1
|
Gajić Bojić M, Aranđelović J, Škrbić R, Savić MM. Peripheral GABA A receptors - Physiological relevance and therapeutic implications. Pharmacol Ther 2025; 266:108759. [PMID: 39615599 DOI: 10.1016/j.pharmthera.2024.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
The role of γ- aminobutyric acid (GABA) and GABAA receptors is not only essential for neurotransmission in the central nervous system (CNS), but they are also involved in communication in various peripheral tissues such as the pancreas, liver, kidney, gastrointestinal tract, trachea, immune cells and blood vessels. GABAA receptors located outside the CNS ("peripheral GABAA receptors") enable both neuronal and non-neuronal GABA-ergic signaling in various physiological processes and are generally thought to have similar properties to the extrasynaptic receptors in the CNS. By activating these peripheral receptors, GABA and various GABAA receptor modulators, including drugs such as benzodiazepines and general anesthetics, may contribute to or otherwise affect the maintenance of general body homeostasis. However, the existing data in the literature on the role of non-neuronal GABA-ergic signaling in insulin secretion, glucose metabolism, renal function, intestinal motility, airway tone, immune response and blood pressure regulation are far from complete. In fact, they mainly focus on the identification of components for the local synthesis and utilization of GABA and on the expression repertoire of GABAA receptor subunits rather than on subunit composition, activation effects and (sub)cellular localization. A deeper understanding of how modulation of peripheral GABAA receptors can have significant therapeutic effects on a range of pathological conditions such as multiple sclerosis, diabetes, irritable bowel syndrome, asthma or hypertension could contribute to the development of more specific pharmacological strategies that would provide an alternative or complement to existing therapies. Selective GABAA receptor modulators with improved peripheral efficacy and reduced central side effects would therefore be highly desirable first-in-class drug candidates. This review updates recent advances unraveling the molecular components and cellular determinants of the GABA signaling machinery in peripheral organs, tissues and cells of both, humans and experimental animals.
Collapse
Affiliation(s)
- Milica Gajić Bojić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Jovana Aranđelović
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia
| | - Ranko Škrbić
- Faculty of Medicine, Center for Biomedical Research, University of Banja Luka, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina; Department of Pharmacology, Toxicology and Clinical Pharmacology, University of Banja Luka - Faculty of Medicine, Banja Luka 78000, Republic of Srpska, Bosnia and Herzegovina
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade 11000, Serbia.
| |
Collapse
|
2
|
Wildman SS, Dunn K, Van Beusecum JP, Inscho EW, Kelley S, Lilley RJ, Cook AK, Taylor KD, Peppiatt-Wildman CM. A novel functional role for the classic CNS neurotransmitters, GABA, glycine, and glutamate, in the kidney: potent and opposing regulators of the renal vasculature. Am J Physiol Renal Physiol 2023; 325:F38-F49. [PMID: 37102686 PMCID: PMC10511176 DOI: 10.1152/ajprenal.00425.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023] Open
Abstract
The presence of a renal GABA/glutamate system has previously been described; however, its functional significance in the kidney remains undefined. We hypothesized, given its extensive presence in the kidney, that activation of this GABA/glutamate system would elicit a vasoactive response from the renal microvessels. The functional data here demonstrate, for the first time, that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter with important implications for influencing renal blood flow. Renal blood flow is regulated in both the renal cortical and medullary microcirculatory beds via diverse signaling pathways. GABA- and glutamate-mediated effects on renal capillaries are strikingly similar to those central to the regulation of central nervous system capillaries, that is, exposing renal tissue to physiological concentrations of GABA, glutamate, and glycine led to alterations in the way that contractile cells, pericytes, and smooth muscle cells, regulate microvessel diameter in the kidney. Since dysregulated renal blood flow is linked to chronic renal disease, alterations in the renal GABA/glutamate system, possibly through prescription drugs, could significantly impact long-term kidney function.NEW & NOTEWORTHY Functional data here offer novel insight into the vasoactive activity of the renal GABA/glutamate system. These data show that activation of endogenous GABA and glutamate receptors in the kidney significantly alters microvessel diameter. Furthermore, the results show that these antiepileptic drugs are as potentially challenging to the kidney as nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
| | - Kadeshia Dunn
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Justin P Van Beusecum
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
- Medical University of South Carolina, Charleston, South Carolina, United States
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephen Kelley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Rebecca J Lilley
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | - Anthony K Cook
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kirsti D Taylor
- Division of Natural Sciences, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
3
|
Prud’homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. FRONTIERS IN AGING 2022; 3:931331. [PMID: 35903083 PMCID: PMC9314780 DOI: 10.3389/fragi.2022.931331] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/06/2022]
Abstract
The α-Klotho protein (henceforth denoted Klotho) has antiaging properties, as first observed in mice homozygous for a hypomorphic Klotho gene (kl/kl). These mice have a shortened lifespan, stunted growth, renal disease, hyperphosphatemia, hypercalcemia, vascular calcification, cardiac hypertrophy, hypertension, pulmonary disease, cognitive impairment, multi-organ atrophy and fibrosis. Overexpression of Klotho has opposite effects, extending lifespan. In humans, Klotho levels decline with age, chronic kidney disease, diabetes, Alzheimer’s disease and other conditions. Low Klotho levels correlate with an increase in the death rate from all causes. Klotho acts either as an obligate coreceptor for fibroblast growth factor 23 (FGF23), or as a soluble pleiotropic endocrine hormone (s-Klotho). It is mainly produced in the kidneys, but also in the brain, pancreas and other tissues. On renal tubular-cell membranes, it associates with FGF receptors to bind FGF23. Produced in bones, FGF23 regulates renal excretion of phosphate (phosphaturic effect) and vitamin D metabolism. Lack of Klotho or FGF23 results in hyperphosphatemia and hypervitaminosis D. With age, human renal function often deteriorates, lowering Klotho levels. This appears to promote age-related pathology. Remarkably, Klotho inhibits four pathways that have been linked to aging in various ways: Transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), Wnt and NF-κB. These can induce cellular senescence, apoptosis, inflammation, immune dysfunction, fibrosis and neoplasia. Furthermore, Klotho increases cell-protective antioxidant enzymes through Nrf2 and FoxO. In accord, preclinical Klotho therapy ameliorated renal, cardiovascular, diabetes-related and neurodegenerative diseases, as well as cancer. s-Klotho protein injection was effective, but requires further investigation. Several drugs enhance circulating Klotho levels, and some cross the blood-brain barrier to potentially act in the brain. In clinical trials, increased Klotho was noted with renin-angiotensin system inhibitors (losartan, valsartan), a statin (fluvastatin), mTOR inhibitors (rapamycin, everolimus), vitamin D and pentoxifylline. In preclinical work, antidiabetic drugs (metformin, GLP-1-based, GABA, PPAR-γ agonists) also enhanced Klotho. Several traditional medicines and/or nutraceuticals increased Klotho in rodents, including astaxanthin, curcumin, ginseng, ligustilide and resveratrol. Notably, exercise and sport activity increased Klotho. This review addresses molecular, physiological and therapeutic aspects of Klotho.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
- *Correspondence: Gérald J. Prud’homme,
| | - Mervé Kurt
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Yinuo Pharmaceutical Co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Alves-Ferreira M, Quintas M, Sequeiros J, Sousa A, Pereira-Monteiro J, Alonso I, Neto JL, Lemos C. A genetic interaction of NRXN2 with GABRE, SYT1 and CASK in migraine patients: a case-control study. J Headache Pain 2021; 22:57. [PMID: 34126933 PMCID: PMC8201896 DOI: 10.1186/s10194-021-01266-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial disorder that is more frequent (two to four times) in women than in men. In recent years, our research group has focused on the role of neurotransmitter release and its regulation. Neurexin (NRXN2) is one of the components of the synaptic vesicle machinery, responsible for connecting intracellular fusion proteins and synaptic vesicles. Our aim was to continue exploring the role and interaction of proteins involved in the control and promotion of neurotransmission in migraine susceptibility. METHODS A case-control study was performed comprising 183 migraineurs (148 females and 35 males) and 265 migraine-free controls (202 females and 63 males). Tagging single nucleotide polymorphisms of NRXN2 were genotyped to assess the association between NRXN2 and migraine susceptibility. The χ2 test was used to compare allele frequencies in cases and controls and odds ratios were estimated with 95% confidence intervals. Haplotype frequencies were compared between groups. Gene-gene interactions were analysed using the Multifactor Dimensionality Reduction v2.0. RESULTS We found a statistically significant interaction model (p = 0.009) in the female group between the genotypes CG of rs477138 (NRXN2) and CT of rs1158605 (GABRE). This interaction was validated by logistic regression, showing a significant risk effect [OR = 4.78 (95%CI: 1.76-12.97)] after a Bonferroni correction. Our data also supports a statistically significant interaction model (p = 0.011) in the female group between the GG of rs477138 in NRXN2 and, the rs2244325's GG genotype and rs2998250's CC genotype of CASK. This interaction was also validated by logistic regression, with a protective effect [OR = 0.08 (95%CI: 0.01-0.75)]. A weak interaction model was found between NRXN2-SYT1. We have not found any statistically significant allelic or haplotypic associations between NRXN2 and migraine susceptibility. CONCLUSIONS This study unravels, for the first time, the gene-gene interactions between NRXN2, GABRE - a GABAA-receptor - and CASK, importantly it shows the synergetic effect between those genes and its relation with migraine susceptibility. These gene interactions, which may be a part of a larger network, can potentially help us in better understanding migraine aetiology and in development of new therapeutic approaches.
Collapse
Affiliation(s)
- Miguel Alves-Ferreira
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Marlene Quintas
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe, IBMC - Institute for Molecular and Cell Biology; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
5
|
Sakaew W, Tachow A, Thoungseabyoun W, Khrongyut S, Rawangwong A, Polsan Y, Masahiko W, Kondo H, Hipkaeo W. Expression and localization of VIAAT in distal uriniferous tubular epithelium of mouse. Ann Anat 2018; 222:21-27. [PMID: 30448467 DOI: 10.1016/j.aanat.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
Abstract
Vesicular inhibitory amino acid transporter (VIAAT) is a transmembrane transporter which is responsible for the storage of gamma-aminobutyric acid (GABA) or glycine in synaptic vesicles. According to recent studies, GABA is known to be expressed in the kidney. For clear understanding of the intra-renal GABA signaling, the localization of VIAAT was examined in the present study. Intense immunoreactivity was found largely confined to the distal tubule epithelia, especially distinct in the inner medulla, although the immunoreactivity was discerned more or less in all tubules and glomeruli. No distinct immunoreactivity was seen in capillary endothelia or interstitial fibroblasts. In immuno-DAB and immuno-gold electron microscopy, the immunoreaction was found at the basal infoldings of plasma membranes and basal portions of the lateral plasma membranes, but not in any vesicles or vacuoles within the distal tubular cells. The significance of the enigmatic finding, localization of a vesicular molecule on selected portions of the plasma membrane of distal tubular cells, was discussed in view of the possibility of paracrine or autocrine effects of GABA on some other uriniferous tubular cells or interstitial cells.
Collapse
Affiliation(s)
- Waraporn Sakaew
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apussara Tachow
- Mahidol University, Nakhonsawan Campus, Nakhonsawan 60130, Thailand
| | - Wipawee Thoungseabyoun
- Faculty of Medicine, Siam University, 38 Phet Kasem Road, Bang Wa, Phasi Charoen, Bangkok 10160 Thailand
| | - Suthankamon Khrongyut
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Atsara Rawangwong
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yada Polsan
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watanabe Masahiko
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisatake Kondo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Department of Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Wiphawi Hipkaeo
- Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
6
|
The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells. Biochem Biophys Res Commun 2017; 493:1542-1547. [PMID: 28993191 DOI: 10.1016/j.bbrc.2017.10.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/11/2022]
Abstract
Systemic gamma-aminobutyric acid (GABA) therapy prevents or ameliorates type 1 diabetes (T1D), by suppressing autoimmune responses and stimulating pancreatic beta cells. In beta cells, it increases insulin secretion, prevents apoptosis, and induces regeneration. It is unclear how GABA mediates these effects. We hypothesized that Klotho is involved. It is a multi-functional protein expressed in the kidneys, brain, pancreatic beta cells, other tissues, and is cell-bound or soluble. Klotho knockout mice display accelerated aging, and in humans Klotho circulating levels decline with age, renal disease and diabetes. Here, we report that GABA markedly increased circulating levels of Klotho in streptozotocin (STZ)-induced diabetes. GABA also increased Klotho in the islet of Langerhans of normal mice, as well as the islets and kidneys of STZ-treated mice. In vitro, GABA stimulated production and secretion of Klotho by human islet cells. Knockdown (KD) of Klotho with siRNA in INS-1E insulinoma cells abrogated the protective effects of GABA against STZ toxicity. Following KD, soluble Klotho reversed the effects of Klotho deficiency. In human islet cells soluble Klotho protected against cell death, and stimulated proliferation and insulin secretion. NF-κB activation triggers beta-cell apoptosis, and both GABA and Klotho suppress this pathway. We found Klotho KD augmented NF-κB p65 expression, and abrogated the ability of GABA to block NF-κB activation. This is the first report that GABAergic stimulation increases Klotho expression. Klotho protected and stimulated beta cells and lack of Klotho (KD) was reversed by soluble Klotho. These findings have important implications for the treatment of T1D.
Collapse
|
7
|
Takano K, Yatabe MS, Abe A, Suzuki Y, Sanada H, Watanabe T, Kimura J, Yatabe J. Characteristic expressions of GABA receptors and GABA producing/transporting molecules in rat kidney. PLoS One 2014; 9:e105835. [PMID: 25188493 PMCID: PMC4154856 DOI: 10.1371/journal.pone.0105835] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/25/2014] [Indexed: 01/15/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important neurotransmitter, but recent reports have revealed the expression of GABAergic components in peripheral, non-neural tissues. GABA administration induces natriuresis and lowers blood pressure, suggesting renal GABA targets. However, systematic evaluation of renal GABAergic components has not been reported. In this study, kidney cortices of Wistar-Kyoto rats (WKY) were used to assay for messenger RNAs of GABA-related molecules using RT-PCR. In WKY kidney cortex, GABAA receptor subunits, α1, β3, δ, ε and π, in addition to both types of GABAB receptors, R1 and R2, and GABAC receptor ρ1 and ρ2 subunit mRNAs were detected. Kidney cortex also expressed mRNAs of glutamate decarboxylase (GAD) 65, GAD67, 4-aminobutyrate aminotransferase and GABA transporter, GAT2. Western blot and/or immunohistochemistry were performed for those molecules detected by RT-PCR. By immunofluorescent observation, co-staining of α1, β3, and π subunits was observed mainly on the apical side of cortical tubules, and immunoblot of kidney protein precipitated with π subunit antibody revealed α1 and β3 subunit co-assembly. This is the first report of GABAA receptor π subunit in the kidney. In summary, unique set of GABA receptor subunits and subtypes were found in rat kidney cortex. As GABA producing enzymes, transporters and degrading enzyme were also detected, a possible existence of local renal GABAergic system with an autocrine/paracrine mechanism is suggested.
Collapse
Affiliation(s)
- Kozue Takano
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Midori Sasaki Yatabe
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail: (MSY); (JY)
| | - Asami Abe
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yu Suzuki
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hironobu Sanada
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan
| | - Tsuyoshi Watanabe
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junko Kimura
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Junichi Yatabe
- Department of Pharmacology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Nephrology, Hypertension, Diabetology, Endocrinology and Metabolism, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail: (MSY); (JY)
| |
Collapse
|
8
|
Brar R, Singh JP, Kaur T, Arora S, Singh AP. Role of GABAergic activity of sodium valproate against ischemia–reperfusion-induced acute kidney injury in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:143-51. [DOI: 10.1007/s00210-013-0928-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022]
|
9
|
Quintas M, Neto JL, Pereira-Monteiro J, Barros J, Sequeiros J, Sousa A, Alonso I, Lemos C. Interaction between γ-aminobutyric acid A receptor genes: new evidence in migraine susceptibility. PLoS One 2013; 8:e74087. [PMID: 24040174 PMCID: PMC3764027 DOI: 10.1371/journal.pone.0074087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023] Open
Abstract
Migraine is a common neurological episodic disorder with a female-to-male prevalence 3- to 4-fold higher, suggesting a possible X-linked genetic component. Our aims were to assess the role of common variants of gamma-aminobutyric acid A receptor (GABAAR) genes, located in the X-chromosome, in migraine susceptibility and the possible interaction between them. An association study with 188 unrelated cases and 286 migraine-free controls age- and ethnic matched was performed. Twenty-three tagging SNPs were selected in three genes (GABRE, GABRA3 and GABRQ). Allelic, genotypic and haplotypic frequencies were compared between cases and controls. We also focused on gene-gene interactions. The AT genotype of rs3810651 of GABRQ gene was associated with an increased risk for migraine (OR: 4.07; 95% CI: 1.71-9.73, p=0.002), while the CT genotype of rs3902802 (OR: 0.41; 95% CI: 0.21-0.78, p=0.006) and GA genotype of rs2131190 of GABRA3 gene (OR: 0.53; 95% CI: 0.32-0.88, p=0.013) seem to be protective factors. All associations were found in the female group and maintained significance after Bonferroni correction. We also found three nominal associations in the allelic analyses although there were no significant results in the haplotypic analyses. Strikingly, we found strong interactions between six SNPs encoding for different subunits of GABAAR, all significant after permutation correction. To our knowledge, we show for the first time, the putative involvement of polymorphisms in GABAAR genes in migraine susceptibility and more importantly we unraveled a role for novel gene-gene interactions opening new perspectives for the development of more effective treatments.
Collapse
Affiliation(s)
- Marlene Quintas
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
| | - João Luís Neto
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - José Pereira-Monteiro
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, CHP-HSA, Centro Hospitalar do Porto, Hospital de Santo António. Abel Salazar, Porto, Portugal
| | - José Barros
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Serviço de Neurologia, CHP-HSA, Centro Hospitalar do Porto, Hospital de Santo António. Abel Salazar, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Alda Sousa
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Isabel Alonso
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carolina Lemos
- UnIGENe IBMC – Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
10
|
Dunn KN, Kelley SP, Crawford C, Wildman SSP, Peppiatt‐Wildman CM. A novel role for GABA and glutamate in pericyte‐mediated regulation of medullary blood flow. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1110.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Stephen P Kelley
- Medway School Of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Carol Crawford
- Medway School Of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | - Scott S P Wildman
- Medway School Of PharmacyUniversities of Kent and GreenwichKentUnited Kingdom
| | | |
Collapse
|