1
|
The association of Edaravone with shunt surgery improves behavioral performance, reduces astrocyte reaction and apoptosis, and promotes neuroprotection in young hydrocephalic rats. J Chem Neuroanat 2021; 119:102059. [PMID: 34896559 DOI: 10.1016/j.jchemneu.2021.102059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
The neuroprotective effect of Edaravone in young hydrocephalic rats associated with a CSF derivation system was evaluated. The drug has already been shown to be beneficial in experimental hydrocephalus, but the combination of this drug with shunt surgery has not yet been investigated. Fifty-seven-day-old Wistar rats submitted to hydrocephalus by injection of kaolin in the cisterna magna were used and divided into five groups: control (n = 10), hydrocephalic (n = 10), hydrocephalic treated with Edaravone (20 mg/kg/day) (n = 10), hydrocephalic treated with shunt (n = 10) and hydrocephalic treated with shunt and Edaravone (n = 10). Administration of the Edaravone was started 24 h after hydrocephalus induction (P1) and continued until the experimental endpoint (P21). The CSF shunt surgery was performed seven days after hydrocephalus induction (P7). Open-field tests, histological evaluation by hematoxylin and eosin, immunohistochemistry by Caspase-3 and GFAP, and ELISA biochemistry by GFAP were performed. Edaravone reduced reactive astrogliosis in the corpus callosum and germinal matrix (p < 0.05). When used alone or associated with CSF shunt surgery, the drug decreased the cell death process (p < 0.0001) and improved the morphological aspect of the astroglia (p < 0.05). The results showed that Edaravone associated with CSF bypass surgery promotes neuroprotection in young hydrocephalic rats by reducing reactive astrogliosis and decreasing cell death.
Collapse
|
2
|
Shokrzadeh M, Javanmard H, Golmohammad Zadeh G, Asgarian Emran H, Modanlou M, Yaghubi-Beklar S, Ataee R. Evaluation of the Anti-apoptotic and Anti-cytotoxic Effect of Epicatechin Gallate and Edaravone on SH-SY5Y Neuroblastoma Cells. Basic Clin Neurosci 2020; 10:619-630. [PMID: 32477479 PMCID: PMC7253806 DOI: 10.32598/bcn.9.10.1159.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/10/2018] [Accepted: 05/13/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction: Parkinson disease (PD) is the second most common neurodegenerative disease affecting older individuals with signs of motor disability and cognitive impairment. Epicatechin (EC) and edaravone have neuroprotective effects most probably due to their antioxidant activity; however, a limited number of studies have considered their role in PD. This research aimed at investigating the neuroprotective effect of EC and edaravone in a neurotoxin-induced model of PD. Methods: An in vitro model of PD was made by subjecting SH-SY5Y neuroblastoma cells to neurotoxin: 6-hydroxydopamine (6-OHDA) 100 μM/well. The cytoprotective effect of EC and edaravone in five concentrations on cell viability was tested using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. The apoptotic assay was done by annexin V and propidium iodide method using flow cytometry. Results: According to the MTT assay analysis, EC and edaravone had protective effects against 6-OH DA-induced cytotoxicity in SH-SY5Y neuroblastoma cells that were much more significant for edaravone and also a relative synergistic effect between EC and edaravone was observed. The apoptotic analysis showed that edaravone alone could decrease early and late apoptosis, whereas EC diminished early apoptosis, but enhanced late apoptosis and necrosis. Besides, co-treatment of edaravone and EC had a synergistic effect on decreasing apoptosis and increasing cell viability. Conclusion: The protective effect of edaravone on apoptosis and cytotoxicity was demonstrated clearly and EC had a synergistic effect with edaravone.
Collapse
Affiliation(s)
- Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hashem Javanmard
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | - Mona Modanlou
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Yaghubi-Beklar
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ramin Ataee
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Immunology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Rasoulinezhad S, Yekta NH, Fallah E. Promising pain-relieving activity of an ancient Persian remedy (mixture of white Lily in sesame oil) in patients with chronic low back pain. J Family Med Prim Care 2019; 8:634-639. [PMID: 30984686 PMCID: PMC6436283 DOI: 10.4103/jfmpc.jfmpc_423_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Chronic low back pain (CLBP) is one the frequent musculoskeletal issues among adults mostly without a specific etiology. In this study, we investigated a traditional Persian remedy for back pain which is based on topical application of a mixture of sesame oil (SO) and white lily (LSM). Materials and Methods: The chemical profile, phenol content, and antioxidant activity of the herbal samples were determined using GC-MS, total phenol content (TPC) assay, and DPPH assay, respectively. Clinical efficacy of the herbal samples by a double-blind placebo was examined. Results: TPC of SO and LSM was 45 ± 5.7 and 68.3 ± 11.2 mg GAE/g oil mixture, respectively. The SO could inhibit 59.7% of free radicals, whereas LSM showed a radical inhibition rate of 74.7% in DPPH assay. LSM could reduce the pain feeling and obtained the lowest pain scores (Oswestry disability index and numeric rating scale) in weeks 4 and 8 of therapy in comparison to other treatment groups (diclofenac gel and SO) and placebo control (Vaseline). Conclusions: The results implicate the LSM as a novel therapeutic alternative for the therapy of the CLBP.
Collapse
Affiliation(s)
- Saeed Rasoulinezhad
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseini Yekta
- Department of Persian Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Fallah
- Department of Orthopedic and Trauma Surgery, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Inoue N, Ogura S, Kasai A, Nakazawa T, Ikeda K, Higashi S, Isotani A, Baba K, Mochizuki H, Fujimura H, Ago Y, Hayata-Takano A, Seiriki K, Shintani Y, Shintani N, Hashimoto H. Knockdown of the mitochondria-localized protein p13 protects against experimental parkinsonism. EMBO Rep 2018; 19:embr.201744860. [PMID: 29371327 DOI: 10.15252/embr.201744860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction in the nigrostriatal dopaminergic system is a critical hallmark of Parkinson's disease (PD). Mitochondrial toxins produce cellular and behavioural dysfunctions resembling those in patients with PD Causative gene products for familial PD play important roles in mitochondrial function. Therefore, targeting proteins that regulate mitochondrial integrity could provide convincing strategies for PD therapeutics. We have recently identified a novel 13-kDa protein (p13) that may be involved in mitochondrial oxidative phosphorylation. In the current study, we examine the mitochondrial function of p13 and its involvement in PD pathogenesis using mitochondrial toxin-induced PD models. We show that p13 overexpression induces mitochondrial dysfunction and apoptosis. p13 knockdown attenuates toxin-induced mitochondrial dysfunction and apoptosis in dopaminergic SH-SY5Y cells via the regulation of complex I. Importantly, we generate p13-deficient mice using the CRISPR/Cas9 system and observe that heterozygous p13 knockout prevents toxin-induced motor deficits and the loss of dopaminergic neurons in the substantia nigra. Taken together, our results suggest that manipulating p13 expression may be a promising avenue for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Naoki Inoue
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan.,Research Fellowships for Young Scientists of the Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Sae Ogura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Kazuya Ikeda
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shintaro Higashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ayako Isotani
- Animal Resource Center for Infectious Diseases, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University Kanazawa University Hamamatsu University School of Medicine Chiba University and University of Fukui, Suita, Osaka, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Osaka, Japan
| | - Yusuke Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University Kanazawa University Hamamatsu University School of Medicine Chiba University and University of Fukui, Suita, Osaka, Japan.,iPS Cell-based Research Project on Brain Neuropharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother 2017; 18:735-738. [PMID: 28406335 DOI: 10.1080/14656566.2017.1319937] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, neurodegenerative disease. Although the pathogenesis remains unresolved, oxidative stress is known to play a pivotal role. Edaravone works in the central nervous system as a potent scavenger of oxygen radicals. In ALS mouse models, edaravone suppresses motor functional decline and nitration of tyrosine residues in the cerebrospinal fluid. Areas covered: Three clinical trials, one phase II open-label trial, and two phase III placebo-control randomized trials were reviewed. In all trials, the primary outcome measure was the changes in scores on the revised ALS functional rating scale (ALSFRS-R) to evaluate motor function of patients. Expert opinion: The phase II open label trial suggested that edaravone is safe and effective in ALS, markedly reducing 3-nitrotyrosine levels in the cerebrospinal fluid. One of the two randomized controlled trials showed beneficial effects in ALSFRS-R, although the differences were not significant. The last trial demonstrated that edaravone provided significant efficacy in ALSFRS-R scores over 24 weeks where concomitant use of riluzole was permitted. Eligibility was restricted to patients with a relatively short disease duration and preserved vital capacity. Therefore, combination therapy with edaravone and riluzole should be considered earlier.
Collapse
Affiliation(s)
- Hideyuki Sawada
- a Department of Neurology , Utano National Hospital , Kyoto , Japan
| |
Collapse
|
6
|
Neurobehavioral Anomalies in the Pitx3/ak Murine Model of Parkinson’s Disease and MPTP. Behav Genet 2015; 46:228-41. [DOI: 10.1007/s10519-015-9753-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 01/11/2023]
|
7
|
Liu X, Shao R, Li M, Yang G. Edaravone protects neurons in the rat substantia nigra against 6-hydroxydopamine-induced oxidative stress damage. Cell Biochem Biophys 2015; 70:1247-54. [PMID: 24948472 DOI: 10.1007/s12013-014-0048-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate the mechanism of the neuroprotective effect of edaravone in substantia nigra (SN) of the 6-OHDA-induced rat model of Parkinson's disease. Animal model of Parkinson's disease was induced in male Sprague-Dawley rats by injecting 6-OHDA into the left medial forebrain bundle. Subsequently, rats were intraperitoneally injected with 0.3, 1, or 3 mg/kg of edaravone for 14 days or with 3 mg/kg edaravone for 14 days followed by 14 days of no treatment. We evaluated the effect of edaravone on the rotational and normal behavior of the rats, and on the number of tyrosine hydroxylase (TH)-positive cells, the amount of Nissl bodies, and the levels of glutathione (GSH), and malondialdehyde (MDA) in the SN. Edaravone treatment at 3 mg/kg significantly reduced apomorphine-induced rotational behavior (P < 0.01), improved the spontaneous behavior, prevented the decrease in the levels of TH-positive cells, Nissl bodies and GSH, and inhibited the increase in the levels of MDA (P < 0.05) in SN of rats with 6-OHDA-induced PD. Edaravone exerted a long-term neuroprotective effects in 6-OHDA-induced PD animal model by attenuating changes in the levels of GSH and MDA in SN, caused by oxidative stress. Edaravone prevented 6-OHDA-induced behavioral changes and de-pigmentation of SN that results from the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Xiqi Liu
- Department of Neurology, The Central Hospital of Cangzhou City, Cangzhou, 061000, Hebei, China
| | | | | | | |
Collapse
|
8
|
Khan MM, Zaheer S, Thangavel R, Patel M, Kempuraj D, Zaheer A. Absence of glia maturation factor protects dopaminergic neurons and improves motor behavior in mouse model of parkinsonism. Neurochem Res 2015; 40:980-90. [PMID: 25754447 DOI: 10.1007/s11064-015-1553-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Previously, we have shown that aberrant expression of glia maturation factor (GMF), a proinflammatory protein, is associated with the neuropathological conditions underlying diseases suggesting an important role for GMF in neurodegeneration. In the present study, we demonstrate that absence of GMF suppresses dopaminergic (DA) neuron loss, glial activation, and expression of proinflammatory mediators in the substantia nigra pars compacta (SN) and striatum (STR) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated mice. Dopaminergic neuron numbers in the SN and fiber densities in the STR were reduced in wild type (Wt) mice when compared with GMF-deficient (GMF-KO) mice after MPTP treatment. We compared the motor abnormalities caused by MPTP treatment in Wt and GMF-KO mice as measured by Rota rod and grip strength test. Results show that the deficits in motor coordination and decrease in dopamine and its metabolite content were protected significantly in GMF-KO mice after MPTP treatment when compared with control Wt mice under identical experimental conditions. These findings were further supported by the immunohistochemical analysis that showed reduced glial activation in the SN of MPTP-treated GMF-KO mice. Similarly, in MPTP-treated GMF-KO mice, production of inflammatory tumor necrosis factor alpha, interleukine-1 beta, granulocyte macrophage-colony stimulating factor, and the chemokine (C-C motif) ligand 2 MCP-1 was suppressed, findings consistent with a role for GMF in MPTP neurotoxicity. In conclusion, present investigation provides the first evidence that deficiency of GMF protects the DA neuron loss and reduces the inflammatory load following MPTP administration in mice. Thus depletion of endogenous GMF represents an effective and selective strategy to slow down the MPTP-induced neurodegeneration.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | | | | | | | | | | |
Collapse
|
9
|
Morroni F, Sita G, Tarozzi A, Cantelli-Forti G, Hrelia P. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease. Brain Res 2014; 1589:93-104. [PMID: 25257035 DOI: 10.1016/j.brainres.2014.09.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022]
Abstract
A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d׳Augusto, 237, 47900 Rimini, Italy
| | - Giorgio Cantelli-Forti
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d׳Augusto, 237, 47900 Rimini, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
10
|
The role of Pak-interacting exchange factor-β phosphorylation at serines 340 and 583 by PKCγ in dopamine release. J Neurosci 2014; 34:9268-80. [PMID: 25009260 DOI: 10.1523/jneurosci.4278-13.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C (PKC) has been implicated in the control of neurotransmitter release. The AS/AGU rat, which has a nonsense mutation in PKCγ, shows symptoms of parkinsonian syndrome, including dopamine release impairments in the striatum. Here, we found that the AS/AGU rat is PKCγ-knock-out (KO) and that PKCγ-KO mice showed parkinsonian syndrome. However, the PKCγ substrates responsible for the regulated exocytosis of dopamine in vivo have not yet been elucidated. To identify the PKCγ substrates involved in dopamine release, we used PKCγ-KO mice and a phosphoproteome analysis. We found 10 candidate phosphoproteins that had decreased phosphorylation levels in the striatum of PKCγ-KO mice. We focused on Pak-interacting exchange factor-β (βPIX), a Cdc42/Rac1 guanine nucleotide exchange factor, and found that PKCγ directly phosphorylates βPIX at Ser583 and indirectly at Ser340 in cells. Furthermore, we found that PKC phosphorylated βPIX in vivo. Classical PKC inhibitors and βPIX knock-down (KD) significantly suppressed Ca(2+)-evoked dopamine release in PC12 cells. Wild-type βPIX, and not the βPIX mutants Ser340 Ala or Ser583 Ala, fully rescued the decreased dopamine release by βPIX KD. Double KD of Cdc42 and Rac1 decreased dopamine release from PC12 cells. These findings indicate that the phosphorylation of βPIX at Ser340 and Ser583 has pivotal roles in Ca(2+)-evoked dopamine release in the striatum. Therefore, we propose that PKCγ positively modulates dopamine release through β2PIX phosphorylation. The PKCγ-βPIX-Cdc42/Rac1 phosphorylation axis may provide a new therapeutic target for the treatment of parkinsonian syndrome.
Collapse
|
11
|
Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates. PLoS One 2014; 9:e104850. [PMID: 25133405 PMCID: PMC4136781 DOI: 10.1371/journal.pone.0104850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiac sympathetic neurodegeneration and dysautonomia affect patients with sporadic and familial Parkinson's disease (PD) and are currently proposed as prodromal signs of PD. We have recently developed a nonhuman primate model of cardiac dysautonomia by iv 6-hydroxydopamine (6-OHDA). Our in vivo findings included decreased cardiac uptake of a sympathetic radioligand and circulating catecholamines; here we report the postmortem characterization of the model. Ten adult rhesus monkeys (5–17 yrs old) were used in this study. Five animals received 6-OHDA (50 mg/kg iv) and five were age-matched controls. Three months post-neurotoxin the animals were euthanized; hearts and adrenal glands were processed for immunohistochemistry. Quantification of immunoreactivity (ir) of stainings was performed by an investigator blind to the treatment group using NIH ImageJ software (for cardiac bundles and adrenals, area above threshold and optical density) and MBF StereoInvestigator (for cardiac fibers, area fraction fractionator probe). Sympathetic cardiac nerve bundle analysis and fiber area density showed a significant reduction in global cardiac tyrosine hydroxylase-ir (TH; catecholaminergic marker) in 6-OHDA animals compared to controls. Quantification of protein gene protein 9.5 (pan-neuronal marker) positive cardiac fibers showed a significant deficit in 6-OHDA monkeys compared to controls and correlated with TH-ir fiber area. Semi-quantitative evaluation of human leukocyte antigen-ir (inflammatory marker) and nitrotyrosine-ir (oxidative stress marker) did not show significant changes 3 months post-neurotoxin. Cardiac nerve bundle α-synuclein-ir (presynaptic protein) was reduced (trend) in 6-OHDA treated monkeys; insoluble proteinase-K resistant α-synuclein (typical of PD pathology) was not observed. In the adrenal medulla, 6-OHDA monkeys had significantly reduced TH-ir and aminoacid decarboxylase-ir. Our results confirm that systemic 6-OHDA dosing to nonhuman primates induces cardiac sympathetic neurodegeneration and loss of catecholaminergic enzymes in the adrenal medulla, and suggests that this model can be used as a platform to evaluate disease-modifying strategies aiming to induce peripheral neuroprotection.
Collapse
|
12
|
Giordano S, Darley-Usmar V, Zhang J. Autophagy as an essential cellular antioxidant pathway in neurodegenerative disease. Redox Biol 2013; 2:82-90. [PMID: 24494187 PMCID: PMC3909266 DOI: 10.1016/j.redox.2013.12.013] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress including DNA damage, increased lipid and protein oxidation, are important features of aging and neurodegeneration suggesting that endogenous antioxidant protective pathways are inadequate or overwhelmed. Importantly, oxidative protein damage contributes to age-dependent accumulation of dysfunctional mitochondria or protein aggregates. In addition, environmental toxins such as rotenone and paraquat, which are risk factors for the pathogenesis of neurodegenerative diseases, also promote protein oxidation. The obvious approach of supplementing the primary antioxidant systems designed to suppress the initiation of oxidative stress has been tested in animal models and positive results were obtained. However, these findings have not been effectively translated to treating human patients, and clinical trials for antioxidant therapies using radical scavenging molecules such as α-tocopherol, ascorbate and coenzyme Q have met with limited success, highlighting several limitations to this approach. These could include: (1) radical scavenging antioxidants cannot reverse established damage to proteins and organelles; (2) radical scavenging antioxidants are oxidant specific, and can only be effective if the specific mechanism for neurodegeneration involves the reactive species to which they are targeted and (3) since reactive species play an important role in physiological signaling, suppression of endogenous oxidants maybe deleterious. Therefore, alternative approaches that can circumvent these limitations are needed. While not previously considered an antioxidant system we propose that the autophagy-lysosomal activities, may serve this essential function in neurodegenerative diseases by removing damaged or dysfunctional proteins and organelles. Significant oxidative damage occurs in neurodegenerative disease brains. Effective in animal models with single toxins, antioxidants are ineffective in clinical trials. The failure of antioxidant therapy maybe due to propagation of cellular damage. Autophagic clearance of diverse damaged molecules may provide antioxidant mechanisms. Further mechanistic and translational studies on autophagy therapy are needed.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- Animal models
- Anti-oxidants
- Autophagy
- CBZ, carbamazepine
- Clinical trials
- EGCG, epigallocatechin gallate
- GSH, glutathione
- HIF1α, hypoxia-inducible factor 1-alpha
- HNE, 4-hydroxynonenal
- LRRK2, leucine-rich repeat kinase 2
- MDA, malondialdehyde
- MPP+, 1-methyl-4-phenylpyridinium
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine
- MitoQ, mitochondrially-targeted coenzyme Q
- Mitochondrial dysfunction
- MnSOD, manganese superoxide dismutase
- Neurons
- Nrf2, Nuclear factor (erythroid-derived 2)-like 2
- PINK1, PTEN-induced putative kinase 1
- Parkinson’s disease
- Protein aggregation
- ROS/RNS, reactive oxygen and nitrogen species
- Reactive oxygen species
- Redox signaling
- SOD, superoxide dismutase
- Selegiline, N-propargyl-methamphetamine
- Sirt1, NAD-dependent deacetylast sirtuin-1
- TFEB, transcription factor EB
- Toxins
- UCHL1, ubiquitin carboxyl-terminal hydrolase L1
- UPDRS, Unified Parkinson’s Disease Rating Scale
- curcumin, (1E,6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione
- iPSC, induced pluripotent stem cells
- rasagiline, N-propargyl-1-(R)-aminoindan
- the ADAGIO study, the Attenuation of Disease Progression with Azilect Given Once-daily) study
- the DATATOP Study, the Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism Study
- the NET-PD network, the NINDS Exploratory Trials in Parkinson’s Disease (NET-PD) network
- the TEMPO Study, the TVP-1012 in Early Monotherapy for PD Outpatients Study
Collapse
Affiliation(s)
- Samantha Giordano
- Center for Free Radical Biology, University of Alabama at Birmingham, United States ; Department of Pathology, University of Alabama at Birmingham, United States
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham, United States ; Department of Pathology, University of Alabama at Birmingham, United States
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, United States ; Department of Pathology, University of Alabama at Birmingham, United States ; Department of Veterans Affairs, Birmingham VA Medical Center, United States
| |
Collapse
|
13
|
Li B, Yu D, Xu Z. Edaravone prevents neurotoxicity of mutant L166P DJ-1 in Parkinson's disease. J Mol Neurosci 2013; 51:539-49. [PMID: 23657982 DOI: 10.1007/s12031-013-0022-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD), which is estimated to affect approximately 1 % of the population over the age of 65, is the second most common neurodegenerative disorder after Alzheimer's disease. It was reported that pathogenic mutations in DJ-1 lead to autosomal recessive early-onset familial Parkinsonism. The L166P mutant of DJ-1 is the most commonly studied loss-of-function mutation in early onset familial PD, but the underlying mechanisms are still unknown. Edaravone is a powerful free radical scavenger used in clinical treatment for cerebral ischemic stroke. In the present study, we investigated the effects of edaravone on the neurotoxicity in PD-induced isoforms of DJ-1 containing the mutation L166P. Our results indicated that edaravone was able to significantly attenuate oxidative stress and improve mitochondrial function. Furthermore, edaravone was found to reduce apoptosis in Neuro2a cells through modulation of mitochondria-dependent apoptosis pathways. Interestingly, our result also demonstrated that edaravone was able to up-regulate VMAT2 expression in N2a cells in a dose-dependent manner. Our findings enhance the understanding of the neuro-protective effects of edaravone in cell models and suggest that edaravone offers significant protection in a PD-related in vitro model.
Collapse
Affiliation(s)
- Bing Li
- Department of Neurology, Yantai Yuhuangding Hospital of Medical College of Qingdao University, Yantai, Shandong, 264000, People's Republic of China,
| | | | | |
Collapse
|
14
|
Subramaniam SR, Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. J Neurosci Res 2012. [DOI: 10.1002/jnr.23164] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Magnolol Protects against MPTP/MPP(+)-Induced Toxicity via Inhibition of Oxidative Stress in In Vivo and In Vitro Models of Parkinson's Disease. PARKINSONS DISEASE 2012; 2012:985157. [PMID: 22655218 PMCID: PMC3357601 DOI: 10.1155/2012/985157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/20/2012] [Indexed: 01/15/2023]
Abstract
The aim of this study is to investigate the role of magnolol in preventing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-) induced neurodegeneration in mice and 1-methyl-4-phenylpyridinium ion-(MPP(+)-) induced cytotoxicity to human neuroblastoma SH-SY5Y cells and to examine the possible mechanisms. Magnolol (30 mg/kg) was orally administered to C57BL/6N mice once a day for 4 or 5 days either before or after MPTP treatment. Western blot analysis revealed that MPTP injections substantially decreased protein levels of dopamine transporter (DAT) and tyrosine hydroxylase (TH) and increased glial fibrillary acidic protein (GFAP) levels in the striatum. Both treatments with magnolol significantly attenuated MPTP-induced decrease in DAT and TH protein levels in the striatum. However, these treatments did not affect MPTP-induced increase in GFAP levels. Moreover, oral administration of magnolol almost completely prevented MPTP-induced lipid peroxidation in the striatum. In human neuroblastoma SH-SY5Y cells, magnolol significantly attenuated MPP(+)-induced cytotoxicity and the production of reactive oxygen species. These results suggest that magnolol has protective effects via an antioxidative mechanism in both in vivo and in vitro models of Parkinson's disease.
Collapse
|
16
|
Takuma K, Tanaka T, Takahashi T, Hiramatsu N, Ota Y, Ago Y, Matsuda T. Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesia in hemi-Parkinsonian rats. Eur J Pharmacol 2012; 683:166-73. [PMID: 22449381 DOI: 10.1016/j.ejphar.2012.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/28/2012] [Accepted: 03/04/2012] [Indexed: 01/05/2023]
Abstract
Long-term treatment with the dopamine precursor levodopa (l-DOPA) frequently induces dyskinesia in Parkinson's disease patients, which is a major complication of this therapy. Previous studies using animal models show that repeated administration of l-DOPA results in alterations of some signaling molecules, including ΔFosB, phospho-DARPP32 and phosoho-GluA1 (also referred to as GluR1 or GluR-A) AMPA receptor subunits. Moreover, an in vivo microdialysis study showed that l-DOPA increases nitric oxide (NO) production in the striatum. However, it is not known whether NO is involved in the development of dyskinesia. The present study examined the effects of NOS inhibitors on the development of l-DOPA-induced dyskinesia in the rats. Dyskinesia symptoms were triggered by daily administration of l-DOPA for 3-4weeks in unilateral 6-hydroxydopamine lesioned rats. Repeated treatments, 30min prior l-DOPA administration, of the nonselective NOS inhibitor, N(G)-nitro-l-arginine methyl ester, and the nNOS inhibitor 7-nitroindazole, but not the inducible NOS inhibitor aminoguanidine, attenuated the development of l-DOPA-induced dyskinesia. In agreement with the behavioral analysis, 7-nitroindazole reduced the l-DOPA-induced increases in ΔFosB, phospho-DARPP32 and phospho-GluA1 AMPA receptor subunit levels in the striatum of 6-hydroxydopamine-lesioned rats. Furthermore, aminoguanidine did not affect ΔFosB or phospho-GluA1 AMPA receptor subunit levels. These findings suggest that nNOS-derived NO is involved in the development of l-DOPA-induced dyskinesia through a post-synaptic mechanism.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Freeman LR, Keller JN. Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta Mol Basis Dis 2011; 1822:822-9. [PMID: 22206999 DOI: 10.1016/j.bbadis.2011.12.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/14/2011] [Indexed: 12/21/2022]
Abstract
While numerous lines of evidence point to increased levels of oxidative stress playing a causal role in a number of neurodegenerative conditions, our current understanding of the specific role of oxidative stress in the genesis and/or propagation of neurodegenerative diseases remains poorly defined. Even more challenging to the "oxidative stress theory of neurodegeneration" is the fact that many antioxidant-based clinical trials and therapeutic interventions have been largely disappointing in their therapeutic benefit. Together, these factors have led researchers to begin to focus on understanding the contribution of highly localized structures, and defined anatomical features, within the brain as the sites responsible for oxidative stress-induced neurodegeneration. This review focuses on the potential for oxidative stress within the cerebrovascular architecture serving as a modulator of neurodegeneration in a variety of pathological settings. In particular, this review highlights important implications for vascular-derived oxidative stress in the initiating and promoting pathophysiology in the brain, identifying new roles for cerebrovascular oxidative stress in a variety of brain disorders. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Linnea R Freeman
- Pennington Biomedical Research Center, BAton Rouge, LA 70808, USA
| | | |
Collapse
|
18
|
Ago Y, Kawasaki T, Nashida T, Ota Y, Cong Y, Kitamoto M, Takahashi T, Takuma K, Matsuda T. SEA0400, a specific Na+/Ca2+ exchange inhibitor, prevents dopaminergic neurotoxicity in an MPTP mouse model of Parkinson's disease. Neuropharmacology 2011; 61:1441-51. [PMID: 21903118 DOI: 10.1016/j.neuropharm.2011.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 12/14/2022]
Abstract
We have recently shown that the Na(+)/Ca(2+) exchanger (NCX) is involved in nitric oxide (NO)-induced cytotoxicity in cultured astrocytes and neurons. However, there is no in vivo evidence suggesting the role of NCX in neurodegenerative disorders associated with NO. NO is implicated in the pathogenesis of neurodegenerative disorders such as Parkinson's disease. This study examined the effect of SEA0400, the specific NCX inhibitor, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a model of Parkinson's disease, in C57BL/6J mice. MPTP treatment (10 mg/kg, four times at 2-h intervals) decreased dopamine levels in the midbrain and impaired motor coordination, and these effects were counteracted by S-methylthiocitrulline, a selective neuronal NO synthase inhibitor. SEA0400 protected against the dopaminergic neurotoxicity (determined by dopamine levels in the midbrain and striatum, tyrosine hydroxylase immunoreactivity in the substantia nigra and striatum, striatal dopamine release, and motor deficits) in MPTP-treated mice. SEA0400 had no radical-scavenging activity. SEA0400 did not affect MPTP metabolism and MPTP-induced NO production and microglial activation, while it attenuated MPTP-induced increases in extracellular signal-regulated kinase (ERK) phosphorylation and lipid peroxidation product, thiobarbituric acid reactive substance. These findings suggest that SEA0400 protects against MPTP-induced neurotoxicity probably by blocking ERK phosphorylation and lipid peroxidation which are downstream of NCX-mediated Ca(2+) influx.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The specific Na+/Ca2+ exchange inhibitor SEA0400 prevents nitric oxide-induced cytotoxicity in SH-SY5Y cells. Neurochem Int 2011; 59:51-8. [DOI: 10.1016/j.neuint.2011.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 12/13/2022]
|
20
|
Xiong N, Xiong J, Khare G, Chen C, Huang J, Zhao Y, Zhang Z, Qiao X, Feng Y, Reesaul H, Zhang Y, Sun S, Lin Z, Wang T. Edaravone guards dopamine neurons in a rotenone model for Parkinson's disease. PLoS One 2011; 6:e20677. [PMID: 21677777 PMCID: PMC3108992 DOI: 10.1371/journal.pone.0020677] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/08/2011] [Indexed: 12/21/2022] Open
Abstract
3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone), an effective free radical scavenger, provides neuroprotection in stroke models and patients. In this study, we investigated its neuroprotective effects in a chronic rotenone rat model for Parkinson's disease. Here we showed that a five-week treatment with edaravone abolished rotenone's activity to induce catalepsy, damage mitochondria and degenerate dopamine neurons in the midbrain of rotenone-treated rats. This abolishment was attributable at least partly to edaravone's inhibition of rotenone-induced reactive oxygen species production or apoptotic promoter Bax expression and its up-regulation of the vesicular monoamine transporter 2 (VMAT2) expression. Collectively, edaravone may provide novel clinical therapeutics for PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- Department of Psychiatry and Harvard NeuroDiscovery Center, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Jing Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ghanshyam Khare
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Chunnuan Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Ying Zhao
- Department of Psychiatry and Harvard NeuroDiscovery Center, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Zhentao Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Xian Qiao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yuan Feng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Harrish Reesaul
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei, China
| | - Shenggang Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Zhicheng Lin
- Department of Psychiatry and Harvard NeuroDiscovery Center, Harvard Medical School, Division of Alcohol and Drug Abuse, and Mailman Research Center, McLean Hospital, Belmont, Massachusetts, United States of America
- * E-mail: (ZL); (TW)
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
- * E-mail: (ZL); (TW)
| |
Collapse
|
21
|
Possible role of propofol's cyclooxygenase-inhibiting property in alleviating dopaminergic neuronal loss in the substantia nigra in an MPTP-induced murine model of Parkinson's disease. Brain Res 2011; 1387:125-33. [PMID: 21376018 DOI: 10.1016/j.brainres.2011.02.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/17/2022]
Abstract
Propofol is an intravenous anesthetic widely used for sedation and general anesthesia. We investigated the effect of propofol on prostanoid production by activated microglia. Primary microglial culture was obtained from the brains of neonatal C57BL/6 mice. The microglia were stimulated with lipopolysaccharide (LPS) in the presence of propofol. Propofol suppressed the LPS-induced production of prostaglandin E(2) and thromboxane B(2). Cyclooxygenase (COX) protein expression and arachidonic acid release were not affected by propofol, while COX enzyme activity was significantly inhibited by propofol. The COX-inhibiting activity was also observed with purified enzymes, with COX-2 inhibition being significantly greater than COX-1 inhibition. Next, we studied whether the COX-inhibiting activity of propofol resulted in dopaminergic neuroprotection in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) murine model of Parkinson's disease, in which COX inhibitors, such as non-steroidal anti-inflammatory drugs, are reported to be neuroprotective. C57BL/6 mice received intraperitoneal injections of MPTP with or without propofol treatment, and the dopaminergic neurons in the substantia nigra pars compacta (SNpc) were examined immunohistochemically by observing the tyrosine hydroxylase-positive cells. The number of dopaminergic neurons in the SNpc was significantly reduced by MPTP treatment, while the MPTP-induced neuronal loss was minimal upon treatment with propofol or the selective COX-2 inhibitor, NS-398. These results indicate that propofol might be beneficial in mitigating MPTP-induced dopaminergic neurons, possibly via its COX-inhibiting activity.
Collapse
|
22
|
EDARAVONE INHIBITS THE INDUCTION OF INOS GENE EXPRESSION AT TRANSCRIPTIONAL AND POSTTRANSCRIPTIONAL STEPS IN MURINE MACROPHAGES. Shock 2008; 30:734-9. [DOI: 10.1097/shk.0b013e318173ea0b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol 2008; 594:101-8. [DOI: 10.1016/j.ejphar.2008.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 07/03/2008] [Accepted: 07/10/2008] [Indexed: 11/20/2022]
|
24
|
Kawasaki T, Ago Y, Kitao T, Nashida T, Takagi A, Takuma K, Matsuda T. A neuroprotective agent, T-817MA (1-{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl} azetidin-3-ol maleate), prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. Neuropharmacology 2008; 55:654-60. [DOI: 10.1016/j.neuropharm.2008.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/12/2008] [Accepted: 05/27/2008] [Indexed: 01/09/2023]
|
25
|
Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 2008; 55:1355-63. [PMID: 18796307 DOI: 10.1016/j.neuropharm.2008.08.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 11/24/2022]
Abstract
Chronic corticosterone and isolation rearing paradigms may provide reliable mouse models of depression. Using these models, the present study examined if the specific glucocorticoid receptor antagonist, RU-43044, has an antidepressant-like effect, and studied the possible role of prefrontal neurotransmission on the behavioral effects. Chronic administration of corticosterone and isolation rearing increased the immobility time in the forced swim and tail suspension tests. Subchronic treatment with RU-43044 decreased the immobility time in the forced swim test in chronic corticosterone-treated and isolation-reared mice, but not the control mice. Chronic corticosterone decreased the levels of cortical glucocorticoid receptors and stress-induced increases in plasma corticosterone levels, and blocked the response of plasma corticosterone to dexamethasone, while isolation rearing did not cause any changes in the glucocorticoid receptor system. Both chronic corticosterone and isolation rearing markedly increased high K+ -induced dopamine release, but not serotonin release, in the prefrontal cortex. Subchronic RU-43044 reversed the enhanced release of dopamine in the prefrontal cortex of chronic corticosterone-treated and isolation-reared mice. These results suggest that chronic corticosterone and isolation rearing increase the depressive-like behavior in glucocorticoid receptor-dependent and independent manners, respectively, and that RU-43044 shows an antidepressant-like effect, probably via an inhibition of enhanced prefrontal dopaminergic neurotransmission in these mouse models.
Collapse
Affiliation(s)
- Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Yuan WJ, Yasuhara T, Shingo T, Muraoka K, Agari T, Kameda M, Uozumi T, Tajiri N, Morimoto T, Jing M, Baba T, Wang F, Leung H, Matsui T, Miyoshi Y, Date I. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neurosci 2008; 9:75. [PMID: 18671880 PMCID: PMC2533664 DOI: 10.1186/1471-2202-9-75] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 08/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background Parkinson's disease (PD) is a neurological disorder characterized by the degeneration of nigrostriatal dopaminergic systems. Free radicals induced by oxidative stress are involved in the mechanisms of cell death in PD. This study clarifies the neuroprotective effects of edaravone (MCI-186, 3-methyl-1-phenyl-2-pyrazolin-5-one), which has already been used for the treatment of cerebral ischemia in Japan, on TH-positive dopaminergic neurons using PD model both in vitro and in vivo. 6-hydroxydopamine (6-OHDA), a neurotoxin for dopaminergic neurons, was added to cultured dopaminergic neurons derived from murine embryonal ventral mesencephalon with subsequet administration of edaravone or saline. The number of surviving TH-positive neurons and the degree of cell damage induced by free radicals were analyzed. In parallel, edaravone or saline was intravenously administered for PD model of rats receiving intrastriatal 6-OHDA lesion with subsequent behavioral and histological analyses. Results In vitro study showed that edaravone significantly ameliorated the survival of TH-positive neurons in a dose-responsive manner. The number of apoptotic cells and HEt-positive cells significantly decreased, thus indicating that the neuroprotective effects of edaravone might be mediated by anti-apoptotic effects through the suppression of free radicals by edaravone. In vivo study demonstrated that edaravone-administration at 30 minutes after 6-OHDA lesion reduced the number of amphetamine-induced rotations significantly than edaravone-administration at 24 hours. Tyrosine hydroxylase (TH) staining of the striatum and substantia nigra pars compacta revealed that edaravone might exert neuroprotective effects on nigrostriatal dopaminergic systems. The neuroprotective effects were prominent when edaravone was administered early and in high concentration. TUNEL, HEt and Iba-1 staining in vivo might demonstrate the involvement of anti-apoptotic, anti-oxidative and anti-inflammatory effects of edaravone-administration. Conclusion Edaravone exerts neuroprotective effects on PD model both in vitro and in vivo. The underlying mechanisms might be involved in the anti-apoptotic effects, anti-oxidative effects, and/or anti-inflammatory effects of edaravone. Edaravone might be a hopeful therapeutic option for PD, although the high therapeutic dosage remains to be solved for the clinical application.
Collapse
Affiliation(s)
- Wen Ji Yuan
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen H, Wang S, Ding JH, Hu G. Edaravone protects against MPP+ -induced cytotoxicity in rat primary cultured astrocytes via inhibition of mitochondrial apoptotic pathway. J Neurochem 2008; 106:2345-52. [PMID: 18643790 DOI: 10.1111/j.1471-4159.2008.05573.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Edaravone (Eda) is a potent scavenger of hydroxyl radicals and has been demonstrated to be beneficial for patients with acute ischemic stroke. This study was set out to investigate whether Eda protect against MPP(+)-induced cytotoxicity in rat primary cultured astrocytes. The results showed that pre-treatment with Eda inhibited astrocytic apoptosis and lactate dehydrogenase release induced by MPP(+) (200 microM). Further study revealed that Eda prevented GSH depletion, down-regulated mRNA expressions of NADPH oxidase membrane subunit gp91 and membrane-translocated subunit p47, and prevented the decreases of state 3 respiration respiration and respiratory control ratio induced by MPP(+), and thereby inhibited reactive oxygen species production evoked by MPP(+). Moreover, Eda could ameliorate mitochondrial respiratory function, restrain, and prevent mitochondrial membrane potential loss induced by MPP(+). Consequently, Eda inhibited releases of cytochrome c and apoptosis-inducing factor induced by MPP(+). Taken together, these findings reveal for the first time that Eda protects against MPP(+)-induced astrocytic apoptosis via decreasing intracellular reactive oxygen species level and subsequently inhibiting mitochondrial apoptotic pathway. The antiapoptosis effects of Eda on astrocytes may provide a new perspective on neuroprotective therapy.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | |
Collapse
|
28
|
McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA. Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes. Neuroscience 2008; 154:848-60. [PMID: 18485605 PMCID: PMC2517246 DOI: 10.1016/j.neuroscience.2008.03.070] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 03/16/2008] [Accepted: 03/27/2008] [Indexed: 12/25/2022]
Abstract
In the present study, we examined whether exposing rats to a high-dose regimen of manganese chloride (Mn) during the postnatal period would depress presynaptic dopamine functioning and alter nonassociative and associative behaviors. To this end, rats were given oral supplements of Mn (750 microg/day) on postnatal days (PD) 1-21. On PD 90, dopamine transporter (DAT) immunoreactivity and [3H]dopamine uptake were assayed in the striatum and nucleus accumbens, while in vivo microdialysis was used to measure dopamine efflux in the same brain regions. The effects of postnatal Mn exposure on nigrostriatal functioning were evaluated by assessing rotorod performance and amphetamine-induced stereotypy in adulthood. In terms of associative processes, both cocaine-induced conditioned place preference (CPP) and sucrose-reinforced operant responding were examined. Results showed that postnatal Mn exposure caused persistent declines in DAT protein expression and [3H]dopamine uptake in the striatum and nucleus accumbens, as well as long-term reductions in striatal dopamine efflux. Rotorod performance did not differ according to exposure condition, however Mn-exposed rats did exhibit substantially more amphetamine-induced stereotypy than vehicle controls. Mn exposure did not alter performance on any aspect of the CPP task (preference, extinction, or reinstatement testing), nor did Mn affect progressive ratio responding (a measure of motivation). Interestingly, acquisition of a fixed ratio task was impaired in Mn-exposed rats, suggesting a deficit in procedural learning. In sum, these results indicate that postnatal Mn exposure causes persistent declines in various indices of presynaptic dopaminergic functioning. Mn-induced alterations in striatal functioning may have long-term impact on associative and nonassociative behavior.
Collapse
Affiliation(s)
- S A McDougall
- Department of Psychology, California State University, San Bernardino, CA 92407, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Oyagi A, Oida Y, Hara H, Izuta H, Shimazawa M, Matsunaga N, Adachi T, Hara H. Protective effects of SUN N8075, a novel agent with antioxidant properties, in in vitro and in vivo models of Parkinson's disease. Brain Res 2008; 1214:169-76. [PMID: 18457816 DOI: 10.1016/j.brainres.2008.02.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/20/2008] [Accepted: 02/24/2008] [Indexed: 10/22/2022]
Abstract
SUN N8075 is a novel antioxidant with neuroprotective properties. This study was designed to elucidate its neuroprotective effects against 6-hydroxy dopamine (6-OHDA)-induced cell death and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity (known as in vitro and in vivo models of Parkinson's disease, respectively). In the in vitro study, on human neuroblastoma SH-SY5Y cells, SUN N8075 decreased the hydrogen peroxide (H2O2)-induced production of reactive oxygen species and protected against 6-OHDA-induced cell death. In the in vivo study, SUN N8075, when injected intraperitoneally (i.p.) twice with a 5-h interval, inhibited lipid peroxidation (viz. the production of thiobarbituric acid reactive substance) in the mouse forebrain at 1 h after the second injection. Mice were injected i.p. with MPTP (10 mg/kg) four times at 1-h intervals, and brains were analyzed 7 days later. SUN N8075 at 30 mg/kg (i.p., twice) exhibited a protective effect against the MPTP-induced decrease in tyrosine hydroxylase (TH)-positive fibers in the striatum. Moreover, SUN N8075 at 10 and 30 mg/kg (i.p., twice) had a similar protective effect against the MPTP-induced decrease in TH-positive cells in the substantia nigra. Further, SUN N8075 30 mg/kg (i.p. twice) markedly suppressed the MPTP-induced accumulation of 8-hydroxy-deoxyguanosine (8-OHdG) in the striatum. These findings indicate that SUN N8075 exerts protective effects, at least in part via an anti-oxidation mechanism, in these in vitro and in vivo models of Parkinson's disease.
Collapse
Affiliation(s)
- A Oyagi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fukudome D, Matsuda M, Kawasaki T, Ago Y, Matsuda T. The radical scavenger edaravone counteracts diabetes in multiple low-dose streptozotocin-treated mice. Eur J Pharmacol 2008; 583:164-9. [PMID: 18291360 DOI: 10.1016/j.ejphar.2008.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 01/08/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
Edaravone is a potent scavenger of hydroxyl radicals and attenuates oxidative damage-related neurodegenerative diseases. Previous studies suggest that oxidative stress plays a key role in the pathogenesis of diabetes. The present study examined the effect of edaravone on diabetes in multiple low-dose streptozotocin-treated mice. Mice treated with low-doses of streptozotocin for five consecutive days showed progressive hyperglycemia and an increased incidence of diabetes. Daily treatment with edaravone during the streptozotocin injections counteracted the multiple low-dose streptozotocin-induced hyperglycemia in a dose-dependent manner. Edaravone protected against the multiple low-dose streptozotocin-induced reduction in pancreatic insulin. The suppressive effects of edaravone were also observed when it was administered after the last injection of streptozotocin. Histochemical examination showed that multiple low-dose streptozotocin treatment caused mononuclear cell infiltration in pancreatic islets, followed by hyperglycemia, and that edaravone significantly inhibited the multiple low-dose streptozotocin-induced insulitis. Multiple low-dose streptozotocin treatment also increased the lipid peroxidation product thiobarbituric acid reactive substance in pancreatic tissues of mice, and this effect was completely inhibited by edaravone. These findings suggest that edaravone, even after streptozotocin treatment, counteracts the development of multiple low-dose streptozotocin-induced diabetes by scavenging free radicals, which are possible mediators of the immune destruction of islet beta cells.
Collapse
Affiliation(s)
- Daisuke Fukudome
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|