6 selective antagonist, furosemide (100 μM), and enhancement by THDOC (10-20 nM) and THIP (500 nM). In contrast to SDR GCs, in most NHP GCs (~60%), application of EtOH (25-105 mM) did not increase sIPSC frequency or the tonic GABAAR current. In a minority of cells (~40%), EtOH did increase sIPSC frequency and the tonic current. The relative lack of response to EtOH was associated with reduced expression of neuronal nitric oxide synthase (nNOS), which we recently reported mediates EtOH-induced enhancement of vesicular GABA release in rats. The EtOH-induced increase in tonic GABAAR current was significantly smaller in NHPs than in SDRs, presumably due to less GABA release, because there were no obvious differences in the density of GABAARs or GABA transporters between SDR and NHP GCs. Thus, EtOH does not directly modulate α6δ subunit GABAARs in NHPs. Instead, EtOH enhanced GABAergic transmission is mediated by enhanced GABA release. Further, SDR GC responses to alcohol are only representative of a subpopulation of NHP GCs. This suggests that the impact of EtOH on NHP cerebellar physiology will be reduced compared to SDRs, and will likely have different computational and behavioral consequences.
Collapse
Affiliation(s)
- Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Smith SS. α4βδ GABAA receptors and tonic inhibitory current during adolescence: effects on mood and synaptic plasticity. Front Neural Circuits 2013; 7:135. [PMID: 24027497 PMCID: PMC3759753 DOI: 10.3389/fncir.2013.00135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/28/2013] [Indexed: 11/13/2022] Open
Abstract
The onset of puberty is associated with alterations in mood as well as changes in cognitive function, which can be more pronounced in females. Puberty onset in female mice is associated with increased expression of α4βδ γ-amino-butyric acid-A (GABAA) receptors (GABARs) in CA1 hippocampus. These receptors, which normally have low expression in this central nervous system (CNS) site, emerge along the apical dendrites as well as on the dendritic spines of pyramidal neurons, adjacent to excitatory synapses where they underlie a tonic inhibition that shunts excitatory current and impairs activation of N-methyl-D-aspartate (NMDA) receptors, the trigger for synaptic plasticity. As would be expected, α4βδ expression at puberty also prevents long-term potentiation (LTP), an in vitro model of learning which is a function of network activity, induced by theta burst stimulation of the Schaffer collaterals to the CA1 hippocampus. The expression of these receptors also impairs spatial learning in a hippocampal-dependent task. These impairments are not seen in δ knock-out (-/-) mice, implicating α4βδ GABARs. α4βδ GABARs are also a sensitive target for steroids such as THP ([allo]pregnanolone or 3α-OH-5α[β]-pregnan-20-one), which are dependent upon the polarity of GABAergic current. It is well-known that THP can increase depolarizing current gated by α4βδ GABARs, but more recent data suggest that THP can reduce hyperpolarizing current by accelerating receptor desensitization. At puberty, THP reduces the hyperpolarizing GABAergic current, which removes the shunting inhibition that impairs synaptic plasticity and learning at this time. However, THP, a stress steroid, also increases anxiety, via its action at α4βδ GABARs because it is not seen in δ(-/-) mice. These findings will be discussed as well as their relevance to changes in mood and cognition at puberty, which can be a critical period for certain types of learning and when anxiety disorders and mood swings can emerge.
Collapse
Affiliation(s)
- Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center Brooklyn, NY 11203, USA.
| |
Collapse
|
46
|
Santhakumar V, Meera P, Karakossian MH, Otis TS. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition. PLoS One 2013; 8:e72976. [PMID: 23977374 PMCID: PMC3747091 DOI: 10.1371/journal.pone.0072976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 07/23/2013] [Indexed: 01/04/2023] Open
Abstract
GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants.
Collapse
Affiliation(s)
- Vijayalakshmi Santhakumar
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
47
|
McCracken LM, Trudell JR, McCracken ML, Harris RA. Zinc-dependent modulation of α2- and α3-glycine receptor subunits by ethanol. Alcohol Clin Exp Res 2013; 37:2002-10. [PMID: 23895467 DOI: 10.1111/acer.12192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Strychnine-sensitive glycine receptors (GlyRs) are expressed throughout the brain and spinal cord and are among the strongly supported protein targets of alcohol. This is based largely on studies of the α1-subunit; however, α2- and α3-GlyR subunits are as or more abundantly expressed than α1-GlyRs in multiple forebrain brain areas considered to be important for alcohol-related behaviors, and uniquely some α3-GlyRs undergo RNA editing. Nanomolar and low micromolar concentrations of zinc ions potentiate GlyR function, and in addition to zinc's effects on glycine-activated currents, we have recently shown that physiological concentrations of zinc also enhance the magnitude of ethanol (EtOH)'s effects on α1-GlyRs. METHODS Using 2-electrode voltage-clamp electrophysiology in oocytes expressing either α2- or α3-GlyRs, we first tested the hypothesis that the effects of EtOH on α2- and α3-GlyRs would be zinc dependent, as we have previously reported for α1-GlyRs. Next, we constructed an α3P185L-mutant GlyR to test whether RNA-edited and unedited GlyRs contain differences in EtOH sensitivity. Last, we built a homology model of the α3-GlyR subunit. RESULTS The effects of EtOH (20 to 200 mM) on both subunits were greater in the presence than in the absence of 500 nM added zinc. The α3P185L-mutation that corresponds to RNA editing increased sensitivity to glycine and decreased sensitivity to EtOH. CONCLUSIONS Our findings provide further evidence that zinc is important for determining the magnitude of EtOH's effects at GlyRs and suggest that by better understanding zinc/EtOH interactions at GlyRs, we may better understand the sites and mechanisms of EtOH action.
Collapse
Affiliation(s)
- Lindsay M McCracken
- The Waggoner Center for Alcohol and Addiction Research , The University of Texas at Austin, Austin, Texas
| | | | | | | |
Collapse
|
48
|
Abstract
Ethanol's effects on intracellular signaling pathways contribute to acute effects of ethanol as well as to neuroadaptive responses to repeated ethanol exposure. In this chapter we review recent discoveries that demonstrate how ethanol alters signaling pathways involving several receptor tyrosine kinases and intracellular tyrosine and serine-threonine kinases, with consequences for regulation of cell surface receptor function, gene expression, protein translation, neuronal excitability and animal behavior. We also describe recent work that demonstrates a key role for ethanol in regulating the function of scaffolding proteins that organize signaling complexes into functional units. Finally, we review recent exciting studies demonstrating ethanol modulation of DNA and histone modification and the expression of microRNAs, indicating epigenetic mechanisms by which ethanol regulates neuronal gene expression and addictive behaviors.
Collapse
Affiliation(s)
- Dorit Ron
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| | - Robert O. Messing
- Ernest Gallo Clinic and Research Center, University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608, USA
| |
Collapse
|
49
|
Abstract
The GABA(A) receptors are the major inhibitory neurotransmitter receptors in mammalian brain. Each isoform consists of five homologous or identical subunits surrounding a central chloride ion-selective channel gated by GABA. How many isoforms of the receptor exist is far from clear. GABA(A) receptors located in the postsynaptic membrane mediate neuronal inhibition that occurs in the millisecond time range; those located in the extrasynaptic membrane respond to ambient GABA and confer long-term inhibition. GABA(A) receptors are responsive to a wide variety of drugs, e.g. benzodiazepines, which are often used for their sedative/hypnotic and anxiolytic effects.
Collapse
Affiliation(s)
- Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
50
|
Engin E, Liu J, Rudolph U. α2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol Ther 2012; 136:142-52. [PMID: 22921455 DOI: 10.1016/j.pharmthera.2012.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
GABA(A) receptors have important physiological functions, as revealed by pharmacological studies and experiments involving gene-targeted mouse models, and are the target of widely used drugs such as the benzodiazepines. In this review, we are summarizing current knowledge about the function of α2-containing GABA(A) receptors, a receptor subtype representing approximately 15-20% of all GABA(A) receptors. This receptor subtype mediates anxiolytic-like, reward-enhancing, and antihyperalgesic actions of diazepam, and has antidepressant-like properties. Secondary insufficiency of α2-containing GABA(A) receptors has been postulated to play a role in the pathogenesis of schizophrenia, and may be involved in cognitive impairment in other disorders. Moreover, polymorphisms in the GABRA2 gene encoding the GABA(A) receptor α2 subunit have been found to be linked to chronic alcohol dependence and to polydrug abuse. Thus, α2-containing GABA(A) receptors are involved in the regulation and/or modulation of emotional behaviors and of chronic pain, and appear to be a valid target for novel therapeutic approaches for the treatment of anxiety, depression, schizophrenia and chronic pain.
Collapse
Affiliation(s)
- Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA 02478, USA
| | | | | |
Collapse
|