1
|
Yang K, McLaughlin I, Shaw JK, Quijano-Cardé N, Dani JA, De Biasi M. CHRNA5 gene variation affects the response of VTA dopaminergic neurons during chronic nicotine exposure and withdrawal. Neuropharmacology 2023; 235:109547. [PMID: 37116611 PMCID: PMC10249248 DOI: 10.1016/j.neuropharm.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Nicotine is the principal psychoactive component in tobacco that drives addiction through its action on neuronal nicotinic acetylcholine receptors (nAChR). The nicotinic receptor gene CHRNA5, which encodes the α5 subunit, is associated with nicotine use and dependence. In humans, the CHRNA5 missense variant rs16969968 (G > A) is associated with increased risk for nicotine dependence and other smoking-related phenotypes. In rodents, α5-containing nAChRs in dopamine (DA) neurons within the ventral tegmental area (VTA) powerfully modulate nicotine reward and reinforcement. Although the neuroadaptations caused by long-term nicotine exposure are being actively delineated at both the synaptic and behavioral levels, the contribution of α5-containing nAChRs to the cellular adaptations associated with long-term nicotine exposure remain largely unknown. To gain insight into the mechanisms behind the influence of α5-containing nAChRs and the rs16969968 polymorphism on nicotine use and dependence, we used electrophysiological approaches to examine changes in nAChR function arising in VTA neurons during chronic nicotine exposure and multiple stages of nicotine withdrawal. Our results demonstrate that CHRNA5 mutation leads to profound changes in VTA nAChR function at baseline, during chronic nicotine exposure, and during short-term and prolonged withdrawal. Whereas nAChR function was suppressed in DA neurons from WT mice undergoing withdrawal relative to drug-naïve or nicotine-drinking mice, α5-null mice exhibited an increase in nAChR function during nicotine exposure that persisted throughout 5-10 weeks of withdrawal. Re-expressing the hypofunctional rs16969968 CHRNA5 variant in α5-null VTA DA neurons did not rescue the phenotype, with α5-SNP neurons displaying a similar increased response to ACh during nicotine exposure and early stages of withdrawal. These results demonstrate the importance of VTA α5-nAChRs in the response to nicotine and implicate them in the time course of withdrawal.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalia Quijano-Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
3
|
Moen JK, Lee AM. Sex Differences in the Nicotinic Acetylcholine Receptor System of Rodents: Impacts on Nicotine and Alcohol Reward Behaviors. Front Neurosci 2021; 15:745783. [PMID: 34621155 PMCID: PMC8490611 DOI: 10.3389/fnins.2021.745783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol and nicotine are the two most widely used and misused drugs around the world, and co-consumption of both substances is highly prevalent. Multiple lines of evidence show a profound effect of sex in many aspects of alcohol and nicotine reward, with women having more difficulty quitting smoking and showing a faster progression toward developing alcohol use disorder compared with men. Both alcohol and nicotine require neuronal nicotinic acetylcholine receptors (nAChRs) to elicit rewarding effects within the mesolimbic system, representing a shared molecular pathway that likely contributes to the frequent comorbidity of alcohol and nicotine dependence. However, the majority of preclinical studies on the mechanisms of alcohol and nicotine reward behaviors utilize only male rodents, and thus our understanding of alcohol and nicotine neuropharmacology relies heavily on male data. As preclinical research informs the development and refinement of therapies to help patients reduce drug consumption, it is critical to understand the way biological sex and sex hormones influence the rewarding properties of alcohol and nicotine. In this review, we summarize what is known about sex differences in rodent models of alcohol and nicotine reward behaviors with a focus on neuronal nAChRs, highlighting exciting areas for future research. Additionally, we discuss the way circulating sex hormones may interact with neuronal nAChRs to influence reward-related behavior.
Collapse
Affiliation(s)
- Janna K Moen
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Anna M Lee
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States.,Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
4
|
Nguyen J, Ghazali R, Batterham P, Perry T. Inhibiting the proteasome reduces molecular and biological impacts of the natural product insecticide, spinosad. PEST MANAGEMENT SCIENCE 2021; 77:3777-3786. [PMID: 33481333 DOI: 10.1002/ps.6290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/01/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Insecticide targets are often identified by mutations that confer resistance, but the intricacies of insecticide binding and downstream processes leading to insect death often remain obscure. Mutations in α6-like nicotinic acetylcholine receptor subunit genes have been associated with high levels of resistance to spinosad in many insect species, including Drosophila melanogaster. Here, we aimed to expand our understanding of the effects of the natural product insecticide spinosad on its protein target, the α6 subunit, using genetic tools available in D. melanogaster. RESULTS Functional, fluorescently tagged Dα6 subunits (Dα6YFP ) were developed to allow observation of the protein in vivo. Larvae expressing Dα6YFP were exposed to a sub-lethal concentration of spinosyn A (0.025 ppm) for 6 days, leading to a 64% reduction in fluorescence relative to unexposed larvae. Direct application of high doses of spinosyn A to dissected larval brains resulted in a visible 38.25% decrease in Dα6YFP within 20 min, indicating that degradation of the Dα6 protein occurred in response to spinosyn A exposure. Chemical inhibition of the proteasome system using the multiple myeloma treatment drug, PS-341 reduced loss of Dα6YFP in response to spinosyn A at the 20-min time point to 6.35%. In addition, in vivo administration of PS-341 prior to spinosad exposure reduced the effect of spinosad on larval activity. CONCLUSION Based on these data, we propose that exposure to spinosad leads to degradation of the α6-like target protein, a potentially novel element in the mode of action of spinosyns that may contribute to their toxicity towards insects. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joseph Nguyen
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Razi Ghazali
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Philip Batterham
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Trent Perry
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Wills L, Kenny PJ. Addiction-related neuroadaptations following chronic nicotine exposure. J Neurochem 2021; 157:1652-1673. [PMID: 33742685 DOI: 10.1111/jnc.15356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
6
|
α-Conotoxin TxIB: A Uniquely Selective Ligand for α6/α3β2β3 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Conditioned Place Preference in Mice. Mar Drugs 2019; 17:md17090490. [PMID: 31443523 PMCID: PMC6780885 DOI: 10.3390/md17090490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/17/2022] Open
Abstract
α-Conotoxin TxIB is a specific antagonist of α6/α3β2β3(α6β2*) nicotinic acetylcholine receptor (nAChR) with an IC50 of 28 nM. Previous studies have shown that α6β2* nAChRs are abundantly expressed in midbrain dopaminergic neurons and play an important role in mediating the mechanism of nicotine and other drugs reward effect. It provided important targets for the development of anti-addiction drugs. The present study evaluated the pharmacological activity of TxIB in vivo with conditioned place preference (CPP) model, which were induced by subcutaneous injection (s.c.) of nicotine (NIC, 0.5 mg/kg). α-Conotoxin TxIB inhibited the expression and reinstatement of CPP in mice dose-dependently, but had no significant effect on locomotor activity. The concentrations of dopamine (DA), γ-aminobutyric acid (GABA) and noradrenaline (NE) in different brain regions were measured by enzyme-linked immunosorbent assay (ELISA). We found that TxIB could inhibit the concentrations of DA, GABA and NE in different brain regions (such as nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC)) in NIC-induced mice. The concentrations of DA and NE were decreased in ventral tegmental area (VTA), while GABA had little change. The current work described the inhibition activity of TxIB in NIC-induced CPP, suggesting that α6β2* nAChR-targeted compound may be a promising drug for nicotine addiction treatment.
Collapse
|
7
|
Wu J, Cippitelli A, Zhang Y, Debevec G, Schoch J, Ozawa A, Yu Y, Liu H, Chen W, Houghten RA, Welmaker GS, Giulianotti MA, Toll L. Highly Selective and Potent α4β2 nAChR Antagonist Inhibits Nicotine Self-Administration and Reinstatement in Rats. J Med Chem 2017; 60:10092-10104. [PMID: 29178785 DOI: 10.1021/acs.jmedchem.7b01250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The α4β2 nAChR is the most predominant subtype in the brain and is a well-known culprit for nicotine addiction. Previously we presented a series of α4β2 nAChR selective compounds that were discovered from a mixture-based positional-scanning combinatorial library. Here we report further optimization identified highly potent and selective α4β2 nAChR antagonists 5 (AP-202) and 13 (AP-211). Both compounds are devoid of in vitro agonist activity and are potent inhibitors of epibatidine-induced changes in membrane potential in cells containing α4β2 nAChR, with IC50 values of approximately 10 nM, but are weak agonists in cells containing α3β4 nAChR. In vivo studies show that 5 can significantly reduce operant nicotine self-administration and nicotine relapse-like behavior in rats at doses of 0.3 and 1 mg/kg. The pharmacokinetic data also indicate that 5, via sc administration, is rapidly absorbed into the blood, reaching maximal concentration within 10 min with a half-life of less than 1 h.
Collapse
Affiliation(s)
- Jinhua Wu
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Andrea Cippitelli
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Yaohong Zhang
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China.,School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University , Shaoxing 312000, Zhejiang, P. R. China
| | - Ginamarie Debevec
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Jennifer Schoch
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Akihiko Ozawa
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Yongping Yu
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Huan Liu
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Wenteng Chen
- Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Richard A Houghten
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregory S Welmaker
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Marc A Giulianotti
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Lawrence Toll
- Torrey Pines Institute for Molecular Studies , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States.,Assuage Pharmaceuticals, Inc , 11350 SW Village Parkway, Port St. Lucie, Florida 34987, United States
| |
Collapse
|
8
|
Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors. Behav Pharmacol 2017; 27:422-30. [PMID: 26871405 DOI: 10.1097/fbp.0000000000000215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.
Collapse
|
9
|
DeDominicis KE, Sahibzada N, Olson TT, Xiao Y, Wolfe BB, Kellar KJ, Yasuda RP. The ( α4) 3( β2) 2 Stoichiometry of the Nicotinic Acetylcholine Receptor Predominates in the Rat Motor Cortex. Mol Pharmacol 2017; 92:327-337. [PMID: 28698187 PMCID: PMC5553191 DOI: 10.1124/mol.116.106880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 07/06/2017] [Indexed: 01/28/2023] Open
Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is important in central nervous system physiology and in mediating several of the pharmacological effects of nicotine on cognition, attention, and affective states. It is also the likely receptor that mediates nicotine addiction. This receptor assembles in two distinct stoichiometries: (α4)2(β2)3 and (α4)3(β2)2, which are referred to as high-sensitivity (HS) and low-sensitivity (LS) nAChRs, respectively, based on a difference in the potency of acetylcholine to activate them. The physiologic and pharmacological differences between these two receptor subtypes have been described in heterologous expression systems. However, the presence of each stoichiometry in native tissue currently remains unknown. In this study, different ratios of rat α4 and β2 subunit cDNA were transfected into human embryonic kidney 293 cells to create a novel model system of HS and LS α4β2 nAChRs expressed in a mammalian cell line. The HS and LS nAChRs were characterized through pharmacological and biochemical methods. Isolation of surface proteins revealed higher amounts of α4 or β2 subunits in the LS or HS nAChR populations, respectively. In addition, sazetidine-A displayed different efficacies in activating these two receptor stoichiometries. Using this model system, a neurophysiological "two-concentration" acetylcholine or carbachol paradigm was developed and validated to determine α4/β2 subunit stoichiometry. This paradigm was then used in layers I-IV of slices of the rat motor cortex to determine the percent contribution of HS and LS α4β2 receptors in this brain region. We report that the majority of α4β2 nAChRs in this brain region possess a stoichiometry of the (α4)3(β2)2 LS subtype.
Collapse
Affiliation(s)
- Kristen E DeDominicis
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Barry B Wolfe
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Kenneth J Kellar
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| | - Robert P Yasuda
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC
| |
Collapse
|
10
|
Fox-Loe AM, Dwoskin LP, Richards CI. Nicotinic Acetylcholine Receptors as Targets for Tobacco Cessation Therapeutics: Cutting-Edge Methodologies to Understand Receptor Assembly and Trafficking. NEUROMETHODS 2016; 117:119-132. [PMID: 28025590 DOI: 10.1007/978-1-4939-3768-4_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tobacco dependence is a chronic relapsing disorder and nicotine, the primary alkaloid in tobacco, acts at nicotinic receptors to stimulate dopamine release in brain, which is responsible for the reinforcing properties of nicotine, leading to addiction. Although the majority of tobacco users express the desire to quit, only a small percentage of those attempting to quit are successful using the currently available pharmacotherapies. Nicotine upregulates the number of specific nicotinic receptors on the neuronal cell surface. An increase in receptor trafficking or preferential stoichiometric assembly of receptor subunits involves changes in assembly, endoplasmic reticulum export, vesicle transport, decreased degradation, desensitization, enhanced maturation of functional pentamers, and pharmacological chaperoning. Understanding these changes on a mechanistic level is important to the development of nicotinic receptors as drug targets. For this reason, cutting-edge methodologies are being developed and employed to pinpoint distinct changes in localization, assembly, export, vesicle trafficking, and stoichiometry in order to further understand the physiology of these receptors and to evaluate the action of novel therapeutics for smoking cessation.
Collapse
|
11
|
Abreu-Villaça Y, Correa-Santos M, Dutra-Tavares AC, Paes-Branco D, Nunes-Freitas A, Manhães AC, Filgueiras CC, Ribeiro-Carvalho A. A ten fold reduction of nicotine yield in tobacco smoke does not spare the central cholinergic system in adolescent mice. Int J Dev Neurosci 2016; 52:93-103. [PMID: 27287270 DOI: 10.1016/j.ijdevneu.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022] Open
Abstract
The tobacco industry has gradually decreased nicotine content in cigarette smoke but the impact of this reduction on health is still controversial. Since the central cholinergic system is the primary site of action of nicotine, here, we investigated the effects of exposure of adolescent mice to tobacco smoke containing either high or low levels of nicotine on the central cholinergic system and the effects associated with cessation of exposure. From postnatal day (PN) 30 to 45, male and female Swiss mice were exposed to tobacco smoke (whole body exposure, 8h/day, 7 days/week) generated from 2R1F (HighNic group: 1.74mg nicotine/cigarette) or 4A1 (LowNic group: 0.14mg nicotine/cigarette) research cigarettes, whereas control mice were exposed to ambient air. Cholinergic biomarkers were assessed in the cerebral cortex and midbrain by the end of exposure (PN45), at short- (PN50) and long-term (PN75) deprivation. In the cortex, nicotinic cholinergic receptor upregulation was observed with either type of cigarette. In the midbrain, upregulation was detected only in HighNic mice and remained significant in females at short-term deprivation. The high-affinity choline transporter was reduced in the cortex: of HighNic mice by the end of exposure; of both HighNic and LowNic females at short-term deprivation; of LowNic mice at long-term deprivation. These decrements were separable from effects on choline acetyltransferase and acetylcholinesterase activities, suggesting cholinergic synaptic impairment. Here, we demonstrated central cholinergic alterations in an animal model of tobacco smoke exposure during adolescence. This system was sensitive even to tobacco smoke with very low nicotine content.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | - Monique Correa-Santos
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Ana C Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Andre Nunes-Freitas
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Cláudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar-Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela 1470-Patronato, São Gonçalo, RJ 24435-005, Brazil
| |
Collapse
|
12
|
Wen L, Yang Z, Cui W, Li MD. Crucial roles of the CHRNB3-CHRNA6 gene cluster on chromosome 8 in nicotine dependence: update and subjects for future research. Transl Psychiatry 2016; 6:e843. [PMID: 27327258 PMCID: PMC4931601 DOI: 10.1038/tp.2016.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking is a leading cause of preventable death throughout the world. Nicotine, the primary addictive compound in tobacco, plays a vital role in the initiation and maintenance of its use. Nicotine exerts its pharmacological roles through nicotinic acetylcholine receptors (nAChRs), which are ligand-gated ion channels consisting of five membrane-spanning subunits. Besides the CHRNA4, CHRNB2 and CHRNA5/A3/B4 cluster on chromosome 15, which has been investigated intensively, recent evidence from both genome-wide association studies and candidate gene-based association studies has revealed the crucial roles of the CHRNB3-CHRNA6 gene cluster on chromosome 8 in nicotine dependence (ND). These studies demonstrate two distinct loci within this region. The first one is tagged by rs13277254, upstream of the CHRNB3 gene, and the other is tagged by rs4952, a coding single nucleotide polymorphism in exon 5 of that gene. Functional studies by genetic manipulation in mice have shown that α6*-nAChRs, located in the ventral tegmental area (VTA), are of great importance in controlling nicotine self-administration. However, when the α6 subunit is selectively re-expressed in the VTA of the α6(-/-) mouse by a lentiviral vector, the reinforcing property of nicotine is restored. To further determine the role of α6*-nAChRs in the process of nicotine-induced reward and withdrawal, genetic knock-in strains have been examined, which showed that replacement of Leu with Ser in the 9' residue in the M2 domain of α6 produces nicotine-hypersensitive mice (α6 L9'S) with enhanced dopamine release. Moreover, nicotine-induced upregulation may be another ingredient in the pathology of nicotine addiction although the effect of chronic nicotine exposure on the expression of α6-containing receptors is controversial. To gain a better understanding of the pathological processes underlying ND and ND-related behaviors and to promote the development of effective smoking cessation therapies, we here present the most recent studies concerning the genetic effects of the CHRNB3-CHRNA6 gene cluster in ND.
Collapse
Affiliation(s)
- L Wen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - W Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - M D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Air Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Melroy-Greif WE, Stitzel JA, Ehringer MA. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. GENES, BRAIN, AND BEHAVIOR 2016; 15:89-107. [PMID: 26351737 PMCID: PMC4780670 DOI: 10.1111/gbb.12251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain's reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use.
Collapse
Affiliation(s)
- Whitney E. Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| |
Collapse
|
14
|
Rogers SW, Gahring LC. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways. PLoS One 2015; 10:e0143319. [PMID: 26619345 PMCID: PMC4664291 DOI: 10.1371/journal.pone.0143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| | - Lorise C Gahring
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
15
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
16
|
Fox AM, Moonschi FH, Richards CI. The nicotine metabolite, cotinine, alters the assembly and trafficking of a subset of nicotinic acetylcholine receptors. J Biol Chem 2015; 290:24403-12. [PMID: 26269589 DOI: 10.1074/jbc.m115.661827] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/27/2022] Open
Abstract
Exposure to nicotine alters the trafficking and assembly of nicotinic receptors (nAChRs), leading to their up-regulation on the plasma membrane. Although the mechanism is not fully understood, nicotine-induced up-regulation is believed to contribute to nicotine addiction. The effect of cotinine, the primary metabolite of nicotine, on nAChR trafficking and assembly has not been extensively investigated. We utilize a pH-sensitive variant of GFP, super ecliptic pHluorin, to differentiate between intracellular nAChRs and those expressed on the plasma membrane to quantify changes resulting from cotinine and nicotine exposure. Similar to nicotine, exposure to cotinine increases the number of α4β2 receptors on the plasma membrane and causes a redistribution of intracellular receptors. In contrast to this, cotinine exposure down-regulates α6β2β3 receptors. We also used single molecule fluorescence studies to show that cotinine and nicotine both alter the assembly of α4β2 receptors to favor the high sensitivity (α4)2(β2)3 stoichiometry.
Collapse
Affiliation(s)
- Ashley M Fox
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Faruk H Moonschi
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | |
Collapse
|
17
|
Hoegberg BG, Lomazzo E, Lee NH, Perry DC. Regulation of α4β2α5 nicotinic acetylcholinergic receptors in rat cerebral cortex in early and late adolescence: Sex differences in response to chronic nicotine. Neuropharmacology 2015; 99:347-55. [PMID: 26272110 DOI: 10.1016/j.neuropharm.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 02/02/2023]
Abstract
Chronic nicotine administration in animals, and smoking in humans, causes up-regulation of α4β2* neuronal nicotinic receptors (nAChRs), which has been hypothesized to contribute to the addictive actions of nicotine. We used a rat model to test whether such up-regulatory effects differ in adolescents versus adults, and in males versus females. Following chronic treatment with nicotine or saline via subcutaneous osmotic minipumps, we measured α4β2 and α4β2α5 nAChRs in cerebral cortex using [3H]epibatidine to label assembled nAChRs, and selective antibodies to measure the individual subunits via immunoprecipitation. For the first time, we provide a detailed characterization of the response of both α4β2 and α4β2α5 nAChRs in female adolescent rat cerebral cortex. We found differences in nicotine-induced up-regulation between males and females in early adolescence that are absent in both late adolescence and adulthood. Males showed significant up-regulation at PN28 which was absent in age-matched females. These results demonstrate sex differences in the susceptibility of α4β2* nAChRs to the effects of chronic nicotine exposure in the cerebral cortex based on age.
Collapse
Affiliation(s)
- Bethany G Hoegberg
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC, 20037, USA.
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55099, Mainz, Germany.
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC, 20037, USA.
| | - David C Perry
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC, 20037, USA.
| |
Collapse
|
18
|
Beckmann JS, Meyer AC, Pivavarchyk M, Horton DB, Zheng G, Smith AM, Wooters TE, McIntosh JM, Crooks PA, Bardo MT, Dwoskin LP. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement. Neurochem Res 2015; 40:2121-30. [PMID: 26227997 DOI: 10.1007/s11064-015-1680-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 01/01/2023]
Abstract
α6β2* nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [(3)H]nicotine and [(3)H]methyllycaconitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [(3)H]nicotine or [(3)H]methyllycaconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule that acts as a potent and selective antagonist at α6β2* nAChRs to specifically decrease nicotine self-administration in rats, thus, establishing r-bPiDI as a lead compound for development as a treatment for nicotine addiction.
Collapse
Affiliation(s)
- Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Andrew C Meyer
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - M Pivavarchyk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA
| | - David B Horton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA
| | - Guangrong Zheng
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Andrew M Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA
| | - Thomas E Wooters
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone St., Lexington, KY, 40536-0596, USA.
| |
Collapse
|
19
|
Bordia T, McGregor M, McIntosh JM, Drenan RM, Quik M. Evidence for a role for α6(∗) nAChRs in l-dopa-induced dyskinesias using Parkinsonian α6(∗) nAChR gain-of-function mice. Neuroscience 2015; 295:187-97. [PMID: 25813704 DOI: 10.1016/j.neuroscience.2015.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a serious side effect of dopamine replacement therapy for Parkinson's disease. The mechanisms that underlie LIDs are currently unclear. However, preclinical studies indicate that nicotinic acetylcholine receptors (nAChRs) play a role, suggesting that drugs targeting these receptors may be of therapeutic benefit. To further understand the involvement of α6β2(∗) nAChRs in LIDs, we used gain-of-function α6(∗) nAChR (α6L9S) mice that exhibit a 20-fold enhanced sensitivity to nAChR agonists. Wildtype (WT) and α6L9S mice were lesioned by unilateral injection of 6-hydroxydopamine (6-OHDA, 3μg/ml) into the medial forebrain bundle. Three to 4wk later, they were administered l-dopa (3mg/kg) plus benserazide (15mg/kg) until stably dyskinetic. l-dopa-induced abnormal involuntary movements (AIMs) were similar in α6L9S and WT mice. WT mice were then given nicotine in the drinking water in gradually increasing doses to a final 300μg/ml, which resulted in a 40% decline AIMs. By contrast, there was no decrease in AIMs in α6L9S mice at a maximally tolerated nicotine dose of 20μg/ml. However, the nAChR antagonist mecamylamine (1mg/kg ip 30min before l-dopa) reduced l-dopa-induced AIMs in both α6L9S and WT mice. Thus, both a nAChR agonist and antagonist decreased AIMs in WT mice, but only the antagonist was effective in α6L9S mice. Since nicotine appears to reduce LIDs via desensitization, hypersensitive α6β2(∗) nAChRs may desensitize less readily. The present data show that α6β2(∗) nAChRs are key regulators of LIDs, and may be useful therapeutic targets for their management in Parkinson's disease.
Collapse
Affiliation(s)
- T Bordia
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - M McGregor
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | - J M McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Department of Psychiatry, University of Utah, Salt Lake City, UT 84148, USA; Department of Biology, University of Utah, Salt Lake City, UT 84148, USA
| | - R M Drenan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - M Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
20
|
Henderson BJ, Lester HA. Inside-out neuropharmacology of nicotinic drugs. Neuropharmacology 2015; 96:178-93. [PMID: 25660637 DOI: 10.1016/j.neuropharm.2015.01.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
21
|
Cippitelli A, Wu J, Gaiolini KA, Mercatelli D, Schoch J, Gorman M, Ramirez A, Ciccocioppo R, Khroyan TV, Yasuda D, Zaveri NT, Pascual C, Xie XS, Toll L. AT-1001: a high-affinity α3β4 nAChR ligand with novel nicotine-suppressive pharmacology. Br J Pharmacol 2015; 172:1834-45. [PMID: 25440006 DOI: 10.1111/bph.13034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/21/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE The α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) has been implicated in mediating nicotine reinforcement processes. AT-1001 has been recently described as a high-affinity and selective α3β4 nAChR antagonist that blocks nicotine self-administration in rats. The aim of this study was to investigate the mechanism of action underlying the nicotine-suppressive effects of AT-1001. EXPERIMENTAL APPROACH Effects of AT-1001 were determined using in vitro assays and rat models of nicotine addiction, and compared with varenicline. KEY RESULTS AT-1001 and its analogue AT-1012 were functionally selective as antagonists for α3β4 over α4β2 nAChRs, but not to the same extent as the binding selectivity, and had partial agonist activity at α3β4 nAChRs. In contrast, varenicline was a partial agonist at α4β2, a weak agonist at α3β4 and inhibited α4β2 at a much lower concentration than it inhibited α3β4 nAChRs. AT-1001 and varenicline also had very different in vivo properties. Firstly, AT-1001 did not exhibit reinforcing properties per se while varenicline was self-administered. Secondly, systemic treatment with AT-1001 did not induce reinstatement of nicotine seeking but rather attenuated reinstatement induced by varenicline, as well as nicotine. Finally, unlike varenicline, AT-1001 selectively blocked nicotine self-administration without altering alcohol lever pressing as assessed in an operant co-administration paradigm. CONCLUSIONS AND IMPLICATIONS These findings describe a more complex AT-1001 in vitro profile than previously appreciated and provide further support for the potential of AT-1001 and congeners as clinically useful compounds for smoking cessation, with a mechanism of action distinct from currently available medications.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
An aversive abstinence syndrome manifests 4-24 h following cessation of chronic use of nicotine-containing products. Symptoms peak on approximately the 3rd day and taper off over the course of the following 3-4 weeks. While the severity of withdrawal symptoms is largely determined by how nicotine is consumed, certain short nucleotide polymorphisms (SNPs) have been shown to predispose individuals to consume larger amounts of nicotine more frequently--as well as to more severe symptoms of withdrawal when trying to quit. Additionally, rodent behavioral models and transgenic mouse models have revealed that specific nicotinic acetylcholine receptor (nAChR) subunits, cellular components, and neuronal circuits are critical to the expression of withdrawal symptoms. Consequently, by continuing to map neuronal circuits and nAChR subpopulations that underlie the nicotine withdrawal syndrome--and by continuing to enumerate genes that predispose carriers to nicotine addiction and exacerbated withdrawal symptoms--it will be possible to pursue personalized therapeutics that more effectively treat nicotine addiction.
Collapse
Affiliation(s)
- Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
23
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
24
|
The mammalian target of rapamycin pathway in the basolateral amygdala is critical for nicotine-induced behavioural sensitization. Int J Neuropsychopharmacol 2014; 17:1881-94. [PMID: 24916432 DOI: 10.1017/s1461145714000650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Repeated exposure to nicotine increases psychomotor activity. Long-lasting neural plasticity changes that contribute to the nicotine-induced development of locomotor sensitization have been identified. The mammalian target of rapamycin complex 1 (mTORC1) signalling pathway is involved in regulating the neuroplasticity of the central nervous system. In this study, we examined the role of mTORC1 in the amygdala in nicotine-induced locomotor sensitization. Rapamycin, an inhibitor of mTORC1, was infused into the basolateral amygdala (BLA) and central amygdala (CeA) or systemically administered to investigate the role of the mTORC1 in the development and expression of nicotine-induced locomotor sensitization. We found that locomotor activity progressively increased during the initiation of nicotine-induced locomotor sensitization and the expression of nicotine sensitization was induced by nicotine challenge injection (0.35 mg/kg s.c.) after five days of withdrawal. The initiation of nicotine-induced locomotor sensitization was accompanied by the increased phosphorylated level of mTORC1 downstream target proteins including p-p70s6k and p-4EBP in the BLA, but not CeA. Intra-BLA infusion or systemic administration of rapamycin blocked locomotor activity. Increased p-p70s6k and p-4EBP were also observed in the expression of nicotine sensitization, which was demonstrated to be inhibited by systemic rapamycin administration. Our findings indicated that mTORC1 activity in the BLA, but not the CeA, mediated the initiation and expression of nicotine-induced locomotor sensitization, and may become a potential target for the treatment of nicotine addiction.
Collapse
|
25
|
Garção P, Szabó EC, Wopereis S, Castro AA, Tomé ÂR, Prediger RD, Cunha RA, Agostinho P, Köfalvi A. Functional interaction between pre-synaptic α6β2-containing nicotinic and adenosine A2A receptors in the control of dopamine release in the rat striatum. Br J Pharmacol 2014; 169:1600-11. [PMID: 23638679 DOI: 10.1111/bph.12234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Pre-synaptic nicotinic ACh receptors (nAChRs) and adenosine A2A receptors (A2A Rs) are involved in the control of dopamine release and are putative therapeutic targets in Parkinson's disease and addiction. Since A2A Rs have been reported to interact with nAChRs, here we aimed at mapping the possible functional interaction between A2A Rs and nAChRs in rat striatal dopaminergic terminals. EXPERIMENTAL APPROACH We pharmacologically characterized the release of dopamine and defined the localization of nAChR subunits in rat striatal nerve terminals in vitro and carried out locomotor behavioural sensitization in rats in vivo. KEY RESULTS In striatal nerve terminals, the selective A2A R agonist CGS21680 inhibited, while the A2A R antagonist ZM241385 potentiated the nicotine-stimulated [(3) H]dopamine ([(3) H]DA) release. Upon blockade of the α6 subunit-containing nAChRs, the remaining nicotine-stimulated [(3) H]DA release was no longer modulated by A2A R ligands. In the locomotor sensitization experiments, nicotine enhanced the locomotor activity on day 7 of repeated nicotine injection, an effect that no longer persisted after 1 week of drug withdrawal. Notably, ZM241385-injected rats developed locomotor sensitization to nicotine already on day 2, which remained persistent upon nicotine withdrawal. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence for a functional interaction between nicotinic and adenosine A2A R in striatal dopaminergic terminals, with likely therapeutic consequences for smoking, Parkinson's disease and other dopaminergic disorders.
Collapse
Affiliation(s)
- P Garção
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang J, Kuryatov A, Lindstrom J. Expression of cloned α6* nicotinic acetylcholine receptors. Neuropharmacology 2014; 96:194-204. [PMID: 25446669 DOI: 10.1016/j.neuropharm.2014.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/19/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Henderson BJ, Srinivasan R, Nichols WA, Dilworth CN, Gutierrez DF, Mackey EDW, McKinney S, Drenan RM, Richards CI, Lester HA. Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. ACTA ACUST UNITED AC 2014; 143:51-66. [PMID: 24378908 PMCID: PMC3874574 DOI: 10.1085/jgp.201311102] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic exposure to nicotine up-regulates high sensitivity nicotinic acetylcholine receptors (nAChRs) in the brain. This up-regulation partially underlies addiction and may also contribute to protection against Parkinson's disease. nAChRs containing the α6 subunit (α6* nAChRs) are expressed in neurons in several brain regions, but comparatively little is known about the effect of chronic nicotine on these nAChRs. We report here that nicotine up-regulates α6* nAChRs in several mouse brain regions (substantia nigra pars compacta, ventral tegmental area, medial habenula, and superior colliculus) and in neuroblastoma 2a cells. We present evidence that a coat protein complex I (COPI)-mediated process mediates this up-regulation of α6* or α4* nAChRs but does not participate in basal trafficking. We show that α6β2β3 nAChR up-regulation is prevented by mutating a putative COPI-binding motif in the β3 subunit or by inhibiting COPI. Similarly, a COPI-dependent process is required for up-regulation of α4β2 nAChRs by chronic nicotine but not for basal trafficking. Mutation of the putative COPI-binding motif or inhibition of COPI also results in reduced normalized Förster resonance energy transfer between α6β2β3 nAChRs and εCOP subunits. The discovery that nicotine exploits a COPI-dependent process to chaperone high sensitivity nAChRs is novel and suggests that this may be a common mechanism in the up-regulation of nAChRs in response to chronic nicotine.
Collapse
Affiliation(s)
- Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114:5815-47. [PMID: 24720541 PMCID: PMC7610532 DOI: 10.1021/cr400401e] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
29
|
Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs 2014; 12:2970-3004. [PMID: 24857959 PMCID: PMC4052327 DOI: 10.3390/md12052970] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data.
Collapse
|
30
|
Hussmann GP, DeDominicis KE, Turner JR, Yasuda RP, Klehm J, Forcelli PA, Xiao Y, Richardson JR, Sahibzada N, Wolfe BB, Lindstrom J, Blendy JA, Kellar KJ. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain. J Neurochem 2014; 129:721-31. [PMID: 24422997 PMCID: PMC3999245 DOI: 10.1111/jnc.12653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
Abstract
Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking.
Collapse
Affiliation(s)
- G. Patrick Hussmann
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Kristen E. DeDominicis
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jill R. Turner
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert P. Yasuda
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jacquelyn Klehm
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrick A. Forcelli
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Janell R. Richardson
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Barry B. Wolfe
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jon Lindstrom
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julie A. Blendy
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kenneth J. Kellar
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
31
|
Marks MJ, Grady SR, Salminen O, Paley MA, Wageman CR, McIntosh JM, Whiteaker P. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration. J Neurochem 2014; 130:185-98. [PMID: 24661093 DOI: 10.1111/jnc.12721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/04/2014] [Accepted: 03/21/2014] [Indexed: 11/28/2022]
Abstract
Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are down-regulated following chronic nicotine exposure (unlike other subtypes that have been investigated - most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR down-regulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than up-regulation of α4β2*-nAChR. In contrast, nAChR-mediated [(3) H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [(3) H]-DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function. This study examined dose-response relationships for murine α6β2*-nicotinic acetylcholine receptor (nAChR) down-regulation by chronic nicotine treatment. The ID50 value for α6β2* down-regulation (35 nM) is ≈ 3x lower than the ED50 value for α4β2* nAChR up-regulation (95 nM), both well within the range reached by human smokers. Chronic nicotine treatment altered α6β2*- and α4β2*-nAChR-mediated [(3) H]-dopamine release from striatal and olfactory tubercle synaptosomes, but dopaminergic parameters were largely unaffected. We conclude that functional changes are primarily driven by altered nAChR activity.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Srinivasan R, Henderson BJ, Lester HA, Richards CI. Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson's disease. Pharmacol Res 2014; 83:20-9. [PMID: 24593907 DOI: 10.1016/j.phrs.2014.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 01/03/2023]
Abstract
Chronic exposure to nicotine results in an upregulation of neuronal nicotinic acetylcholine receptors (nAChRs) at the cellular plasma membrane. nAChR upregulation occurs via nicotine-mediated pharmacological receptor chaperoning and is thought to contribute to the addictive properties of tobacco as well as relapse following smoking cessation. At the subcellular level, pharmacological chaperoning by nicotine and nicotinic ligands causes profound changes in the structure and function of the endoplasmic reticulum (ER), ER exit sites, the Golgi apparatus and secretory vesicles of cells. Chaperoning-induced changes in cell physiology exert an overall inhibitory effect on the ER stress/unfolded protein response. Cell autonomous factors such as the repertoire of nAChR subtypes expressed by neurons and the pharmacological properties of nicotinic ligands (full or partial agonist versus competitive antagonist) govern the efficiency of receptor chaperoning and upregulation. Together, these findings are beginning to pave the way for developing pharmacological chaperones to treat Parkinson's disease and nicotine addiction.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Department of Physiology, University of California Los Angeles, Los Angeles, CA, United States.
| | - Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | | |
Collapse
|
33
|
Fowler CD, Kenny PJ. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability. Neuropharmacology 2014; 76 Pt B:533-44. [PMID: 24055497 PMCID: PMC3858456 DOI: 10.1016/j.neuropharm.2013.09.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022]
Abstract
Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action plays a critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be identified. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Christie D Fowler
- Laboratory of Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | |
Collapse
|
34
|
Scaffold ranking and positional scanning utilized in the discovery of nAChR-selective compounds suitable for optimization studies. J Med Chem 2013; 56:10103-17. [PMID: 24274400 DOI: 10.1021/jm401543h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nicotine binds to nicotinic acetylcholine receptors (nAChR), which can exist as many different subtypes. The α4β2 nAChR is the most prevalent subtype in the brain and possesses the most evidence linking it to nicotine seeking behavior. Herein we report the use of mixture based combinatorial libraries for the rapid discovery of a series of α4β2 nAChR selective compounds. Further chemistry optimization provided compound 301, which was characterized as a selective α4β2 nAChR antagonist. This compound displayed no agonist activity but blocked nicotine-induced depolarization of HEK cells with an IC50 of approximately 430 nM. 301 demonstrated nearly 500-fold selectivity for binding and 40-fold functional selectivity for α4β2 over α3β4 nAChR. In total over 5 million compounds were assessed through the use of just 170 samples in order to identify a series of structural analogues suitable for future optimization toward the goal of developing clinically relevant smoking cessation medications.
Collapse
|
35
|
Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X. Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol 2013; 111:103-11. [PMID: 24089398 DOI: 10.1152/jn.00269.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed presynaptically on dopamine axon terminals, and their activation by endogenous acetylcholine from striatal cholinergic interneurons enhances dopamine release both independently of and in concert with dopamine neuron activity. Acute nAChR inactivation is believed to enhance the contrast between low- and high-frequency dopamine cell activity. Although these studies reveal a key role for acute activation and inactivation of nAChRs in striatal microcircuitry, it remains unknown if chronic inactivation/desensitization of nAChRs can alter dopamine release dynamics. Using in vivo cyclic voltammetry in anaesthetized mice, we examined whether chronic inactivation of nAChRs modulates dopamine release across a parametric range of stimulation, varying both frequency and pulse number. Deletion of β2*nAChRs and chronic nicotine exposure greatly diminished dopamine release across the entire range of stimulation parameters. In addition, we observed a facilitation of dopamine release at low frequency and pulse number in wild-type mice that is absent in the β2* knockout and chronic nicotine mice. These data suggest that deletion or chronic desensitization of nAChRs reduces the dynamic range of dopamine release in response to dopamine cell activity, decreasing rather than increasing contrast between high and low dopamine activity.
Collapse
|
36
|
Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 2013; 86:1063-73. [DOI: 10.1016/j.bcp.2013.06.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022]
|
37
|
Kucinski A, Wersinger S, Stachowiak EK, Corso TD, Parry MJ, Zhang J, Jordan K, Letchworth S, Bencherif M, Stachowiak MK. Neuronal nicotinic receptor agonists ameliorate spontaneous motor asymmetries and motor discoordination in a unilateral mouse model of Parkinson's disease. Pharmacol Biochem Behav 2013; 111:1-10. [DOI: 10.1016/j.pbb.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/21/2013] [Accepted: 07/03/2013] [Indexed: 12/24/2022]
|
38
|
Bordia T, McIntosh JM, Quik M. The nicotine-mediated decline in l-dopa-induced dyskinesias is associated with a decrease in striatal dopamine release. J Neurochem 2013; 125:291-302. [PMID: 23373725 DOI: 10.1111/jnc.12179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 01/02/2023]
Abstract
l-dopa-induced dyskinesias (LIDs) are a side effect of Parkinson's disease therapy that is thought to arise, at least in part, because of excessive dopaminergic activity. Thus, drugs that regulate dopaminergic tone may provide an approach to manage LIDs. Our previous studies showed that nicotine treatment reduced LIDs in Parkinsonian animal models. This study investigates whether nicotine may exert its beneficial effects by modulating pre-synaptic dopaminergic function. Rats were unilaterally lesioned by injection of 6-hydroxydopamine (6-OHDA) (2 × 3 ug per site) into the medial forebrain bundle to yield moderate Parkinsonism. They were then implanted with minipumps containing vehicle or nicotine (2.0 mg/kg/d) and rendered dyskinetic with l-dopa (8 mg/kg plus 15 mg/kg benserazide). Lesioning alone decreased the striatal dopamine transporter, nicotinic receptor (nAChR) levels, and nAChR-mediated (3)H-dopamine release, consistent with previous results. Nicotine administration reduced l-dopa-induced abnormal involuntary movements throughout the course of the study (4 months). Nicotine treatment led to declines in the striatal dopamine transporter, α6β2* nAChRs and various components of α6β2* and α4β2* nAChR-mediated release. l-dopa treatment had no effect. These data suggest that nicotine may improve LIDs in Parkinsonian animal models by dampening striatal dopaminergic activity.
Collapse
Affiliation(s)
- Tanuja Bordia
- Center for Health Sciences, SRI International, California, USA
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, California, USA
| |
Collapse
|
39
|
Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther 2013; 137:22-54. [DOI: 10.1016/j.pharmthera.2012.08.012] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
|
40
|
Hussmann GP, Turner JR, Lomazzo E, Venkatesh R, Cousins V, Xiao Y, Yasuda RP, Wolfe BB, Perry DC, Rezvani AH, Levin ED, Blendy JA, Kellar KJ. Chronic sazetidine-A at behaviorally active doses does not increase nicotinic cholinergic receptors in rodent brain. J Pharmacol Exp Ther 2012; 343:441-50. [PMID: 22899752 PMCID: PMC3477215 DOI: 10.1124/jpet.112.198085] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022] Open
Abstract
Chronic nicotine administration increases α4β2 neuronal nicotinic acetylcholine receptor (nAChR) density in brain. This up-regulation probably contributes to the development and/or maintenance of nicotine dependence. nAChR up-regulation is believed to be triggered at the ligand binding site, so it is not surprising that other nicotinic ligands also up-regulate nAChRs in the brain. These other ligands include varenicline, which is currently used for smoking cessation therapy. Sazetidine-A (saz-A) is a newer nicotinic ligand that binds with high affinity and selectivity at α4β2* nAChRs. In behavioral studies, saz-A decreases nicotine self-administration and increases performance on tasks of attention. We report here that, unlike nicotine and varenicline, chronic administration of saz-A at behaviorally active and even higher doses does not up-regulate nAChRs in rodent brains. We used a newly developed method involving radioligand binding to measure the concentrations and nAChR occupancy of saz-A, nicotine, and varenicline in brains from chronically treated rats. Our results indicate that saz-A reached concentrations in the brain that were ∼150 times its affinity for α4β2* nAChRs and occupied at least 75% of nAChRs. Thus, chronic administration of saz-A did not up-regulate nAChRs despite it reaching brain concentrations that are known to bind and desensitize virtually all α4β2* nAChRs in brain. These findings reinforce a model of nicotine addiction based on desensitization of up-regulated nAChRs and introduce a potential new strategy for smoking cessation therapy in which drugs such as saz-A can promote smoking cessation without maintaining nAChR up-regulation, thereby potentially increasing the rate of long-term abstinence from nicotine.
Collapse
Affiliation(s)
- G Patrick Hussmann
- Department of Pharmacology and Physiology, Georgetown University School of Medicine, 3900 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nordman JC, Kabbani N. An interaction between α7 nicotinic receptors and a G-protein pathway complex regulates neurite growth in neural cells. J Cell Sci 2012; 125:5502-13. [PMID: 22956546 DOI: 10.1242/jcs.110379] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The α7 acetylcholine nicotinic receptor (α7) is an important mediator of cholinergic transmission during brain development. Here we present an intracellular signaling mechanism for the α7 receptor. Proteomic analysis of immunoprecipitated α7 subunits reveals an interaction with a G protein pathway complex (GPC) comprising Gα(i/o), GAP-43 and G protein regulated inducer of neurite outgrowth 1 (Gprin1) in differentiating cells. Morphological studies indicate that α7 receptors regulate neurite length and complexity via a Gprin1-dependent mechanism that directs the expression of α7 to the cell surface. α7-GPC interactions were confirmed in embryonic cortical neurons and were found to modulate the growth of axons. Taken together, these findings reveal a novel intracellular pathway of signaling for α7 within neurons, and suggest a role for its interactions with the GPC in brain development.
Collapse
Affiliation(s)
- Jacob C Nordman
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA
| | | |
Collapse
|
42
|
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 2012; 5:83. [PMID: 22876217 PMCID: PMC3411089 DOI: 10.3389/fnmol.2012.00083] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/23/2022] Open
Abstract
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.
Collapse
Affiliation(s)
- Allison A Feduccia
- Ernest Gallo Clinic and Research Center, Preclinical Development Emeryville, CA, USA
| | | | | |
Collapse
|
43
|
Sooksawate T, Yanagawa Y, Isa T. Cholinergic responses in GABAergic and non-GABAergic neurons in the intermediate gray layer of mouse superior colliculus. Eur J Neurosci 2012; 36:2440-51. [PMID: 22712760 DOI: 10.1111/j.1460-9568.2012.08169.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurons in the intermediate gray layer (SGI) of the mammalian superior colliculus (SC) receive dense cholinergic innervations from the brainstem parabrachial region. Such cholinergic inputs may influence execution of orienting behaviors. To obtain deeper insights into how the cholinergic inputs modulate the SC local circuits, we analysed the cholinergic responses in identified γ-aminobutyric acid (GABA)ergic and non-GABAergic neurons using SC slices obtained from GAD67-GFP knock-in mice. The responses of SGI neurons to cholinergic agonists were various combinations of fast inward currents mediated mainly via α4β2 and partly by α7 nicotinic receptors (nIN), slow inward currents caused by activation of M1 plus M3 muscarinic receptors (mIN), and slow outward currents caused by activation of M2 muscarinic receptors (mOUT). The most common cholinergic responses in non-GABAergic neurons was nIN + mIN + mOUT (38/68), followed by nIN + mIN (16/68), nIN + mOUT (11/68), nIN only (2/68), and no response (1/68). On the other hand, the major response pattern in GABAergic neurons was either nIN only (26/54) or nIN + mIN (21/54), followed by nIN + mOUT (4/54), mOUT only (2/54), and no response (1/54). Thus, major effects of cholinergic inputs to both SGI GABAergic and non-GABAergic neurons are excitatory, but the response patterns in these two types of SGI neurons are different. Thus, actions of the cholinergic inputs to non-GABAergic and GABAergic SGI neurons are not simple push-pull mechanisms, like excitation vs inhibition, but might cooperate to balance the level of excitation and inhibition for setting the state of the response property of the local circuit.
Collapse
Affiliation(s)
- Thongchai Sooksawate
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|
44
|
Quik M, Park KM, Hrachova M, Mallela A, Huang LZ, McIntosh JM, Grady SR. Role for α6 nicotinic receptors in l-dopa-induced dyskinesias in parkinsonian mice. Neuropharmacology 2012; 63:450-9. [PMID: 22579614 DOI: 10.1016/j.neuropharm.2012.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 01/09/2023]
Abstract
L-Dopa-induced dyskinesias are a serious side effect that develops in most Parkinson's disease patients on dopamine replacement therapy. Few treatment options are available to manage dyskinesias; however,recent studies show that nicotine reduces these abnormal involuntary movements (AIMs) in parkinsonian animals by acting at nicotinic acetylcholine receptors (nAChRs). Identification of the nAChR subtypes that mediate this reduction in AIMs is important as it will help in the development of nAChR subtype selective drugs for their treatment. Here we investigate the role of α6β2* nAChRs, a subtype selectively present in the nigrostriatal pathway, using a6 nAChR subunit null mutant (α6⁻/⁻) mice.Wildtype and α6⁻/⁻ mice were lesioned by unilateral injection of 6-hydroxydopamine (3 mg/ml) into the medial forebrain bundle. They were then given L-dopa (3 mg/kg) plus benserazide (15 mg/kg) 2e3 wk later. L-dopa-induced AIMs developed to a similar extent in α6⁻/⁻ and wildtype mice.However, AIMs in α6⁻/⁻ mice declined to ~50% of that in wildtype mice with continued L-dopa treatment. Nicotine treatment also decreased AIMs by ~50% in wildtype mice, although not in α6⁻/⁻ mice. There were no effects on parkinsonism under any experimental condition. To conclude, the similar declines in L-dopa-induced AIMs in nicotine-treated wildtype mice and in α6⁻/⁻ mice treated with and without nicotine indicate an essential role for α6β2* nAChRs in the maintenance of L-dopa-induced AIMs.These findings suggest that α6β2* nAChR drugs have potential for reducing L-dopa-induced dyskinesias in Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
AT-1001: a high affinity and selective α3β4 nicotinic acetylcholine receptor antagonist blocks nicotine self-administration in rats. Neuropsychopharmacology 2012; 37:1367-76. [PMID: 22278092 PMCID: PMC3327842 DOI: 10.1038/npp.2011.322] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Genomic and pharmacologic data have suggested the involvement of the α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) in drug seeking to nicotine and other drugs of abuse. In order to better examine this receptor subtype, we have identified and characterized the first high affinity and selective α3β4 nAChR antagonist, AT-1001, both in vitro and in vivo. This is the first reported compound with a Ki below 10 nM at α3β4 nAChR and >90-fold selectivity over the other major subtypes, the α4β2 and α7 nAChR. AT-1001 competes with epibatidine, allowing for [³H]epibatidine binding to be used for structure-activity studies, however, both receptor binding and ligand-induced Ca²⁺ flux are not strictly competitive because increasing ligand concentration produces an apparent decrease in receptor number and maximal Ca²⁺ fluorescence. AT-1001 also potently and reversibly blocks epibatidine-induced inward currents in HEK cells transfected with α3β4 nAChR. Importantly, AT-1001 potently and dose-dependently blocks nicotine self-administration in rats, without affecting food responding. When tested in a nucleus accumbens (NAcs) synaptosomal preparation, AT-1001 inhibits nicotine-induced [³H]dopamine release poorly and at significantly higher concentrations compared with mecamylamine and conotoxin MII. These results suggest that its inhibition of nicotine self-administration in rats is not directly due to a decrease in dopamine release from the NAc, and most likely involves an indirect pathway requiring α3β4 nAChR. In conclusion, our studies provide further evidence for the involvement of α3β4 nAChR in nicotine self-administration. These findings suggest the utility of this receptor as a target for smoking cessation medications, and highlight the potential of AT-1001 and congeners as clinically useful compounds.
Collapse
|
46
|
Abstract
Conopeptides are a diverse group of recently evolved venom peptides used for prey capture and/or defense. Each species of cone snails produces in excess of 1000 conopeptides, with those pharmacologically characterized (≈ 0.1%) targeting a diverse range of membrane proteins typically with high potency and specificity. The majority of conopeptides inhibit voltage- or ligand-gated ion channels, providing valuable research tools for the dissection of the role played by specific ion channels in excitable cells. It is noteworthy that many of these targets are found to be expressed in pain pathways, with several conopeptides having entered the clinic as potential treatments for pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one now marketed for intrathecal treatment of severe pain [ziconotide (Prialt)]. This review discusses the diversity, pharmacology, structure-activity relationships, and therapeutic potential of cone snail venom peptide families acting at voltage-gated ion channels (ω-, μ-, μO-, δ-, ι-, and κ-conotoxins), ligand-gated ion channels (α-conotoxins, σ-conotoxin, ikot-ikot, and conantokins), G-protein-coupled receptors (ρ-conopeptides, conopressins, and contulakins), and neurotransmitter transporters (χ-conopeptides), with expanded discussion on the clinical potential of sodium and calcium channel inhibitors and α-conotoxins. Expanding the discovery of new bioactives using proteomic/transcriptomic approaches combined with high-throughput platforms and better defining conopeptide structure-activity relationships using relevant membrane protein crystal structures are expected to grow the already significant impact conopeptides have had as both research probes and leads to new therapies.
Collapse
Affiliation(s)
- Richard J Lewis
- Institute for Molecular Bioscience, University of Queensland, Q4072, Australia.
| | | | | | | |
Collapse
|
47
|
Gold AB, Lerman C. Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes. Hum Genet 2012; 131:10.1007/s00439-012-1143-9. [PMID: 22290489 PMCID: PMC3864572 DOI: 10.1007/s00439-012-1143-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
Abstract
Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the β2 and α5/α3/β4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene-gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype.
Collapse
Affiliation(s)
- Allison B. Gold
- Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Gould TJ, Portugal GS, André JM, Tadman MP, Marks MJ, Kenney JW, Yildirim E, Adoff M. The duration of nicotine withdrawal-associated deficits in contextual fear conditioning parallels changes in hippocampal high affinity nicotinic acetylcholine receptor upregulation. Neuropharmacology 2012; 62:2118-25. [PMID: 22285742 DOI: 10.1016/j.neuropharm.2012.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/16/2022]
Abstract
A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdrawal-induced cognitive deficits. If a relationship between altered learning and nAChR levels exists, changes in nAChR levels after cessation of nicotine treatment should match the duration of learning deficits. To test this hypothesis, mice were chronically administered 6.3mg/kg/day (freebase) nicotine for 12 days and trained in contextual fear conditioning on day 11 or between 1 to 16 days after withdrawal of treatment. Changes in [(125)I]-epibatidine binding at cytisine-sensitive and cytisine-resistant nAChRs and chronic nicotine-related changes in α4, α7, and β2 nAChR subunit mRNA expression were assessed. Chronic nicotine had no behavioral effect but withdrawal produced deficits in contextual fear conditioning that lasted 4 days. Nicotine withdrawal did not disrupt cued fear conditioning. Chronic nicotine upregulated hippocampal cytisine-sensitive nAChR binding; upregulation continued after cessation of nicotine administration and the duration of upregulation during withdrawal paralleled the duration of behavioral changes. Changes in binding in cortex and cerebellum did not match behavioral changes. No changes in α4, α7, and β2 subunit mRNA expression were seen with chronic nicotine. Thus, nicotine withdrawal-related deficits in contextual learning are time-limited changes that are associated with temporal changes in upregulation of high-affinity nAChR binding.
Collapse
Affiliation(s)
- Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Weiss Hall, 6th Floor, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Quik M, Wonnacott S. α6β2* and α4β2* nicotinic acetylcholine receptors as drug targets for Parkinson's disease. Pharmacol Rev 2011; 63:938-66. [PMID: 21969327 PMCID: PMC3186078 DOI: 10.1124/pr.110.003269] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the "gold standard" for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
50
|
Wooters TE, Smith AM, Pivavarchyk M, Siripurapu KB, McIntosh JM, Zhang Z, Crooks PA, Bardo MT, Dwoskin LP. bPiDI: a novel selective α6β2* nicotinic receptor antagonist and preclinical candidate treatment for nicotine abuse. Br J Pharmacol 2011; 163:346-57. [PMID: 21232049 DOI: 10.1111/j.1476-5381.2011.01220.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic acetylcholine receptors (nAChRs) containing α6β2 subunits expressed by dopamine neurons regulate nicotine-evoked dopamine release. Previous results show that the α6β2* nAChR antagonist, N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) inhibits nicotine-evoked dopamine release from dorsal striatum and decreases nicotine self-administration in rats. However, overt toxicity emerged with repeated bPiDDB treatment. The current study evaluated the preclinical pharmacology of a bPiDDB analogue. EXPERIMENTAL APPROACH The C₁₀ analogue of bPiDDB, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), was evaluated preclinically for nAChR antagonist activity. KEY RESULTS bPiDI inhibits nicotine-evoked [³H]dopamine overflow (IC₅₀= 150 nM, I(max)=58%) from rat striatal slices. Schild analysis revealed a rightward shift in the nicotine concentration-response curve and surmountability with increasing nicotine concentration; however, the Schild regression slope differed significantly from 1.0, indicating surmountable allosteric inhibition. Co-exposure of maximally inhibitory concentrations of bPiDI (1 µM) and the α6β2* nAChR antagonist α-conotoxin MII (1 nM) produced inhibition not different from either antagonist alone, indicating that bPiDI acts at α6β2* nAChRs. Nicotine treatment (0.4 mg·kg⁻¹·da⁻¹, 10 days) increased more than 100-fold the potency of bPiDI (IC₅₀=1.45 nM) to inhibit nicotine-evoked dopamine release. Acute treatment with bPiDI (1.94-5.83 µmol·kg⁻¹, s.c.) specifically reduced nicotine self-administration relative to responding for food. Across seven daily treatments, bPiDI decreased nicotine self-administration; however, tolerance developed to the acute decrease in food-maintained responding. No observable body weight loss or lethargy was observed with repeated bPiDI. CONCLUSIONS AND IMPLICATIONS These results are consistent with the hypothesis that α6β2* nAChR antagonists have potential for development as pharmacotherapies for tobacco smoking cessation.
Collapse
Affiliation(s)
- Thomas E Wooters
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|