1
|
Bigalke JA, Greenlund IM, Solis-Montenegro TX, Durocher JJ, Joyner MJ, Carter JR. Binge Alcohol Consumption Elevates Sympathetic Transduction to Blood Pressure: A Randomized Controlled Trial. Hypertension 2024; 81:2140-2151. [PMID: 39119705 PMCID: PMC11410516 DOI: 10.1161/hypertensionaha.124.23416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Alcohol consumption is associated with cardiovascular disease, and the sympathetic nervous system is a suspected mediator. The present study investigated sympathetic transduction of muscle sympathetic nerve activity to blood pressure at rest and in response to cold pressor test following evening binge alcohol or fluid control, with the hypothesis that sympathetic transduction would be elevated the morning after binge alcohol consumption. METHODS Using a randomized, fluid-controlled (FC) crossover design, 26 healthy adults (12 male, 14 female, 25±6 years, 27±4 kg/m2) received an evening binge alcohol dose and a FC. All participants underwent next-morning autonomic-cardiovascular testing consisting of muscle sympathetic nerve activity, beat-to-beat blood pressure, and heart rate during a 10-minute rest period and a 2-minute cold pressor test. Sympathetic transduction was assessed at rest and during the cold pressor test in both experimental conditions. RESULTS Evening alcohol increased heart rate (FC: 60±9 versus alcohol: 64±9 bpm; P=0.010) but did not alter resting mean arterial pressure (FC: 80±6 versus alcohol: 80±7 mm Hg; P=0.857) or muscle sympathetic nerve activity (FC: 18±9 versus alcohol: 20±8 bursts/min; P=0.283). Sympathetic transduction to mean arterial pressure (time×condition; P=0.003), diastolic blood pressure (time×condition; P=0.010), and total vascular conductance (time×condition; P=0.004) was augmented after alcohol at rest. Sympathetic transduction during the cold pressor test was also elevated after evening binge alcohol consumption (P=0.002). CONCLUSIONS These findings suggest that evening binge alcohol consumption leads to augmented morning-after sympathetic transduction of muscle sympathetic nerve activity to blood pressure, highlighting a new mechanism whereby chronic or excessive alcohol consumption contributes to cardiovascular disease progression via altered end-organ responsiveness to sympathetic neural outflow. REGISTRATION URL: https://clinicaltrials.gov/study/NCT03567434; Unique identifier: NCT03567434.
Collapse
Affiliation(s)
- Jeremy A. Bigalke
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Department of Psychology, Montana State University, Bozeman, MT, USA
| | - Ian M. Greenlund
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Department of Psychology, Montana State University, Bozeman, MT, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - John J. Durocher
- Department of Biological Sciences and Integrative Physiology and Health Sciences Center, Purdue University Northwest, Hammond, IN, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason R. Carter
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA
- Department of Health & Human Development, Montana State University, Bozeman, MT, USA
| |
Collapse
|
2
|
Padovan JC, Dourado TMH, Pimenta GF, Bruder-Nascimento T, Tirapelli CR. Reactive Oxygen Species Are Central Mediators of Vascular Dysfunction and Hypertension Induced by Ethanol Consumption. Antioxidants (Basel) 2023; 12:1813. [PMID: 37891892 PMCID: PMC10604002 DOI: 10.3390/antiox12101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Consumption of high amounts of ethanol is a risk factor for development of cardiovascular diseases such as arterial hypertension. The hypertensive state induced by ethanol is a complex multi-factorial event, and oxidative stress is a pathophysiological hallmark of vascular dysfunction associated with ethanol consumption. Increasing levels of reactive oxygen species (ROS) in the vasculature trigger important processes underlying vascular injury, including accumulation of intracellular Ca2+ ions, reduced bioavailability of nitric oxide (NO), activation of mitogen-activated protein kinases (MAPKs), endothelial dysfunction, and loss of the anticontractile effect of perivascular adipose tissue (PVAT). The enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays a central role in vascular ROS generation in response to ethanol. Activation of the renin-angiotensin-aldosterone system (RAAS) is an upstream mechanism which contributes to NADPH oxidase stimulation, overproduction of ROS, and vascular dysfunction. This review discusses the mechanisms of vascular dysfunction induced by ethanol, detailing the contribution of ROS to these processes. Data examining the association between neuroendocrine changes and vascular oxidative stress induced by ethanol are also reviewed and discussed. These issues are of paramount interest to public health as ethanol contributes to blood pressure elevation in the general population, and it is linked to cardiovascular conditions and diseases.
Collapse
Affiliation(s)
- Júlio C. Padovan
- Laboratory of Blood and Vascular Biology, The Rockefeller University, New York, NY 10065, USA;
| | - Thales M. H. Dourado
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-902, SP, Brazil; (T.M.H.D.); (G.F.P.)
- Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| | - Gustavo F. Pimenta
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto 14040-902, SP, Brazil; (T.M.H.D.); (G.F.P.)
- Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| | - Thiago Bruder-Nascimento
- Department of Pediatrics and Vascular Medicine Institute (VMI), University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Carlos R. Tirapelli
- Departamento de Enfermagem Psiquiátrica e Ciências Humanas, Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-902, SP, Brazil
| |
Collapse
|
3
|
Souza-Paula E, Polonio LCC, Zochio GP, da Silva KP, Kushima H, Dias-Junior CA. Anticontractile Effect of Perivascular Adipose Tissue But Not of Endothelium Is Enhanced by Hydrogen Sulfide Stimulation in Hypertensive Pregnant Rat Aortae. J Cardiovasc Pharmacol 2021; 76:715-729. [PMID: 32976209 DOI: 10.1097/fjc.0000000000000917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perivascular adipose tissue (PVAT) modulates the vascular tone. Hydrogen sulfide (H2S) is synthetized by cystathionine gamma-lyase (CSE) in brown PVAT. Modulation of vascular contractility by H2S is, in part, adenosine triphosphate (ATP)-sensitive potassium channels dependent. However, the role of PVAT-derived H2S in hypertensive pregnancy (HTN-Preg) is unclear. Therefore, we aimed to examine the involvement of H2S in the anticontractile effect of PVAT in aortae from normotensive and hypertensive pregnant rats. To this end, phenylephrine-induced contractions in the presence and absence of PVAT and endothelium in aortae from normotensive pregnant (Norm-Preg) and HTN-Preg rats were investigated. Maternal blood pressure, fetal-placental parameters, angiogenesis-related biomarkers, and H2S levels were also assessed. We found that circulating H2S is elevated in hypertensive pregnancy associated with angiogenic imbalance, fetal and placental growth restrictions, which revealed that there is H2S pathway activation. Moreover, under stimulated H2S formation PVAT, but not endothelium, reduced phenylephrine-induced contractions in aortae from HTN-Preg rats. Also, H2S synthesis inhibitor abolished anticontractile effects of PVAT and endothelium. Furthermore, anticontractile effect of PVAT, but not of endothelium, was eliminated by ATP-sensitive potassium channels blocker. In accordance, increases in H2S levels in PVAT and placenta, but not in aortae without PVAT, were also observed. In conclusion, anticontractile effect of PVAT is lost, at least in part, in HTN-Preg aortae and PVAT effect is ATP-sensitive potassium channels dependent in normotensive and hypertensive pregnant rat aortae. PVAT but not endothelium is responsive to the H2S stimulation in hypertensive pregnant rat aortae, implying a key role for PVAT-derived H2S under endothelial dysfunction.
Collapse
Affiliation(s)
- Edileia Souza-Paula
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Bianchi PC, Gomes-de-Souza L, Costa-Ferreira W, Palombo P, Carneiro de Oliveira PE, Engi SA, Leão RM, Planeta CS, Crestani CC, Cruz FC. Chronic ethanol vapor exposure potentiates cardiovascular responses to acute stress in male but not in female rats. Biol Sex Differ 2021; 12:27. [PMID: 33726842 PMCID: PMC7962247 DOI: 10.1186/s13293-021-00371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ethanol use is related to a wide variety of negative health outcomes, including cardiovascular diseases. Stress is also involved in numerous pathologies, such as cardiovascular diseases and psychiatric disorders. Sexual dimorphism is an important factor affecting cardiovascular response and has been proposed as a potential risk factor for sex-specific health problems in humans. Here, we evaluated the effect of prolonged ethanol vapor inhalation on arterial pressure, heart rate, and tail skin temperature responses to acute restraint stress, investigating differences between male and female rats. METHODS We exposed male and female Long-Evans rats to ethanol vapor for 14 h, followed by ethanol withdrawal for 10 h, for 30 consecutive days, or to room air (control groups). The animals underwent surgical implantation of a cannula into the femoral artery for assessment of arterial pressure and heart rate values. The tail skin temperature was measured as an indirect measurement of sympathetic vasomotor response. RESULTS Chronic ethanol vapor inhalation reduced basal heart rate in both female and male rats. Sex-related difference was observed in the decrease of tail cutaneous temperature evoked by stress, but not in the pressor and tachycardiac responses. Furthermore, prolonged ethanol inhalation enhanced the blood pressure and heart rate increase caused by acute restraint stress in male, but not in female rats. However, no effect of chronic ethanol vapor was observed in the tail cutaneous temperature response to restraint in either sex. CONCLUSION Chronic ethanol vapor exposure increased the cardiovascular reactivity to stress in male, but not in female rats.
Collapse
Affiliation(s)
- Paula C. Bianchi
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
- Laboratory of Pharmacology, Paulista Medicine School, Universidade Federal de São Paulo – UNIFESP, Leal Prado Building, Botucatu 862 Street, 04024-002, Vila Clementino, São Paulo, SP Brazil
| | - Lucas Gomes-de-Souza
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Willian Costa-Ferreira
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Paola Palombo
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Paulo E. Carneiro de Oliveira
- Laboratory of Psychology, Psychology Department, Universidade Federal de São Carlos - UFSCar, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Sheila A. Engi
- Laboratory of Pharmacology, Paulista Medicine School, Universidade Federal de São Paulo – UNIFESP, Leal Prado Building, Botucatu 862 Street, 04024-002, Vila Clementino, São Paulo, SP Brazil
- Joint Graduate Program in Pharmacology, Pharmacology and Molecular Biology Institute - INFAR, Três de Maio 100 Street, 04044-020, Vila Clementino, São Paulo, SP Brazil
| | - Rodrigo M. Leão
- Biomedical Sciences Institute, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais Brazil
| | - Cleopatra S. Planeta
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Carlos C. Crestani
- Laboratory of Neuropsypharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, Araraquara, SP 14801-902 Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís km 235, São Carlos, SP 13565-905 Brazil
| | - Fabio C. Cruz
- Laboratory of Pharmacology, Paulista Medicine School, Universidade Federal de São Paulo – UNIFESP, Leal Prado Building, Botucatu 862 Street, 04024-002, Vila Clementino, São Paulo, SP Brazil
- Joint Graduate Program in Pharmacology, Pharmacology and Molecular Biology Institute - INFAR, Três de Maio 100 Street, 04044-020, Vila Clementino, São Paulo, SP Brazil
| |
Collapse
|
5
|
Oikonomou E, Lazaros G, Tsalamandris S, Vogiatzi G, Christoforatou E, Papakonstantinou M, Goliopoulou A, Tousouli M, Chasikidis C, Tousoulis D. Reply: Possible Effect of Alcohol Consumption on Aortic Dilatation by Inducing the Renin-Angiotensin-Aldosterone System. Angiology 2019; 70:980-981. [PMID: 31339333 DOI: 10.1177/0003319719865671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Affiliation(s)
- Evangelos Oikonomou
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - George Lazaros
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Sotirios Tsalamandris
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Georgia Vogiatzi
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Evangelia Christoforatou
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Margenti Papakonstantinou
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Athina Goliopoulou
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Maria Tousouli
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Christos Chasikidis
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dimitris Tousoulis
- 1 1st Cardiology Clinic, "Hippokration" General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
6
|
Eby JM, Majetschak M. Effects of ethanol and ethanol metabolites on intrinsic function of mesenteric resistance arteries. PLoS One 2019; 14:e0214336. [PMID: 30893362 PMCID: PMC6426218 DOI: 10.1371/journal.pone.0214336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests that ethanol-induced hypertension is associated with increased cardiovascular responsiveness to vasopressors in vivo and enhanced reactivity of isolated arteries to vasopressors ex vivo. The underlying mechanisms are not well understood and the contribution of ethanol metabolites to vascular effects induced by ethanol consumption are unclear. Mesenteric resistance arteries were harvested from Sprague-Dawley rats. Pressure myography was utilized to test effects of ethanol, acetaldehyde and phosphatidylethanol on myogenic tone and on vasoconstriction induced by phenylephrine, arginine vasopressin (aVP), endothelin-1 and KCl. Ethanol, acetaldehyde and phosphatidylethanol concentrations were monitored during the experiments. Ethanol concentrations in the vessel bath decreased with a half-life of 25min; acetaldehyde and phosphatidylethanol concentrations remained constant. Pretreatment with ethanol dose-dependently increased the potency of phenylephrine to induce vasoconstriction 4-fold (p<0.01). These effects were comparable when arteries were pre-treated with a single dose of ethanol for 30min and when ethanol concentrations were kept constant during 30min and 60min of pretreatment. While ethanol also dose-dependently increased the potency of aVP to induce vasoconstriction 1.7-fold (p<0.05), it did not affect vasoconstriction induced by endothelin-1 or KCl. Acetaldehyde pre-treatment (30 min) dose-dependently increased the potency of phenylephrine to induce vasoconstriction 2.7-fold (p<0.01) but did not affect other vasoconstrictor responses. Phosphatidylethanol did not affect any vasoconstrictor responses. Ethanol and its metabolites did not affect myogenic tone. These data suggest that ethanol and acetaldehyde selectively sensitize intrinsic constrictor responses upon activation of vascular α1-adrenergic and/or vasopressin receptors at clinically relevant concentrations. Our findings support the concept that enhanced vasoreactivity to vasoactive hormones contributes to the development of hypertension induced by ethanol consumption. Ex vivo exposure of resistance arteries to ethanol and acetaldehyde resembles effects of chronic ethanol consumption on intrinsic vascular function, and thus could serve as test platform to evaluate interventions aimed to mitigate vascular effects associated with ethanol consumption.
Collapse
Affiliation(s)
- Jonathan M. Eby
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
- Alcohol Research Program (ARP), Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
7
|
Gonzaga NA, Awata WMC, do Vale GT, Marchi KC, Muniz JJ, Tanus-Santos JE, Tirapelli CR. Perivascular adipose tissue protects against the vascular dysfunction induced by acute ethanol intake: Role of hydrogen peroxide. Vascul Pharmacol 2018; 111:44-53. [PMID: 30157459 DOI: 10.1016/j.vph.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/04/2018] [Accepted: 08/25/2018] [Indexed: 01/04/2023]
Abstract
AIM We investigated the consequences of acute ethanol intake on the anti-contractile effect of perivascular adipose tissue (PVAT). METHODS The effects of a single dose of ethanol (1 g/kg; p.o. gavage) on the vascular function were assessed within 30 min in male Wistar rats. RESULTS Ethanol decreased the relaxation induced by acetylcholine and increased the contraction induced by phenylephrine in endothelium-intact, but not in endothelium-denuded aortas without PVAT. The vascular dysfunction induced by ethanol was not observed in aortic rings with PVAT. Nω-Nitro-l-arginine methyl ester (L-NAME), NG-nitro-l-arginine (L-NNA) and 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), but not tiron or tempol, increased the contraction induced by phenylephrine in endothelium-intact aortas with PVAT from control and ethanol-treated rats. Catalase increased phenylephrine-induced contraction in aortas with PVAT from ethanol-treated rats, but not from control rats. Conversely, inhibition of catalase with aminotriazole decreased phenylephrine-induced contraction in aortas from ethanol-treated rats. Treatment with ethanol increased hydrogen peroxide (H2O2) levels and decreased catalase activity in aortas with PVAT. Ethanol increased superoxide anion (O2-) generation in aortas with or without PVAT. Superoxide dismutase (SOD) activity was not affected by ethanol intake. In situ quantification of H2O2 using 2'7'dichlorodihydrofluorescein diacetate (DCFH-DA) revealed increased levels of H2O2 in periaortic PVAT from ethanol-treated rats. However, in situ evaluation of nitric oxide (NO) in both aorta and PVAT showed no differences between groups. CONCLUSIONS Our study provides novel evidence that the periaortic PVAT protects against the vascular dysfunction induced by acute ethanol intake through a mechanism that involves increased generation of H2O2.
Collapse
Affiliation(s)
- Natália A Gonzaga
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Gabriel T do Vale
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Katia C Marchi
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Jaqueline J Muniz
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Nebivolol prevents vascular oxidative stress and hypertension in rats chronically treated with ethanol. Atherosclerosis 2018; 274:67-76. [DOI: 10.1016/j.atherosclerosis.2018.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/27/2018] [Indexed: 01/15/2023]
|
9
|
Gonzaga NA, do Vale GT, Parente JM, Yokota R, De Martinis BS, Casarini DE, Castro MM, Tirapelli CR. Ethanol withdrawal increases blood pressure and vascular oxidative stress: a role for angiotensin type 1 receptors. ACTA ACUST UNITED AC 2018; 12:561-573. [DOI: 10.1016/j.jash.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 01/11/2023]
|
10
|
Tumor necrosis factor-α receptor 1 contributes to ethanol-induced vascular reactive oxygen species generation and hypertension. ACTA ACUST UNITED AC 2017; 11:684-696.e3. [DOI: 10.1016/j.jash.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
|
11
|
Ceron CS, do Vale GT, Simplicio JA, Passaglia P, Ricci ST, Tirapelli CR. Data on the effects of losartan on protein expression, vascular reactivity and antioxidant capacity in the aorta of ethanol-treated rats. Data Brief 2017; 11:111-116. [PMID: 28149929 PMCID: PMC5266491 DOI: 10.1016/j.dib.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 11/18/2022] Open
Abstract
We describe the effects of losartan, a selective AT1 receptor antagonist on the alterations induced by treatment with ethanol in the rat aorta. The data shown here are related to the article entitled “Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress” (P. Passaglia, C.S. Ceron, A.S. Mecawi, J. Antunes-Rodrigues, E.B. Coelho, C.R. Tirapelli, 2015) [1]. Here we include new data on the protective effect of losartan against ethanol-induced oxidative stress. Male Wistar rats treated for 2 weeks with ethanol (20%, vol./vol.) exhibited increased aortic production of reactive oxygen species (ROS) and losartan (10 mg/kg/day; p.o. gavage) prevented this response. Ethanol did not alter the expression of eNOS in the rat aorta. Losartan prevented ethanol-induced increase in the aortic expression of nNOS. Neither ethanol nor losartan affected superoxide dismutase (SOD) or catalase (CAT) activities in the rat aorta. Treatment with ethanol increased the contraction induced by phenylephrine in both endothelium-intact and endothelium-denuded aortas and these responses were prevented by losartan. Conversely, neither ethanol nor losartan affected the endothelium-dependent relaxation induced by acetylcholine.
Collapse
Affiliation(s)
- Carla S. Ceron
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Gabriel T. do Vale
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Janaina A. Simplicio
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Patrícia Passaglia
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Sthefany T. Ricci
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Carlos R. Tirapelli
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
- Correspondence to: Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Avenida Bandeirantes 3900, CEP 14040-902 Ribeirão Preto, SP, Brazil. Fax: +55 16 3315 3271.Universidade de São Paulo, Escola de Enfermagem de Ribeirão PretoAvenida Bandeirantes 3900Ribeirão PretoSPCEP 14040-902Brazil
| |
Collapse
|
12
|
Aydinoglu F, Ergurhan Kiroglu O, Astarci E, Balli E, Ogulener N. Effects of ethanol on RhoA/Rho-kinase-mediated calcium sensitization in mouse lung parenchymal tissue. Eur J Pharmacol 2015; 764:318-327. [PMID: 26169563 DOI: 10.1016/j.ejphar.2015.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022]
Abstract
Calcium sensitization by the RhoA/Rho-kinase (ROCK) pathway contributes to the contraction in smooth muscle. Contractile stimuli can sensitize myosin to Ca(2+) by activating RhoA/Rho-kinase that inhibits myosin light chain phosphatase activity. The present study was aimed at investigating the possible involvement of RhoA/Rho-kinase pathway in contractile responses to agonist (phenylephrine) and depolarizing (KCl) of mouse lung parenchymal tissues. Also, we investigated the effect of ethanol on RhoA/Rho-kinase pathway. Phenylephrine (10(-8)-10(-4) M) and KCl (10-80 mM) induced sustained contractions in parenchymal strips. Ethanol significantly attenuated the contractions to phenylephrine and KCl. The Rho-kinase inhibitors fasudil (5×10(-5) M) and Y-27632 (5×10(-5) M) inhibited contractions to in both control and ethanol-treated parenchymal strips. In addition, the relaxations induced by fasudil (10(-4) M) and Y-27632 (5×10(-4) M) on parenchymal strips contracted by phenylephrine but not KCl was decreased in ethanol-treatment group. Also, RhoA, ROCK1 and ROCK2 expressions were detected in mouse lung parenchymal tissue. In ethanol-treated group, expression of RhoA and ROCK1 but not ROCK2 decreased compared to control. Furthermore, ethanol causes apoptotic changes in alveolar type I epithelial cells of parenchymal tissue. These results suggest that RhoA/Rho-kinase signaling pathway plays an important role in phenylephrine- and KCl-induced Ca(2)(+) sensitization in mouse lung parenchymal tissue. Also, ethanol may be decrease phenylephrine- and KCl-induced contraction due to lowering the RhoA/Rho-kinase-mediated Ca(2+)-sensitizing by inhibiting RhoA/Rho-kinase pathway in parenchymal tissue. These results may be lead to important insights into the mechanisms of lung diseases due to alcohol consumption.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Department of Pharmacology, Pharmacy Faculty, Cukurova University, Adana, Turkey
| | | | - Erhan Astarci
- Department of Plant and Animal Production, Mudurnu Süreyya Astarci Vocational School, Abant Izzet Baysal University, Bolu, Turkey
| | - Ebru Balli
- Department of Histology and Embryology, Medical Faculty, Mersin University, Mersin, Turkey
| | - Nuran Ogulener
- Department of Pharmacology, Medical Faculty, Cukurova University, Adana, Turkey.
| |
Collapse
|
13
|
Musial DC, Bomfim GHS, Miranda-Ferreira R, Caricati-Neto A, Jurkiewicz A, Jurkiewicz NH. Chronic treatment with red wine modulates the purinergic neurotransmission and decreases blood pressure in hypertensive SHR and diabetic-STZ rats. Int J Food Sci Nutr 2015; 66:579-86. [DOI: 10.3109/09637486.2015.1056110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Bruder-Nascimento T, Campos DHS, Cicogna AC, Cordellini S. Chronic stress improves NO- and Ca2+ flux-dependent vascular function: a pharmacological study. Arq Bras Cardiol 2015; 104:226-33. [PMID: 25884770 PMCID: PMC4386851 DOI: 10.5935/abc.20140207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022] Open
Abstract
Background Stress is associated with cardiovascular diseases. Objective This study aimed at assessing whether chronic stress induces vascular alterations,
and whether these modulations are nitric oxide (NO) and Ca2+ dependent. Methods Wistar rats, 30 days of age, were separated into 2 groups: control (C) and Stress
(St). Chronic stress consisted of immobilization for 1 hour/day, 5 days/week, 15
weeks. Systolic blood pressure was assessed. Vascular studies on aortic rings were
performed. Concentration-effect curves were built for noradrenaline, in the
presence of L-NAME or prazosin, acetylcholine, sodium nitroprusside and KCl. In
addition, Ca2+ flux was also evaluated. Results Chronic stress induced hypertension, decreased the vascular response to KCl and to
noradrenaline, and increased the vascular response to acetylcholine. L-NAME
blunted the difference observed in noradrenaline curves. Furthermore, contractile
response to Ca2+ was decreased in the aorta of stressed rats. Conclusion Our data suggest that the vascular response to chronic stress is an adaptation to
its deleterious effects, such as hypertension. In addition, this adaptation is NO-
and Ca2+-dependent. These data help to clarify the contribution of
stress to cardiovascular abnormalities. However, further studies are necessary to
better elucidate the mechanisms involved in the cardiovascular dysfunction
associated with stressors. (Arq Bras Cardiol. 2014; [online].ahead print,
PP.0-0)
Collapse
Affiliation(s)
- Thiago Bruder-Nascimento
- Departamento de Farmacologia, Instituto de Biociências de Botucatu, Universidade do Estado de São Paulo, Botucatu, São Paulo, Brazil
| | - Dijon Henrique Salome Campos
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade do Estado de São Paulo, Botucatu, São Paulo, Brazil
| | - Antônio Carlose Cicogna
- Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade do Estado de São Paulo, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
15
|
Carda APP, Marchi KC, Rizzi E, Mecawi AS, Antunes-Rodrigues J, Padovan CM, Tirapelli CR. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress. Stress 2015; 18:233-43. [PMID: 25689973 DOI: 10.3109/10253890.2015.1014790] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.
Collapse
MESH Headings
- 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Aorta/physiopathology
- Blood Pressure/drug effects
- Bridged Bicyclo Compounds, Heterocyclic
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/metabolism
- Cyclooxygenase Inhibitors/pharmacology
- Dinoprost/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Fatty Acids, Unsaturated
- Glutathione/metabolism
- Hydrazines/pharmacology
- Hydrogen Peroxide/metabolism
- Indomethacin/pharmacology
- Male
- Membrane Proteins/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide Synthase/metabolism
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Phenylephrine/pharmacology
- Prostaglandins
- Rats
- Rats, Wistar
- Restraint, Physical
- Serotonin/pharmacology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Thiobarbituric Acid Reactive Substances/metabolism
- Thromboxane B2/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Ana P P Carda
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP) , Ribeirão Preto, São Paulo , Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Baptista RDFF, Chies AB, Taipeiro EDF, Cordellini S. Endothelial AT₁ and AT₂ pathways in aortic responses to angiotensin II after stress and ethanol consumption in rats. Stress 2014; 17:512-9. [PMID: 25238020 DOI: 10.3109/10253890.2014.966262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stress and ethanol are important cardiovascular risk factors. Their vascular and blood pressure (BP) effects were evaluated alone and in combination. Adult male Wistar rats (8-10 per group) were separated into control, ethanol (ethanol 20% in drinking water for 6 weeks), stress (restraint 1 h/d 5 d/week for 6 weeks), and ethanol/stress (in combination) groups. Systolic BP was evaluated weekly. Concentration-response curves for contractile responses to angiotensin II in the absence and the presence of losartan (AT1-blocker), PD123-319 (AT2-blocker), L-NAME (nitric oxide synthase inhibitor), or indomethacin (cyclooxygenase inhibitor) were obtained in isolated intact and endothelium-denuded aortas. Effective concentration 50% (EC50) and maximum response (MR) were compared among groups using MANOVA/Tukey tests. Stress and stress plus ethanol increased BP. Ethanol and stress, alone and in combination, did not alter angiotensin responses of intact aortas. PD123-319 decreased MR to angiotensin II in intact aortas from the ethanol and ethanol/stress groups relative to control in the presence of PD123-319. Losartan increased MR to angiotensin II in intact aortas from the stress and ethanol/stress groups relative to control in the presence of losartan. None of the protocols altered angiotensin responses of denuded aortas. Neither indomethacin nor L-NAME altered angiotensin responses of intact aortas from the experimental groups. Thus ethanol and ethanol plus stress may alter endothelial signaling via AT1-receptors, without changing systemic BP. Stress and stress plus ethanol may alter endothelial signaling via AT2-receptors, and thereby increase BP. Knowledge of such vascular changes induced by stress and/or ethanol may contribute to understanding adverse cardiovascular effects of stress and ethanol consumption in humans.
Collapse
MESH Headings
- Alcohol Drinking/adverse effects
- Alcohol Drinking/metabolism
- Alcohol Drinking/physiopathology
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 2 Receptor Blockers/pharmacology
- Animals
- Antioxidants/metabolism
- Blood Pressure/drug effects
- Corticosterone/blood
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Inhibitors/pharmacology
- Ethanol/toxicity
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Rats, Wistar
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Restraint, Physical
- Risk Factors
- Signal Transduction/drug effects
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Time Factors
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
|
17
|
Crestani CC, Lopes da Silva A, Scopinho AA, Ruginsk SG, Uchoa ET, Correa FM, Elias LL, Antunes-Rodrigues J, Resstel LB. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes. Toxicol Appl Pharmacol 2014; 280:245-55. [DOI: 10.1016/j.taap.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/19/2014] [Accepted: 08/13/2014] [Indexed: 12/18/2022]
|
18
|
Marchi KC, Muniz JJ, Tirapelli CR. Hypertension and chronic ethanol consumption: What do we know after a century of study? World J Cardiol 2014; 6:283-294. [PMID: 24944758 PMCID: PMC4062120 DOI: 10.4330/wjc.v6.i5.283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/11/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
The influences of life habits on the cardiovascular system may have important implications for public health, as cardiovascular diseases are among the leading causes of shorter life expectancy worldwide. A link between excessive ethyl alcohol (ethanol) consumption and arterial hypertension was first suggested early last century. Since then, this proposition has received considerable attention. Support for the concept of ethanol as a cause of hypertension derives from several epidemiologic studies demonstrating that in the general population, increased blood pressure is significantly correlated with ethanol consumption. Although the link between ethanol consumption and hypertension is well established, the mechanism through which ethanol increases blood pressure remains elusive. Possible mechanisms underlying ethanol-induced hypertension were proposed based on clinical and experimental observations. These mechanisms include an increase in sympathetic nervous system activity, stimulation of the renin-angiotensin-aldosterone system, an increase of intracellular Ca2+ in vascular smooth muscle, increased oxidative stress and endothelial dysfunction. The present report reviews the relationship between ethanol intake and hypertension and highlights some mechanisms underlying this response. These issues are of interest for the public health, as ethanol consumption contributes to blood pressure elevation in the population.
Collapse
|
19
|
Baptista RDFF, Taipeiro EDF, Queiroz RHC, Chies AB, Cordellini S. Stress alone or associated with ethanol induces prostanoid release in rat aorta via alpha2-Adrenoceptor. Arq Bras Cardiol 2014; 102:211-8. [PMID: 24676223 PMCID: PMC3987321 DOI: 10.5935/abc.20140015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/02/2013] [Indexed: 12/29/2022] Open
Abstract
Background Stress and ethanol are both, independently, important cardiovascular risk
factors. Objective To evaluate the cardiovascular risk of ethanol consumption and stress exposure,
isolated and in association, in male adult rats. Methods Rats were separated into 4 groups: Control, ethanol (20% in drinking water for 6
weeks), stress (immobilization 1h day/5 days a week for 6 weeks) and
stress/ethanol. Concentration-responses curves to noradrenaline - in the absence
and presence of yohimbine, L-NAME or indomethacin - or to phenylephrine were
determined in thoracic aortas with and without endothelium. EC50 and maximum
response (n=8-12) were compared using two-way ANOVA/Bonferroni method. Results Either stress or stress in association with ethanol consumption increased the
noradrenaline maximum responses in intact aortas. This hyper-reactivity was
eliminated by endothelium removal or by the presence of either indomethacin or
yohimbine, but was not altered by the presence of L-NAME. Meanwhile, ethanol
consumption did not alter the reactivity to noradrenaline. The phenylephrine
responses in aortas both with and without endothelium also remained unaffected
regardless of protocol. Conclusion Chronic stress increased rat aortic responses to noradrenaline. This effect is
dependent upon the vascular endothelium and involves the release of
vasoconstrictor prostanoids via stimulation of endothelial alpha-2 adrenoceptors.
Moreover, chronic ethanol consumption appeared to neither influence noradrenaline
responses in rat thoracic aorta, nor did it modify the increase of such responses
observed as a consequence of stress exposure.
Collapse
Affiliation(s)
| | | | - Regina Helena Costa Queiroz
- Departamento de Análise Clínica - Toxicológica e Ciência de Alimentos, Faculdade de Ciências Farmacêuticas, USP, São Paulo, SP, Brasil
| | - Agnaldo Bruno Chies
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, SP, Brasil
| | - Sandra Cordellini
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, SP, Brasil
| |
Collapse
|
20
|
Pereira AC, Olivon VC, Pernomian L, de Oliveira AM. Impairment of α1-adrenoceptor-mediated calcium influx in contralateral carotids following balloon injury: Beneficial effect of superoxide anions. Eur J Pharmacol 2014; 723:397-404. [DOI: 10.1016/j.ejphar.2013.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/20/2013] [Accepted: 10/27/2013] [Indexed: 12/29/2022]
|
21
|
Yogi A, Callera GE, Mecawi AS, Batalhão ME, Carnio EC, Antunes-Rodrigues J, Queiroz RH, Touyz RM, Tirapelli CR. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor. Toxicol Appl Pharmacol 2012; 264:470-8. [DOI: 10.1016/j.taap.2012.08.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/14/2023]
|
22
|
Rocha JT, Hipólito UV, Martins-Oliveira A, Tirapelli DPC, Batalhão ME, Carnio EC, Queiroz RH, Coelho EB, Cunha TM, Tanus-Santos JE, Tirapelli CR. Ethanol consumption alters the expression and reactivity of adrenomedullin in the rat mesenteric arterial bed. Alcohol Alcohol 2011; 47:9-17. [PMID: 22021555 DOI: 10.1093/alcalc/agr141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIMS Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). METHODS Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. RESULTS Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. CONCLUSION Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.
Collapse
Affiliation(s)
- Juliana T Rocha
- College of Nursing of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pernomian L, Gomes MS, de Oliveira AM. Balloon catheter injury abolishes phenylephrine-induced relaxation in the rat contralateral carotid. Br J Pharmacol 2011; 163:770-81. [PMID: 21323906 PMCID: PMC3111679 DOI: 10.1111/j.1476-5381.2011.01275.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/12/2010] [Accepted: 01/08/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The consequences of compensatory responses to balloon catheter injury in rat carotid artery, on phenylephrine-induced relaxation and contraction in the contralateral carotid artery were studied. EXPERIMENTAL APPROACH Relaxation and contraction concentration-response curves for phenylephrine were obtained for contralateral carotid arteries in the presence of indomethacin (COX inhibitor), SC560 (COX-1 inhibitor), SC236 (COX-2 inhibitor) or 4-hydroxytetramethyl-L-piperidine-1-oxyl (tempol; superoxide dismutase mimetic). Reactive oxygen species were measured in carotid artery endothelial cells fluorimetrically with dihydroethidium. KEY RESULTS Phenylephrine-induced relaxation was abolished in contralateral carotid arteries from operated rats (E(max) = 0.01 ± 0.004 g) in relation to control (E(max) = 0.18 ± 0.005 g). Phenylephrine-induced contractions were increased in contralateral arteries (E(max) = 0.54 ± 0.009 g) in relation to control (E(max) = 0.38 ± 0.014 g). SC236 restored phenylephrine-induced relaxation (E(max) = 0.17 ± 0.004 g) and contraction (E(max) = 0.34 ± 0.018 g) in contralateral arteries. Tempol restored phenylephrine-induced relaxation (E(max) = 0.19 ± 0.012 g) and contraction (E(max) = 0.42 ± 0.014 g) in contralateral arteries, while apocynin did not alter either relaxation (E(max) = 0.01 ± 0.004 g) or contraction (E(max) = 0.54 ± 0.009 g). Dihydroethidium fluorescence was increased in contralateral samples (18 882 ± 435 U) in relation to control (10 455 ± 303 U). SC236 reduced the fluorescence in contralateral samples (8250 ± 365 U). CONCLUSIONS AND IMPLICATIONS Balloon catheter injury abolished phenylephrine-induced relaxation and increased phenylephrine-induced contraction in contralateral carotid arteries, through O(2) (-) derived from COX-2.
Collapse
Affiliation(s)
- L Pernomian
- Department of Pharmacology, School of Medicine of Ribeirão Preto, Laboratory of Pharmacology, University of São PauloRibeirão Preto, São Paulo, Brazil
| | - MS Gomes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, Laboratory of Pharmacology, University of São PauloRibeirão Preto, São Paulo, Brazil
| | - AM de Oliveira
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, Laboratory of Pharmacology, University of São PauloRibeirão Preto, São Paulo, Brazil
| |
Collapse
|
24
|
McDonald SJ, Dooley PC, McDonald AC, Djouma E, Schuijers JA, Ward AR, Grills BL. α(1) adrenergic receptor agonist, phenylephrine, actively contracts early rat rib fracture callus ex vivo. J Orthop Res 2011; 29:740-5. [PMID: 21437954 DOI: 10.1002/jor.21302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/08/2010] [Indexed: 02/04/2023]
Abstract
Early, soft fracture callus that links fracture ends together is smooth muscle-like in nature. We aimed to determine if early fracture callus could be induced to contract and relax ex vivo by similar pathways to smooth muscle, that is, contraction via α(1) adrenergic receptor (α(1) AR) activation with phenylephrine (PE) and relaxation via β(2) adrenergic receptor (β(2) AR) stimulation with terbutaline. A sensitive force transducer quantified 7 day rat rib fracture callus responses in modified Krebs-Henseliet (KH) solutions. Unfractured ribs along with 7, 14, and 21 day fracture calluses were analyzed for both α(1) AR and β(2) AR gene expression using qPCR, whilst 7 day fracture callus was examined via immunohistochemistry for both α(1) AR and β(2) AR- immunoreactivity. In 7 day callus, PE (10(-6) M) significantly induced an increase in force that was greater than passive force generated in calcium-free KH (n = 8, mean 51% increase, 95% CI: 26-76%). PE-induced contractions in calluses were attenuated by the α(1) AR antagonist, prazosin (10(-6) M; n = 7, mean 5% increase, 95% CI: 2-11%). Terbutaline did not relax callus. Gene expression of α(1) ARs was constant throughout fracture healing; however, β(2) AR expression was down-regulated at 7 days compared to unfractured rib (p < 0.01). Furthermore, osteoprogenitor cells of early fibrous callus displayed considerable α(1) AR-like immunoreactivity but not β(2) AR-like immunoreactivity. Here, we demonstrate for the first time that early fracture callus can be pharmacologically induced to contract. We propose that increased concentrations of α(1) AR agonists such as noradrenaline may tonically contract callus in vivo to promote osteogenesis.
Collapse
Affiliation(s)
- Stuart J McDonald
- Musculoskeletal Research Centre, School of Human Biosciences, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Effects of ethanol on the tonicity of corporal tissue and the intracellular Ca2+ concentration of human corporal smooth muscle cells. Asian J Androl 2010; 12:890-8. [PMID: 20852651 DOI: 10.1038/aja.2010.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Heavy alcohol consumption is associated with an increased risk of erectile dysfunction (ED); however, the acute effects of ethanol (EtOH) on penile tissue are not fully understood. We sought to investigate the effects of EtOH on corporal tissue tonicity, as well as the intracellular Ca(2+) concentration ([Ca(2+)](i)) and potassium channel activity of corporal smooth muscle. Strips of corpus cavernosum (CC) from rabbits were mounted in organ baths for isometric tension studies. Electrical field stimulation (EFS) was applied to strips precontracted with 10 μmol L(-1) phenylephrine as a control. EtOH was then added to the organ bath and incubated before EFS. The [Ca(2+)](i) levels were monitored by the ratio of fura-2 fluorescence intensities using the fura-2 loading method. Single-channel and whole-cell currents were recorded by the conventional patch-clamp technique in short-term cultured smooth muscle cells from human CC tissue. The corpus cavernosal relaxant response of EFS was decreased in proportion to the concentration of EtOH. EtOH induced a sustained increase in [Ca(2+)](i) in a dose-dependent manner, Extracellular application of EtOH significantly increased whole-cell K(+) currents in a concentration-dependent manner (P < 0.05). EtOH also increased the open probability in cell-attached patches; however, in inside-out patches, the application of EtOH to the intracellular aspect of the patches induced slight inhibition of Ca(2+)-activated potassium channel (KCa) activity. EtOH caused a dose-dependent increase in cavernosal tension by alterations to [Ca(2+)](i). Although EtOH did not affect KCa channels directly, it increased the channel activity by increasing [Ca(2+)](i). The increased corpus cavernosal tone caused by EtOH might be one of the mechanisms of ED after heavy drinking.
Collapse
|
26
|
An Apparent Paradox: Attenuation of Phenylephrine-mediated Calcium Mobilization and Hyperreactivity to Phenylephrine in Contralateral Carotid After Balloon Injury. J Cardiovasc Pharmacol 2010; 56:162-70. [DOI: 10.1097/fjc.0b013e3181e571cd] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Alcohol does not modulate the augmented acetylcholine-induced vasodilatory response in hemorrhaged rodents. Shock 2010; 32:601-7. [PMID: 19197228 DOI: 10.1097/shk.0b013e31819e2b9a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Our previous studies have shown that acute alcohol intoxication (AAI) decreases blood pressure, exacerbates hypotension after hemorrhagic shock, impairs the pressor response to fluid resuscitation, and blunts neuroendocrine activation. We hypothesized that impaired hemodynamic compensation during and after hemorrhagic shock in the acute alcohol-intoxicated host is the result of blunted neuroendocrine activation or, alternatively, of an impaired vascular responsiveness to vasoactive agents. The aim of this study was to examine the effects of AAI, AAI and hemorrhagic shock, and AAI and hemorrhagic shock and resuscitation on reactivity of isolated blood vessel rings to phenylephrine and acetylcholine. Chronically instrumented, conscious male Sprague-Dawley rats (300-350 g) received a primed continuous 15-h intragastric alcohol infusion (2.5 g x kg(-1) + 300 mg x kg(-1) x h(-1)), and time-matched controls received an isocaloric-isovolumic dextrose infusion. At completion of infusions, animals were randomized to sham, 60-min fixed-pressure hemorrhage, or hemorrhagic shock followed by resuscitation with lactated Ringer's solution. At the completion of the experimental protocols, animals were killed, and thoracic aorta and mesenteric artery ring segments (1-2 mm) were prepared and studied in myograph baths. Acute alcohol intoxication did not produce significant alterations in either pressor or dilator responses in aortic or mesenteric rings. These findings suggest that impaired hemodynamic counterregulation during hemorrhagic shock in AAI is not due to decreased vasopressor responsiveness. However, our results suggest a role for accentuated vasodilatory responses that may be central in progression to decompensatory shock.
Collapse
|
28
|
Lizarte FS, Morgueti M, Tirapelli CR, Claudino MA, Evora PRB, Novais PC, Tirapelli DPC, Celotto AC, Capellini VK, Celini FPM, Tucci Jr S, Cologna AJ, Antunes E, Martins ACP, Tirapelli LF. Chronic alcoholism associated with diabetes impairs erectile function in rats. BJU Int 2010; 105:1592-7. [DOI: 10.1111/j.1464-410x.2009.09084.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Döndaş NY, Kaplan M, Kaya D, Şingirik E. The impact of extracellular and intracellular Ca2+ on ethanol-induced smooth muscle contraction. Acta Pharmacol Sin 2009; 30:1421-7. [PMID: 19749788 DOI: 10.1038/aps.2009.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AIM To evaluate the impact of extracellular and intracellular Ca2+ on contractions induced by ethanol in smooth muscle. METHODS Longitudinal smooth muscle strips were prepared from the gastric fundi of mice. The contractions of smooth muscle strips were recorded with an isometric force displacement transducer. RESULTS Ethanol (164 mmol/L) produced reproducible contractions in isolated gastric fundal strips of mice. Although lidocaine (50 and 100 micromol/L), a local anesthetic agent, and hexamethonium (100 and 500 micromol/L), a ganglionic blocking agent, failed to affect these contractions, verapamil (1-50 micromol/L) and nifedipine (1-50 micromol/L), selective blockers of L-type Ca2+ channels, significantly inhibited the contractile responses of ethanol. Using a Ca(2+)-free medium nearly eliminated these contractions in the same tissue. Ryanodine (1-50 micromol/L) and ruthenium red (10-100 micromol/L), selective blockers of intracellular Ca2+ channels/ryanodine receptors; cyclopiazonic acid (CPA; 1-10 mumol/L), a selective inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPase; and caffeine (0.5-5 mmol/L), a depleting agent of intracellular Ca2+ stores, significantly inhibited the contractile responses induced by ethanol. In addition, the combination of caffeine (5 mmol/L) plus CPA (10 micromol/L), and ryanodine (10 micromol/L) plus CPA (10 micromol/L), caused further inhibition of contractions in response to ethanol. This inhibition was significantly different from those associated with caffeine, ryanodine or CPA. Furthermore the combination of caffeine (5 mmol/L), ryanodine (10 micromol/L) and CPA(10 micromol/L) eliminated the contractions induced by ethanol in isolated gastric fundal strips of mice. CONCLUSION Both extracellular and intracellular Ca2+ may have important roles in regulating contractions induced by ethanol in the mouse gastric fundus.
Collapse
|
30
|
Chen YT, Hung DZ, Chou CC, Kang JJ, Cheng YW, Hu CM, Liao JW. Vasorelaxation Effects of 2-Chloroethanol and Chloroacetaldehyde in the Isolated Rat Aortic Rings. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yng-Tay Chen
- Department of Veterinary Medicine, National Chung-Hsing University
| | - Dong-Zong Hung
- Toxicology Center, China Medical University Hospital, and Graduate Institute of Drug Safety, China Medical University
| | - Chi-Chung Chou
- Department of Veterinary Medicine, National Chung-Hsing University
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University
| | | | - Chien-Ming Hu
- Emergency Department, Taipei Medical University Hospital
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung-Hsing University
| |
Collapse
|
31
|
Rocha ML, Bendhack LM. Relaxation evoked by extracellular Ca2+ in rat aorta is nerve-independent and involves sarcoplasmic reticulum and L-type Ca2+ channel. Vascul Pharmacol 2008; 50:98-103. [PMID: 19056515 DOI: 10.1016/j.vph.2008.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 10/01/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
The perivascular nerve network expresses a Ca2+ receptor that is activated by high extracellular Ca2+ concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca2+-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca2+ concentration. We also studied the role of the endothelium on the Ca2+-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenase-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K+ channels and L-type Ca2+ channels on the Ca2+-induced relaxation were evaluated. We have observed that the Ca2+-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF2alpha receptor antagonist) enhance the relaxing response to Ca2+. This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca2+-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca2+. The relaxing response to Ca2+ was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca2+ channels and sarcoplasmic reticulum in this response.
Collapse
Affiliation(s)
- Matheus L Rocha
- Department of Physics and Chemistry, Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| | | |
Collapse
|
32
|
Ru XC, Qian LB, Gao Q, Li YF, Bruce IC, Xia Q. Alcohol induces relaxation of rat thoracic aorta and mesenteric arterial bed. Alcohol Alcohol 2008; 43:537-543. [PMID: 18495807 DOI: 10.1093/alcalc/agn042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIMS The aim of this study was to investigate the effect of alcohol on rat artery and its underlying mechanism. METHODS The tension of isolated Sprague-Dawley rat thoracic aortic rings and the pressure of rat mesenteric arterial beds perfused with different concentrations of alcohol (0.1-7.0 per thousand) were measured. RESULTS At resting tensions, alcohol caused a concentration-dependent relaxation on endothelium-denuded aortic rings precontracted with KCl (6 x 10(-2) mol/L) or phenylephrine (PE, 10(-6) mol/L), and this effect was most evident on rings at a resting tension of 3 g. Alcohol induced much less vasodilation on endothelium-intact rings. Alcohol inhibited the CaCl(2)-induced contraction of endothelium-denuded aortic rings precontracted with KCl or PE. Incubation of rings with dantrolene (5 x 10(-5) mol/L), a ryanodine receptor blocker, or 2-aminoethyl diphenylborinate (7.5 x 10(-5) mol/L), an IP(3) receptor blocker, attenuated the vasodilating effect of alcohol on rings precontracted with PE. Alcohol also concentration-dependently relaxed rat mesenteric arterial beds precontracted with KCl (6 x 10(-2) mol/L) or PE (10(-5) mol/L), which was more potent on endothelium-denuded than on endothelium-intact beds. CONCLUSIONS Alcohol has a vasodilating effect on rat artery depending on the resting tension. Both extracellular and intracellular Ca(2+) mobilization of vascular smooth muscle cells are involved in the vascular effect of alcohol.
Collapse
Affiliation(s)
- Xiao-Chen Ru
- Department of Physiology, Zhejiang University School of Medicine, 388 Yuhangtang Road, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
33
|
Tirapelli CR, Legros E, Brochu I, Honoré JC, Lanchote VL, Uyemura SA, de Oliveira AM, D'Orléans-Juste P. Chronic ethanol intake modulates vascular levels of endothelin-1 receptor and enhances the pressor response to endothelin-1 in anaesthetized rats. Br J Pharmacol 2008; 154:971-81. [PMID: 18469849 DOI: 10.1038/bjp.2008.157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The contribution of endothelin-1 (ET-1) to vascular hyper-reactivity associated with chronic ethanol intake, a major risk factor in several cardiovascular diseases, remains to be investigated. EXPERIMENTAL APPROACH The biphasic haemodynamic responses to ET-1 (0.01-0.1 nmol kg(-1), i.v.) or to the selective ETB agonist, IRL1620 (0.001-1.0 nmol kg(-1), i.v.), with or without ETA or ETB antagonists (BQ123 (c(DTrp-Dasp-Pro-Dval-Leu)) at 1 and 2.5 mg kg(-1) and BQ788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-gamma-methylleucyl1-D-1methoxycarbonyltryptophanyl-D-norleucine) at 0.25 mg kg(-1), respectively) were tested in anaesthetized rats, after 2 weeks' chronic ethanol treatment. Hepatic parameters and ET receptor protein levels were also determined. KEY RESULTS The initial hypotensive responses to ET-1 or IRL1620 were unaffected by chronic ethanol intake, whereas the subsequent pressor effects induced by ET-1, but not by IRL1620, were potentiated. BQ123 at 2.5 but not 1 mg kg(-1) reduced the pressor responses to ET-1 in ethanol-treated rats. Conversely, BQ788 (0.25 mg kg(-1)) potentiated ET-1-induced increases in mean arterial blood pressure in control as well as in ethanol-treated rats. Interestingly, in the latter group, increases in heart rate, induced by ET-1 at a dose of 0.025 mg kg(-1) were enhanced following ETB receptor blockade. Finally, we observed higher levels of ETA receptor in the heart and mesenteric artery and a reduction of ETB receptor protein levels in the aorta and kidney from rats chronically treated with ethanol. CONCLUSIONS AND IMPLICATIONS Increased vascular reactivity to ET-1 and altered protein levels of ETA and ETB receptors could play a role in the pathogenesis of cardiovascular complications associated with chronic ethanol consumption.
Collapse
Affiliation(s)
- C R Tirapelli
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tirapelli CR, Leone AFC, Yogi A, Tostes RC, Lanchote VL, Uyemura SA, Resstel LBM, Corrêa FMA, Padovan CM, de Oliveira AM, Coelho EB. Ethanol consumption increases blood pressure and alters the responsiveness of the mesenteric vasculature in rats. J Pharm Pharmacol 2008; 60:331-41. [PMID: 18284813 DOI: 10.1211/jpp.60.3.0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic ethanol consumption and hypertension are related. In the current study we investigated whether changes in reactivity of the mesenteric arterial bed could account for the increased blood pressure associated with chronic ethanol intake. Changes in reactivity to phenylephrine and acetylcholine were investigated in the perfused mesenteric bed from rats treated with ethanol for 2 or 6 weeks and their age-matched controls. Mild hypertension was observed in chronically ethanol-treated rats. Treatment of rats for 6 weeks induced an increase in the contractile response of endothelium-intact mesenteric bed to phenylephrine, but not denuded rat mesenteric bed. The phenylephrine-induced increase in perfusion pressure was not altered after 2 weeks' treatment with ethanol. Moreover, acetylcholine-induced endothelium-dependent relaxation was reduced by ethanol treatment for 6 weeks, but not 2 weeks. Pre-treatment with indometacin, a cyclooxygenase inhibitor, reduced the maximum effect induced by phenylephrine (Emax) in endothelium-intact mesenteric bed from both control and ethanol-treated rats. No differences in the Emax values for phenylephrine were observed between groups in the presence of indometacin. L-NNA, a nitric oxide (NO) synthase (NOS) inhibitor, increased the Emax for phenylephrine in endothelium-intact mesenteric bed from control rats but not from ethanol-treated rats. Levels of endothelial NOS (eNOS) mRNA were not altered by chronic ethanol consumption. However, chronic ethanol intake strongly reduced eNOS protein levels in the mesenteric bed. This study shows that chronic ethanol consumption increases blood pressure and alters the reactivity of the mesenteric bed. Moreover, the increased vascular response to phenylephrine observed in the mesenteric bed is maintained by two mechanisms: an increased release of endothelial-derived vasoconstrictor prostanoids and a reduced modulatory action of endothelial NO, which seems to be associated with reduced post-transcriptional expression of eNOS.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tirapelli CR, Fukada SY, Yogi A, Chignalia AZ, Tostes RC, Bonaventura D, Lanchote VL, Cunha FQ, de Oliveira AM. Gender-specific vascular effects elicited by chronic ethanol consumption in rats: a role for inducible nitric oxide synthase. Br J Pharmacol 2007; 153:468-79. [PMID: 18037914 DOI: 10.1038/sj.bjp.0707589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Epidemiological data suggest that the risk of ethanol-associated cardiovascular disease is greater in men than in women. This study investigates the mechanisms underlying gender-specific vascular effects elicited by chronic ethanol consumption in rats. EXPERIMENTAL APPROACH Vascular reactivity experiments using standard muscle bath procedures were performed on isolated thoracic aortae from rats. mRNA and protein for inducible NO synthase (iNOS) and for endothelial NOS (eNOS) was assessed by RT-PCR or western blotting, respectively. KEY RESULTS In male rats, chronic ethanol consumption enhanced phenylephrine-induced contraction in both endothelium-intact and denuded aortic rings. However, in female rats, chronic ethanol consumption enhanced phenylephrine-induced contraction only in endothelium denuded aortic rings. After pre-incubation of endothelium-intact rings with L-NAME, both male and female ethanol-treated rats showed larger phenylephrine-induced contractions in aortic rings, compared to the control group. Acetylcholine-induced relaxation was not affected by ethanol consumption. The effects of ethanol on responses to phenylephrine were similar in ovariectomized (OVX) and intact (non-OVX) female rats. In the presence of aminoguanidine, but not 7-nitroindazole, the contractions to phenylephrine in rings from ethanol-treated female rats were greater than that found in control tissues in the presence of the inhibitors. mRNA levels for eNOS and iNOS were not altered by ethanol consumption. Ethanol intake reduced eNOS protein levels and increased iNOS protein levels in aorta from female rats. CONCLUSIONS AND IMPLICATIONS Gender differences in the vascular effects elicited by chronic ethanol consumption were not related to ovarian hormones but seemed to involve the upregulation of iNOS.
Collapse
Affiliation(s)
- C R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tirapelli CR, Leone AFC, Coelho EB, Resstel LBM, Corrêa FMA, Lanchote VL, Uyemura SA, Padovan CM, de Oliveira AM. Effect of ethanol consumption on blood pressure and rat mesenteric arterial bed, aorta and carotid responsiveness. J Pharm Pharmacol 2007; 59:985-93. [PMID: 17637194 DOI: 10.1211/jpp.59.7.0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study investigates whether chronic ethanol consumption increases blood pressure and alters vascular reactivity in different tissues. Changes in reactivity to phenylephrine and acetylcholine were investigated in the aorta, carotid artery and mesenteric arterial bed (MAB) isolated from rats pretreated with ethanol for 2 or 6 weeks. Mild hypertension was observed in chronically ethanol-treated rats, which was due to rises in both systolic and diastolic pressures. Chronic ethanol consumption increased the contractile response to phenylephrine of endothelium-intact and denuded rat aortic rings from rats pretreated with ethanol for 2 or 6 weeks. Conversely, no differences were found in acetylcholine-induced relaxation. Neither phenylephrine-induced contraction nor acetylcholine-induced relaxation were altered in the rat carotid. Six weeks' ethanol consumption enhanced the contractile response to phenylephrine of endothelium-intact, but not denuded rat MAB. On the other hand, 2 weeks' ethanol consumption did not affect phenylephrine-induced increase in perfusion pressure. Moreover, acetylcholine-induced endothelium-dependent relaxation in the MAB was reduced after treatment with ethanol for 6 weeks but not after 2 weeks. In conclusion, ethanol affects both blood pressure and vessel reactivity, but the effect on vascular reactivity may take longer to become apparent in MAB than in the aorta, and was not evident in the carotid. Moreover, we provide evidence that the effect of ethanol depends on the agonist and blood vessel studied.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tirapelli CR, Casolari DA, Yogi A, Tostes RC, Legros E, Lanchote VL, Uyemura SA, de Oliveira AM. Effect of chronic ethanol consumption on endothelin-1 generation and conversion of exogenous big-endothelin-1 by the rat carotid artery. Alcohol 2007; 41:77-85. [PMID: 17466482 DOI: 10.1016/j.alcohol.2007.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/16/2007] [Accepted: 02/09/2007] [Indexed: 12/27/2022]
Abstract
The purpose of the present work was to investigate whether conversion of exogenous applied big-endothelin-1 (Big-ET-1) as well as the basal release and mRNA levels of endothelin-1 (ET-1) is altered by ethanol consumption in the rat carotid. The measurement of the contraction induced by Big-ET-1 served as an indicative of functional endothelin (ET)-converting enzyme (ECE) activity. Cumulative application of exogenous Big-ET-1 elicited a concentration-related contraction with the concentration-response curve shifted to the right when compared to ET-1. In endothelium-intact rings, phosphoramidon (1 mmol/l), a nonselective ECE/neutral endopeptidase (NEP) inhibitor, produced a rightward displacement of the concentration-response curves and reduced the maximal contractile response to Big-ET-1. However, in endothelium-denuded rings phosphoramidon reduced the maximum contraction for Big-ET-1 but did not alter the potency when compared to the curves obtained in the absence of the inhibitor. Ethanol consumption for 2, 6, or 10 weeks reduced the contractile effect elicited by Big-ET-1 in carotid rings with intact endothelium when compared to control or isocaloric rings. However, no differences on Big-ET-1-induced contraction were observed after endothelial denudation. On the other hand, ethanol consumption increased ET-1-induced contraction. Finally, chronic ethanol consumption did not alter either the mRNA levels for pre-pro-ET-1 nor the basal release of ET-1. The present findings show that chronic ethanol consumption does not alter the mRNA levels for ET-1 or its basal release in the rat carotid. Moreover, ethanol intake reduces the contraction induced by exogenously applied Big-ET-1 in carotid rings with intact endothelium, a fact that might be the result of a reduced conversion of this peptide by ECE on its mature active peptide ET-1.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo (USP), SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tirapelli CR, Casolari DA, Montezano AC, Yogi A, Tostes RC, Legros E, D'Orléans-Juste P, Lanchote VL, Uyemura SA, de Oliveira AM. Ethanol consumption enhances endothelin-1-induced contraction in the isolated rat carotid. J Pharmacol Exp Ther 2006; 318:819-27. [PMID: 16651399 DOI: 10.1124/jpet.106.103010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We investigated the mechanisms involved in the enhancement of endothelin (ET)-1 vascular reactivity induced by ethanol consumption. Ethanol intake for 2, 6, and 10 weeks enhanced the ET-1-induced contractile response of endothelium-intact but not endothelium-denuded rat carotid rings independently of the treatment duration. Conversely, phenylephrine-induced contraction was not affected by ethanol intake. The contraction induced by IRL1620 [succinyl-(Glu(9),Ala(11,15))-ET-1-(8-21)], a selective ET(B) agonist, was increased after treatment with ethanol in endothelium-intact but not in endothelium-denuded carotid rings. Moreover, ET-1- and IRL1620-induced relaxation was reduced in endothelium-intact phenylephrine-precontracted rings from ethanol-treated rats. Acetylcholine-induced relaxation was not affected by ethanol treatment. N(G)-Nitro-l-arginine methyl ester, 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, and tetraethylammonium reduced the relaxation induced by IRL1620 in carotid glands from control but not ethanol-treated rats. The mRNA levels for ET(A) and ET(B) receptors were not altered by ethanol consumption. However, ethanol treatment reduced the protein expression of ET(B) receptors. Furthermore, immunohistochemical assays showed reduced immunostaining for endothelial ET(B) receptors after treatment with ethanol. We conclude that ethanol consumption enhances ET-1-induced contraction in the rat carotid and that this response is not different among the three periods of treatment used in this study. Finally, the potentiation of ET-1-induced vascular reactivity is probably caused by reduced expression of relaxing endothelial ET(B) receptors.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|