1
|
Tiwari B, Pandey RP, Hussain N. Recent advances in the synthesis of SGLT2 Inhibitors and natural products from carbohydrates. Carbohydr Res 2025; 552:109477. [PMID: 40194327 DOI: 10.1016/j.carres.2025.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Gliflozins are an important class of drugs used in the treatment of type 2 diabetes, a serious and prevalent condition in modern times. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors represent a recent advancement in diabetes treatment, effectively lowering blood sugar levels in patients with type 2 diabetes. Many monosaccharides and their derivatives, such as glycals, play a key role as building blocks in the synthesis of glycosides, particularly C-glycosides, which possess unique structural stability and biological significance. These compounds are crucial in the total synthesis of natural drugs, branched sugars, and other biologically active molecules. This review highlights the recent advancement in the synthesis of SGLT-2 inhibitors and natural products synthesized from carbohydrates made between 2010 and 2024.
Collapse
Affiliation(s)
- Bindu Tiwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Pratap Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Park M, Zhuang W, Jeong J, Kim HR, Jang Y, Seo MS, An JR, Park H, Han ET, Han JH, Chun W, Park WS. The SGLT2 inhibitor remogliflozin induces vasodilation in the femoral artery of rabbits via activation of a Kv channel, the SERCA pump, and the cGMP signaling pathway. Toxicol Appl Pharmacol 2025; 495:117228. [PMID: 39788209 DOI: 10.1016/j.taap.2025.117228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca2+-sensitive K+ channel inhibitor (paxilline), the ATP-sensitive K+ channel inhibitor (glibenclamide), or the inwardly rectifying K+ channel inhibitor (Ba2+) did not alter the vasodilatory effect. However, vasodilation was significantly reduced by pretreatment with the voltage-dependent K+ (Kv) channel inhibitor (4-AP) and with the Kv1.5 subtype inhibitor (DPO-1) but not with Kv2.1 or Kv7 subtype inhibitor. Neither endothelium removal nor the inhibition of nitric oxide production altered the vasodilatory effect of remogliflozin. However, pretreatment with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid effectively reduced the remogliflozin effect, as did pretreatment with cGMP/PKG-related but not cAMP/PKA-related signaling pathway inhibitors. These results indicate that remogliflozin-mediated dilation of the femoral artery occurs via the activation of Kv channels, mainly the Kv1.5 subtype, SERCA pump, and cGMP/PKG-related signaling pathways.
Collapse
Affiliation(s)
- Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - YeEun Jang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Jin Ryeol An
- Department of Physiology, KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Eun-Taek Han
- Institute of Medical Sciences, Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Jin-Hee Han
- Institute of Medical Sciences, Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Wanjoo Chun
- Institute of Medical Sciences, Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, South Korea.
| |
Collapse
|
3
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024; 28:4553-4579. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
4
|
Xie T, Zhao LJ. Synthetic approaches and clinical application of small-molecule inhibitors of sodium-dependent glucose transporters 2 for the treatment of type 2 diabetes mellitus. Eur J Med Chem 2024; 269:116343. [PMID: 38513341 DOI: 10.1016/j.ejmech.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Sodium-dependent glucose transporters 2 (SGLT2) inhibitors are a class of small-molecule drugs that have gained significant attention in recent years for their potential clinical applications in the treatment of type 2 diabetes mellitus (T2DM). These inhibitors function by obstructing the kidneys' ability to reabsorb glucose, resulting in a rise in the excretion of glucose in urine (UGE) and subsequently lowering blood glucose levels. Several SGLT2 inhibitors, such as Dapagliflozin, Canagliflozin, and Empagliflozin, have been approved by regulatory authorities and are currently available for clinical use. These inhibitors have shown notable enhancements in managing blood sugar levels, reducing body weight, and lowering blood pressure in individuals with T2DM. Additionally, they have exhibited potential advantages in decreasing the likelihood of cardiovascular incidents and renal complications among this group of patients. This review article focuses on the synthesis and clinical application of small-molecule SGLT2 inhibitors, which have provided a new therapeutic approach for the management of T2DM.
Collapse
Affiliation(s)
- Tong Xie
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476000, China.
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
5
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Cetin A. Recent Advances in Pyrazole-based Protein Kinase Inhibitors as Emerging Therapeutic Targets. Comb Chem High Throughput Screen 2024; 27:2791-2804. [PMID: 37946345 DOI: 10.2174/0113862073252211231024182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties. METHODS A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities. RESULTS Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy. CONCLUSION The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.
Collapse
Affiliation(s)
- Adnan Cetin
- Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University, Van, 65080, Turkey
| |
Collapse
|
7
|
Cetin A, Donmez A, Dalar A, Bildirici I. Amino acid and Dicyclohexylurea Linked Pyrazole Analogues: Synthesis, In Silico and In Vitro Studies. ChemistrySelect 2023. [DOI: 10.1002/slct.202204926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Adnan Cetin
- Department of Chemistry Faculty of Education, V an Yuzuncu Yil University Van 65080 Turkey
| | - Ali Donmez
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Van Yuzuncu Yil University Van 65080 Turkey
| | - Abdullah Dalar
- Department of Pharmaceutical Botany Faculty of Pharmacy Van Yuzuncu Yil University Van 65080 Turkey
| | - Ishak Bildirici
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Van Yuzuncu Yil University Van 65080 Turkey
| |
Collapse
|
8
|
Islam MS, Al-Majid AM, Sholkamy EN, Yousuf S, Ayaz M, Nawaz A, Wadood A, Rehman AU, Verma VP, Bari A, Haukka M, Soliman SM, Barakat A. Synthesis, molecular docking and enzyme inhibitory approaches of some new chalcones engrafted pyrazole as potential antialzheimer, antidiabetic and antioxidant agents. J Mol Struct 2022; 1269:133843. [DOI: 10.1016/j.molstruc.2022.133843] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Hongjin Zhai, Zhang S, Ampomah-Wireko M, Wang H, Cao Y, Yang P, Yang Y, Frejat FOA, Wang L, Zhao B, Ren C, Wu C. Pyrazole: An Important Core in Many Marketed and Clinical Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 -2021. Acta Pharm Sin B 2022; 12:3783-3821. [PMID: 36213536 PMCID: PMC9532563 DOI: 10.1016/j.apsb.2022.05.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.
Collapse
Affiliation(s)
- Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiaojing Du
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Heng Jiao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Quanlin An
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pengfei Fang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Maccari R, Ottanà R. Sodium-Glucose Cotransporter Inhibitors as Antidiabetic Drugs: Current Development and Future Perspectives. J Med Chem 2022; 65:10848-10881. [PMID: 35924548 PMCID: PMC9937539 DOI: 10.1021/acs.jmedchem.2c00867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT-2) inhibitors (gliflozins) represent the most recently approved class of oral antidiabetic drugs. SGLT-2 overexpression in diabetic patients contributes significantly to hyperglycemia and related complications. Therefore, SGLT-2 became a highly interesting therapeutic target, culminating in the approval for clinical use of dapagliflozin and analogues in the past decade. Gliflozins improve glycemic control through a novel insulin-independent mechanism of action and, moreover, exhibit significant cardiorenal protective effects in both diabetic and nondiabetic subjects. Therefore, gliflozins have received increasing attention, prompting extensive structure-activity relationship studies and optimization approaches. The discovery that intestinal SGLT-1 inhibition can provide a novel opportunity to control hyperglycemia, through a multifactorial mechanism, recently encouraged the design of low adsorbable inhibitors selectively directed to the intestinal SGLT-1 subtype as well as of dual SGLT-1/SGLT-2 inhibitors, representing a compelling strategy to identify new antidiabetic drug candidates.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
12
|
Mehmood H, Haroon M, Akhtar T, Woodward S, Andleeb H. Synthesis and molecular docking studies of 5-acetyl-2-(arylidenehydrazin-1-yl)-4-methyl-1,3-thiazoles as α-amylase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Sharma S, Mittal A, Kumar S, Mittal A. Structural Perspectives and Advancement of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes. Curr Diabetes Rev 2022; 18:e170921196601. [PMID: 34538233 DOI: 10.2174/1573399817666210917122745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is an ailment that affects a large number of individuals worldwide and its pervasiveness has been predicted to increase later on. Every year, billions of dollars are spent globally on diabetes-related health care practices. Contemporary hyperglycemic therapies to rationalize Type 2 Diabetes Mellitus (T2DM) mostly involve pathways that are insulin-dependent and lack effectiveness as the pancreas' β-cell function declines more significantly. Homeostasis via kidneys emerges as a new and future strategy to minimize T2DM complications. This article covers the reabsorption of glucose mechanism in the kidneys, the functional mechanism of various Sodium- Glucose Cotransporter 2 (SGLT2) inhibitors, their structure and driving profile, and a few SGLT2 inhibitors now accessible in the market as well as those in different periods of advancement. The advantages of SGLT2 inhibitors are dose-dependent glycemic regulation changes with a significant reduction both in the concentration of HbA1c and body weight clinically and statistically. A considerable number of SGLT2 inhibitors have been approved by the FDA, while a few others, still in preliminaries, have shown interesting effects.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozepur Road, Ludhiana-142021, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| |
Collapse
|
14
|
Shah DA, Gondalia II, Patel VB, Mahajan A, Chhalotiya U, Nagda DC. Stability indicating thin-layer chromatographic method for estimation of antidiabetic drug Remogliflozin etabonate. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A sensitive, precise, and stability-indicating high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of Remogliflozin etabonate in tablet formulation. HPTLC plates precoated with silica gel 60 F254 were used as the stationary phase; methanol: ethyl acetate: toluene: NH3 (2:4:4:0.1, v/v/v) was used as mobile phase, and densitometry was used for the quantitative estimation of the drug. The proposed method was validated with respect to linearity, accuracy, precision, and robustness and applied for the estimation of drug in tablet dosage form.
Results
The Rf value of Remogliflozin etabonate was observed to be 0.61. The densitometric estimation was performed in reflectance mode at 229 nm. The method was found to be linear in the range of 500–8000 ng/band for Remogliflozin etabonate. The possible degradation pathway was estimated by performing forced degradation studies. The degradant peaks were well resolved from the drug peak with acceptable resolution in their Rf value.
Conclusion
An accurate and precise high-performance thin-layer chromatographic method has been developed for the quantification of Remogliflozin etabonate in tablets. Forced degradation studies were performed, and drug was found to be highly susceptible to acid, base hydrolysis, and oxidative stress degradation and gets converted into active drug Remogliflozin. Both Remogliflozin etabonate and Remogliflozin bands were well resolved. The method was applied for the analysis of drug in tablet formulation, and it can be used for routine quality control analysis, as well as for the analysis of stability samples.
Collapse
|
15
|
Suryavanshi VD, Sharma S, Sahu JK. Review on Characteristics and Analytical Methods of Remogliflozin etabonate: An Update. Mini Rev Med Chem 2021; 22:1341-1350. [PMID: 34620050 DOI: 10.2174/1389557521666211007115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
Hyperglycemia and its associated disorders like Diabetes mellitus are engulfing the world's population at a faster pace. New-age medications like the SGLT 2 inhibitors have found their place in the run to combat DM. Drugs with these properties have proven to be effective in treating hyperglycemia, Obesity, and major Cardiac disorders. The interesting fact about these drugs is that they act independently of insulin levels in the patient's body. The fact that they even bypass the side effects shown by currently used anti-diabetic medications has attracted the world's hope to neutralize diabetes mellitus. The invention of Remogliflozin etabonate (RGE), an SGLT 2 inhibitor, has therefore added a silver lining to the gliflozin-family of drugs in the fight against DM. This is due to its least side effects as well as its effective mechanisms to treat hyperglycemia. It can be administered not only as a single entity but also can be co-administered in combination with other anti-hyperglycemic agents. RGE is already sold in the Indian market as REMO-ZEN, by Glenmark Pharmaceuticals. It has been studied thoroughly for its pharmacokinetic & pharmacodynamic profile. It is a benzylpyrazole glucoside. Various analytical methods have been formulated for its detection, quantification, and routine quality control activities. RGE can be studied with the help of UV-visible spectrophotometry, High-Performance Liquid Chromatography (HPLC) & Hyphenated techniques like Liquid Chromatography-Mass Spectroscopy (LC-MS/MS). This review briefs about overall chemical, pharmacological, pharmacokinetic & pharmacodynamics properties of RGE. It mainly discusses about various analytical techniques used for determining & estimating RGE.
Collapse
Affiliation(s)
- Vallabh D Suryavanshi
- Quality Assurance, SVKM'S NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra. India
| | - Sanjay Sharma
- Quality Assurance, SVKM'S NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra. India
| | - Jagdish K Sahu
- Pharmaceutical Chemistry, SVKM'S NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra. India
| |
Collapse
|
16
|
Gandhi A, Masand V, Zaki MEA, Al-Hussain SA, Ghorbal AB, Chapolikar A. QSAR analysis of sodium glucose co-transporter 2 (SGLT2) inhibitors for anti-hyperglycaemic lead development. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:731-744. [PMID: 34494464 DOI: 10.1080/1062936x.2021.1971295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
QSAR (Quantitative Structure Activity Relationship) modelling was performed on a dataset of 90 sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The quantitative and explicative evaluations revealed some of the subtle and distinguished structural features that are responsible for the inhibitory potency of these compounds against SGLT2, such as less possible number of ring carbons at 8 Å from the lipophilic atoms in the molecule (fringClipo8A) and more possible value for the sum of the partial charges of the lipophilic atoms present within seven bonds from the donor atoms (lipo_don_7Bc). Multivariate GA-MLR (genetic algorithm-multi linear regression) and thorough validation methodology out-turned a statistically robust QSAR model with a very high predictability shown from various statistical parameters. A QSAR model with r2 = 0.83, F = 51.54, Q2LOO = 0.79, Q2LMO = 0.79, CCCcv = 0.88, Q2Fn = 0.76-0.81, r2ext = 0.77, CCCext = 0.85, and with RMSEtr < RMSEcv was proposed. This QSAR model will assist synthetic chemists in the development of the SGLT2 inhibitors as the antidiabetic leads.
Collapse
Affiliation(s)
- A Gandhi
- Department of Chemistry, Government College of Arts and Science, Aurangabad, Maharashtra, India
| | - V Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, India
| | - M E A Zaki
- Department of Chemistry, College of Science, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - S A Al-Hussain
- Department of Chemistry, College of Science, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - A Ben Ghorbal
- Department of Mathematics and Statistics, College of Sciences, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - A Chapolikar
- Department of Chemistry, Government College of Arts and Science, Aurangabad, Maharashtra, India
| |
Collapse
|
17
|
Estrada AK, Delgado-Maldonado T, Lara-Ramírez EE, Martínez-Vázquez AV, Ortiz-Lopez E, Paz-González AD, Bandyopadhyay D, Rivera G. Recent Advances in the Development of Type 2 Sodium-Glucose Cotransporter Inhibitors for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 22:586-599. [PMID: 34353256 DOI: 10.2174/1389557521666210805112416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is one of the most serious and prevalent diseases worldwide. In the last decade, type 2 sodium-glucose cotransporter inhibitors (iSGLT2) were approved as alternative drugs for the pharmacological treatment of T2DM. The anti-hyperglycemic mechanism of action of these drugs involves glycosuria. In addition, SGLT2 inhibitors cause beneficial effects such as weight loss, a decrease in blood pressure, and others. OBJECTIVE This review aimed to describe the origin of SGLT2 inhibitors and analyze their recent development in preclinical and clinical trials. RESULTS In 2013, the FDA approved SGLT2 inhibitors as a new alternative for the treatment of T2DM. These drugs have shown good tolerance with few adverse effects in clinical trials. Additionally, new potential anti-T2DM agents based on iSGLT2 (O-, C-, and N-glucosides) have exhibited a favorable profile in preclinical evaluations, making them candidates for advanced clinical trials. CONCLUSION The clinical results of SGLT2 inhibitors show the importance of this drug class as new anti-T2DM agents with a potential dual effect. Additionally, the preclinical results of SGLT2 inhibitors favor the design and development of more selective new agents. However, several adverse effects could be a potential risk for patients.
Collapse
Affiliation(s)
- Ana Karen Estrada
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Edgar E Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social (IMSS), 98000 Zacatecas. Mexico
| | - Ana Verónica Martínez-Vázquez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Eyra Ortiz-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | - Alma D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| | | | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
18
|
Atal S, Fatima Z, Singh S, Balakrishnan S, Joshi R. Remogliflozin: the new low cost SGLT-2 inhibitor for type 2 diabetes mellitus. Diabetol Int 2021; 12:247-253. [PMID: 34150432 PMCID: PMC8172658 DOI: 10.1007/s13340-020-00472-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023]
Abstract
SGLT-2 inhibitors have recently emerged as an important class of oral drugs for treatment of type 2 diabetes mellitus, especially in patients with cardiovascular or renal impairment, recommended in all recent treatment guidelines. They have additional advantages of weight and blood pressure reduction but also pose problems like genitourinary infections. These drugs generally have a high cost making affordability a major consideration in their prescription in developing countries like India. A new molecule remogliflozin has been approved in India in 2019 after a phase 3 trial proved its efficacy and safety in comparison to dapagliflozin. This drug has been priced substantially lower than other SGLT-2 inhibitors, and despite the disadvantage of twice daily administration, it potentially reduces treatment cost to less than half compared to other molecules of this class. With a good tolerability profile on the basis of available safety data till date, remogliflozin could be a useful alternative for providing SGLT-2 inhibitor therapy in a country like India where out of pocket expenses for drug acquisition matter significantly for the general population. However, long term safety and efficacy data especially on cardiovascular and renal outcomes are currently lacking for the drug.
Collapse
Affiliation(s)
- Shubham Atal
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Zeenat Fatima
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Sakshi Singh
- Department of Pharmacology, Geetanjali Medical College and Hospital, Udaipur, India
| | - Sadasivam Balakrishnan
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Rajnish Joshi
- Department of General Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
19
|
Kaur P, Behera BS, Singh S, Munshi A. "The pharmacological profile of SGLT2 inhibitors: Focus on mechanistic aspects and pharmacogenomics". Eur J Pharmacol 2021; 904:174169. [PMID: 33984301 DOI: 10.1016/j.ejphar.2021.174169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Diabetes, characterized by high glucose levels, has been listed to be one of the world's major causes of death. Around 1.6 million deaths are attributed to this disease each year. Persistent hyperglycemic conditions in diabetic patients affect various organs of the body leading to diabetic complications and worsen the disease condition. Current treatment strategies for diabetes include biguanides, sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, insulin and its analogs, DPP-4(dipeptidyl peptidase-4) and GLP-1 (glucagon-like peptide) analogs. However, many side effects contributing to the devastation of the disease are associated with them. Sodium glucose co-transporter-2 (SGLT2) inhibition has been reported to be new insulin-independent approach to diabetes therapy. It blocks glucose uptake in the kidneys by inhibiting SGLT2 transporters, thereby promoting glycosuria. Dapagliflozin, empagliflozin and canagliflozin are the most widely used SGLT2 inhibitors. They are effective in controlling blood glucose and HbA1c levels with few side effects including hypoglycemia or weight gain which makes them preferable to other anti-diabetic drugs. However, treatment is found to be associated with inter-individual drug response to SGLT2 inhibitors and adverse drug reactions which are also affected by genetic variations. There have been very few pharmacogenetics trials of these drugs. This review discusses the various SGLT2 inhibitors, their pharmacokinetics, pharmacodynamics and genetic variation influencing the inter-individual drug response.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Bidwan Sekhar Behera
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
20
|
de Matos AM, Calado P, Washburn W, Rauter AP. Recent Advances on
SGLT
2 Inhibitors: Synthetic Approaches, Therapeutic Benefits, and Adverse Events. SUCCESSFUL DRUG DISCOVERY 2021:111-157. [DOI: 10.1002/9783527826872.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
21
|
Shimizu K, Fujikura H, Fushimi N, Nishimura T, Tatani K, Katsuno K, Fujimori Y, Watanabe S, Hiratochi M, Nakabayashi T, Kamada N, Arakawa K, Hikawa H, Azumaya I, Isaji M. Discovery of remogliflozin etabonate: A potent and highly selective SGLT2 inhibitor. Bioorg Med Chem 2021; 34:116033. [DOI: 10.1016/j.bmc.2021.116033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
|
22
|
Attimarad M, Nair AB, Sreeharsha N, Al-Dhubiab BE, Venugopala KN, Shinu P. Development and Validation of Green UV Derivative Spectrophotometric Methods for Simultaneous Determination Metformin and Remogliflozin from Formulation: Evaluation of Greenness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E448. [PMID: 33429964 PMCID: PMC7827813 DOI: 10.3390/ijerph18020448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
The recent trend in green analytical chemistry is the development of green analytical methods using environmentally friendly solvents. Therefore, three ecofriendly manipulated UV spectroscopic techniques have been validated for the concurrent quantification of newly approved remogliflozin etabonate (REM) and metformin HCl (MET) tablets using water as a solvent. The first method was established using first derivative absorption spectroscopic method by determining the peak amplitude at 233.0 nm for REM and 252.2 nm for MET, a zero crossing of one the component. The second and third methods were based on the peak amplitude difference and first-order derivative absorption of the ratio spectra developed by the manipulation of scanned UV spectra. REM and MET showed good linearity in the series of 1-20 µg ml-1 and 2.5-35 µg ml-1, respectively, by all three methods with an excellent correlation coefficient (r2 ≥ 0.998). Further, the proposed UV spectroscopic techniques were validated as per International Council for Harmonization guidelines. The methods showed good sensitivity, accuracy, and precision. Anticipated procedures were effectively utilized for the concurrent quantification of REM and MET in laboratory prepared mixtures and tablets. The high percent recovery with low standard deviation found for both analytes by all three methods confirms the accuracy and precision of the procedures. Finally, the greenness of the proposed spectroscopic methods, evaluated by semi-quantitative and quantitative methods, showed the eco-friendly nature of the methods. Furthermore, the proposed approaches were simple, accurate, sensitive, economic, and environmentally friendly and hence can be utilized for regular quality control of REM and MET formulation.
Collapse
Affiliation(s)
- Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore 560035, India
| | - Bandar E. Al-Dhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia; (A.B.N.); (N.S.); (B.E.A.-D.); (K.N.V.)
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Saudi Arabia;
| |
Collapse
|
23
|
Zhang W, Wei S, Wang W, Qu J, Wang B. Catalytic asymmetric construction of C-4 alkenyl substituted pyrazolone derivatives bearing multiple stereoelements. Chem Commun (Camb) 2021; 57:6550-6553. [DOI: 10.1039/d1cc01123e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organocatalytic asymmetric process was reported for the sterically precise construction of C-4 alkenyl substituted pyrazolone derivatives bearing multiple stereoelements.
Collapse
Affiliation(s)
- Wande Zhang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Wenyao Wang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- Department of Pharmaceutical Sciences
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
24
|
Development and Validation of Rapid RP-HPLC and Green Second-Derivative UV Spectroscopic Methods for Simultaneous Quantification of Metformin and Remogliflozin in Formulation Using Experimental Design. SEPARATIONS 2020. [DOI: 10.3390/separations7040059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recently, a new formulation containing metformin HCl (MFH) and remogliflozin etabonate (RGE) has been approved for the management of diabetes mellitus. However, only one analytical method has been reported for the simultaneous determination of both the analytes. Therefore, the current study was designed to develop simple UV derivative spectroscopic and rapid RP-HPLC methods for simultaneous determination of MFH and RGE. The chromatographic separation of MFH and RGE was performed using a monolithic C18 column with an optimized chromatographic conditions carried out by full factorial Box–Behnken design model. The spectroscopic technique was based on the determination of peak amplitude of second-order derivative UV spectra at zero crossings. Further, both the methods were validated and compared statistically using Student’s-t-test and F-test, and employed for the concurrent estimation of MFH and RGE in laboratory mixed solutions and formulations. Perturbation plots and response surface models showed the effect of chromatographic parameters and the final chromatographic condition was selected from 47 solutions suggested by the desirability function. Further, UV spectroscopic and HPLC procedures showed good linearity in the range of 1–24 µg/mL and 2–150 µg/mL for RGE and 2–30 µg/mL and 5–200 µg/mL for MFH, respectively. The average percent assay was found to be 99.51% and 99.80% for MFH and 99.60% and 100.07% for RGE by spectroscopic and HPLC methods, respectively. The proposed methods were simple, accurate, precise, and rapid. Therefore, they can be used for regular quality control of MFH and RGE formulations and dissolution studies as well.
Collapse
|
25
|
Kang Y, Zhan F, He M, Liu Z, Song X. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol 2020; 133-134:106779. [PMID: 32814163 DOI: 10.1016/j.vph.2020.106779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a very common macrovascular complication in type 2 diabetes mellitus, and cardiovascular disease is the primary cause of death in diabetes patients. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are a newly identified class of drugs targeting the renal proximal tubules to increase glucose excretion. Large-scale clinical trials have confirmed the cardiovascular protective effects of SGLT inhibitors in patients with diabetes diagnosed with or at a higher risk of atherosclerotic cardiovascular disease. In addition to its direct effect on glycemic control, the function of SGLT-2i in the alleviation of volume load, renal protection, and reduction of inflammation plays an essential role in its therapeutic effect on atherosclerosis. SGLT-2i are known to decrease the levels of inflammatory factors in circulation and in arteries in situ, inhibit foam cell formation and macrophage infiltration, and sustain plaque stability, ultimately blocking the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Yingxiu Kang
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Fenfen Zhan
- Department of Endocrinology and Metabolism, Sanmen Hospital of Traditional Chinese Medicine, Sanmen, 287 Xinxing Rd, Zhejiang 317100, PR China
| | - Minzhi He
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| | - Xiaoxiao Song
- Department of Endocrinology and Metabolism, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 88 Jiefang Rd, Zhejiang 310009, PR China.
| |
Collapse
|
26
|
Mohan V, Mithal A, Joshi SR, Aravind SR, Chowdhury S. Remogliflozin Etabonate in the Treatment of Type 2 Diabetes: Design, Development, and Place in Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2487-2501. [PMID: 32612352 PMCID: PMC7322139 DOI: 10.2147/dddt.s221093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/15/2020] [Indexed: 01/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is an emerging epidemic in Asian countries, especially in India. With the advent of the SGLT2 inhibitor class of drugs demonstrating benefits beyond glycemic control, viz. weight loss, blood pressure reduction, and cardiovascular and renal protection, the management of T2DM has taken a quantum leap. Remogliflozin etabonate (RE) is the latest addition to the SGLT2 inhibitor class of drugs that have been recently approved in India for the management of T2DM. RE is a potent and selective inhibitor of SGLT2 with the unique distinction of being administered as a prodrug, existence of active metabolites, and short half-life necessitating twice-daily dosing. The Phase III study of RE demonstrated it to be an efficacious and safe agent and non-inferior to the currently available SGLT2 inhibitors. This paper reviews not only the pharmacokinetics, pharmacodynamics, clinical efficacy, and safety profile of RE but also its molecular and clinical development program. This review has taken into consideration all available published as well as unpublished literature on RE and discusses the individual studies performed during its development for characterization of pharmacological profile.
Collapse
Affiliation(s)
- Viswanathan Mohan
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialties Centre, Chennai, Tamil Nadu, India
| | - Ambrish Mithal
- Endocrinology and Diabetology, Max Healthcare Hospital, Gurgaon, India
| | - Shashank R Joshi
- Joshi Clinic, Lilavati Hospital, Apollo Sugar Clinic and Bhatia Hospital, Mumbai, India
| | | | | |
Collapse
|
27
|
Wu P, Liu Z, Jiang X, Fang H. An Overview of Prospective Drugs for Type 1 and Type 2 Diabetes. Curr Drug Targets 2020; 21:445-457. [PMID: 31670620 DOI: 10.2174/1389450120666191031104653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Aims:
The aim of this study is to provide an overview of several emerging anti-diabetic
molecules.
Background:
Diabetes is a complex metabolic disorder involving the dysregulation of glucose homeostasis
at various levels. Insulin, which is produced by β-pancreatic cells, is a chief regulator of glucose
metabolism, regulating its consumption within cells, which leads to energy generation or storage as glycogen.
Abnormally low insulin secretion from β-cells, insulin insensitivity, and insulin tolerance lead to
higher plasma glucose levels, resulting in metabolic complications. The last century has witnessed extraordinary
efforts by the scientific community to develop anti-diabetic drugs, and these efforts have resulted
in the discovery of exogenous insulin and various classes of oral anti-diabetic drugs.
Objective:
Despite these exhaustive anti-diabetic pharmaceutical and therapeutic efforts, long-term
glycemic control, hypoglycemic crisis, safety issues, large-scale economic burden and side effects remain
the core problems.
Method:
The last decade has witnessed the development of various new classes of anti-diabetic drugs
with different pharmacokinetic and pharmacodynamic profiles. Details of their FDA approvals and
advantages/disadvantages are summarized in this review.
Results:
The salient features of insulin degludec, sodium-glucose co-transporter 2 inhibitors, glucokinase
activators, fibroblast growth factor 21 receptor agonists, and GLP-1 agonists are discussed.
Conclusion :
In the future, these new anti-diabetic drugs may have broad clinical applicability. Additional
multicenter clinical studies on these new drugs should be conducted.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pharmacology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| | - Zhenyu Liu
- Department of Endocrinology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| | - Xiaohong Jiang
- Department of Endocrinology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| | - Hao Fang
- Department of Pharmacology, 3rd Affiliated Hospital, Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
28
|
Kalra S, Shetty KK, Nagarajan VB, Ved JK. Basic and Clinical Pharmaco-Therapeutics of SGLT2 Inhibitors: A Contemporary Update. Diabetes Ther 2020; 11:813-833. [PMID: 32130664 PMCID: PMC7136386 DOI: 10.1007/s13300-020-00789-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical relevance of sodium/glucose cotransporter 2 (SGLT2) inhibitors has been rapidly evolving across several therapy areas, apart from type 2 diabetes mellitus. While some of these developments are based on recognized scientific explanations, unexpected study findings have also shaped much of our present understanding. As the role of these agents evolves in various facets of cardiology, nephrology, hepatology and endocrinology, their optimum clinical value propositions should be realized in line with the principles of personalized medicine. An updated pharmaco-ergonomic qualification tool, based on the present evidence with these agents, would be a step in this direction. This review describes the present evidence on diverse pharmacological and therapeutic aspects for various SGLT2 inhibitors, as an attempt to provide useful guidance for optimum application in clinical practice.
Collapse
|
29
|
Mukkamala R, Kumar R, Banerjee SK, Aidhen IS. Synthesis of Benzyl C
-Analogues of Dapagliflozin as Potential SGLT2 Inhibitors. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ramesh Mukkamala
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Roshan Kumar
- Translational Health Science and Technology Institute (THSTI); 121001 Faridabad Haryana India
| | - Sanjay K. Banerjee
- Translational Health Science and Technology Institute (THSTI); 121001 Faridabad Haryana India
| | - Indrapal Singh Aidhen
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| |
Collapse
|
30
|
Gupta A, Mittal S, Dhingra R, Dhingra N. Turning Foes to Friends: Knocking Down Diabetes Associated SGLT2 Transporters and Sustaining Life. Curr Diabetes Rev 2020; 16:716-732. [PMID: 31951170 DOI: 10.2174/1573399816666200117155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The discovery of Sodium-Glucose co-transporter-2 (SGLT2) inhibitors had rewritten the treatment of diabetes mellitus with an impressive fall in the incidence of death and associated complications. INTRODUCTION The SGLT2 inhibitors by inhibiting the SGLT2 in the proximal nephron, helps in reducing the reabsorption of approximately 90% of the filtered glucose and increased urinary glucose excretion (UGE). METHODS The literature related to SGLT2 inhibitors has been thoroughly explored from various available public domains and reviewed extensively for this article. Detailed and updated information related to SGLT2 inhibitors with a major focus on the recently approved Ertuglifolzin is structured in this review. RESULT The present review is an effort to understand the management of diabetes mellitus over the past few decades with a special focus on the role of SGLT2 receptor in the causes of therapeutic and preventive strategies for diabetes mellitus. Pragmatic placement of the currently available Canagliflozin, Dapagliflozin, and Empagliflozin as oral antidiabetic agents has been done. Well accommodated stereochemistry and a high docking score of Ertugliflozin in ligand-receptor simulation studies attribute to its high potency. CONCLUSION This review highlights the unique mechanism of SGLT2 Inhibitors coupled with pleiotropic benefits on weight and blood pressure, which make it an attractive choice of therapy to diabetic patients, not controlled by other medications.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Sheenu Mittal
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Richa Dhingra
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
31
|
Carceller-Ferrer L, Vila C, Blay G, Fernández I, Muñoz MC, Pedro JR. Organocatalytic enantioselective aminoalkylation of pyrazol-3-ones with aldimines generated in situ from α-amido sulfones. Org Biomol Chem 2019; 17:9859-9863. [PMID: 31720678 DOI: 10.1039/c9ob02252j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an efficient asymmetric aminoalkylation of pyrazolones with α-amido sulfones catalyzed by a quinine-derived squaramide in dichloromethane/aqueous media has been established. A variety of chiral amines were obtained with high yields (up to 98%) and excellent enantioselectivities (up to 99% ee). The corresponding products are transformed into optically active acetylated pyrazoles after treatment with Ac2O/Et3N, because of the instability of some adducts. The reaction tolerates a wide range of α-amido sulfones and different pyrazolones.
Collapse
Affiliation(s)
- Laura Carceller-Ferrer
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Kalra J, Mangali SB, Dasari D, Bhat A, Goyal S, Dhar I, Sriram D, Dhar A. SGLT1 inhibition boon or bane for diabetes-associated cardiomyopathy. Fundam Clin Pharmacol 2019; 34:173-188. [PMID: 31698522 DOI: 10.1111/fcp.12516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
Abstract
Chronic hyperglycaemia is a peculiar feature of diabetes mellitus (DM). Sequential metabolic abnormalities accompanying glucotoxicity are some of its implications. Glucotoxicity most likely corresponds to the vascular intricacy and metabolic alterations, such as increased oxidation of free fatty acids and reduced glucose oxidation. More than half of those with diabetes also develop cardiac abnormalities due to unknown causes, posing a major threat to the currently available marketed preparations which are being used for treating these cardiac complications. Even though impairment in cardiac functioning is the principal cause of death in individuals with type 2 diabetes (T2D), reducing plasma glucose levels has little effect on cardiovascular disease (CVD) risk. In vitro and in vivo studies have demonstrated that inhibitors of sodium glucose transporter (SGLT) represent a putative therapeutic intervention for these pathological conditions. Several clinical trials have reported the efficacy of SGLT inhibitors as a novel and potent antidiabetic agent which along with its antihyperglycaemic activity possesses the potential of effectively treating its associated cardiac abnormalities. Thus, hereby, the present review highlights the role of SGLT inhibitors as a successful drug candidate for correcting the shifts in deregulation of cardiac energy substrate metabolism together with its role in treating diabetes-related cardiac perturbations.
Collapse
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Suresh Babu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu, 181143, India
| | - Srashti Goyal
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, 5009, Norway
| | - Dharamrajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India
| |
Collapse
|
33
|
Kattimani PP, Somagond SM, Bayannavar PK, Kamble RR, Bijjaragi SC, Hunnur RK, Joshi SD. Novel 5‐(1‐aryl‐1
H
‐pyrazol‐3‐yl)‐1
H
‐tetrazoles as glycogen phosphorylase inhibitors: An in vivo antihyperglycemic activity study. Drug Dev Res 2019; 81:70-84. [DOI: 10.1002/ddr.21606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Pramod P. Kattimani
- Department of Studies in ChemistryKarnatak University Dharwad Karnataka India
| | - Shilpa M. Somagond
- Department of Studies in ChemistryKarnatak University Dharwad Karnataka India
| | | | - Ravindra R. Kamble
- Department of Studies in ChemistryKarnatak University Dharwad Karnataka India
| | | | | | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical ChemistryS.E.T.'s College of Pharmacy Dharwad Karnataka India
| |
Collapse
|
34
|
An Open-Label, Single-Period, Two-Stage, Single Oral Dose Pharmacokinetic Study of Remogliflozin Etabonate Tablet 100 and 250 mg in Healthy Asian Indian Male Subjects Under Fasting and Fed Conditions. Clin Pharmacokinet 2019; 59:349-357. [PMID: 31583610 DOI: 10.1007/s40262-019-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Remogliflozin etabonate is an orally available prodrug of remogliflozin, an inhibitor of renal sodium glucose co-transporter-2 (SGLT2) with antihyperglycemic activity. The present study was conducted to characterize the pharmacokinetic and safety profile of remogliflozin etabonate under fasting and fed conditions at single oral doses of 100 and 250 mg in healthy Asian Indian adults. METHODS Sixty-five healthy, adult Asian Indian male subjects were enrolled in an open-label, two-stage, single-period pharmacokinetic study. Remogliflozin was given under fasting and/or fed conditions as a single oral dose of 100 or 250 mg. The plasma concentrations of remogliflozin etabonate, remogliflozin, and the metabolite GSK279782 were quantified by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Pharmacokinetic parameters were determined from the plasma concentration-time profile by non-compartmental analysis. Safety was assessed through monitoring of adverse events. Descriptive statistics were calculated and reported for all parameters. RESULTS The plasma concentration profiles showed rapid absorption of the prodrug remogliflozin etabonate and rapid conversion to the active moiety, remogliflozin, which is then further metabolized to another active metabolite, GSK279782. The geometric mean maximum concentration (Cmax) and area under the plasma concentration-time curve (AUC) were comparable for all three analytes between the fasted and fed state. The fed/fasted ratio for Cmax ranged from 0.77 to 1.44 at the 100 mg dose, and from 0.80 to 1.12 at the 250 mg dose. The fed/fasted ratio for AUC was 1.22 and 1.35 at 100 and 250 mg, respectively. An early time to Cmax (tmax) was observed for all three analytes while being administered in the fasted state. Both the Cmax and AUClast of all the three analytes increased in a dose-proportional manner under the fasted and fed states. The terminal half-life for remogliflozin ranged from 1.53 to 2.07 h. All three analytes had comparable terminal half-lives irrespective of dose levels or dietary conditions. CONCLUSIONS Following single oral administration at 100 and 250 mg, remogliflozin etabonate showed favorable, linear pharmacokinetics. There were no clinically relevant food effects on the pharmacokinetics at both the 100 and 250 mg dose levels. Remogliflozin etabonate was well-tolerated without any safety concerns or hypoglycemic events. CLINICAL TRIAL REGISTRATION Clinical Trial Registry-India identifier number CTRI/2017/10/010043.
Collapse
|
35
|
Abstract
Metabolic control systems coordinate myriad processes across the cellular, tissue and organismal levels to optimize the allocation of limited supplies across multiple, often competing, metabolic demands. As such, the regulation of metabolism can be analysed from the perspective of the economic theory of supply and demand. Here, we discuss how such analyses can provide new insights into the logic of metabolic control. In particular, we suggest that, in addition to being subject to well-appreciated homeostatic control, metabolism is subject to supply-driven and demand-driven controls, each operated by a dedicated set of signals throughout various physiological states, including inflammation. Furthermore, we argue that systemic homeostasis is a derived feature that evolved from the control systems that monitor metabolic supply and demand.
Collapse
Affiliation(s)
- Jessica Ye
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Medzhitov
- Howard Hughes Medical Institute and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
36
|
|
37
|
Vila C, Dharmaraj NR, Faubel A, Blay G, Cardona ML, Muñoz MC, Pedro JR. Regio-, Diastereo-, and Enantioselective Organocatalytic Addition of 4-Substituted Pyrazolones to Isatin-Derived Nitroalkenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Carlos Vila
- Departament de Química Orgànica; Facultat de Química; Universitat de València; Dr. Moliner 50 46100 Burjassot València Spain
| | - Nisshanth Raj Dharmaraj
- Departament de Química Orgànica; Facultat de Química; Universitat de València; Dr. Moliner 50 46100 Burjassot València Spain
| | - Antonio Faubel
- Departament de Química Orgànica; Facultat de Química; Universitat de València; Dr. Moliner 50 46100 Burjassot València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica; Facultat de Química; Universitat de València; Dr. Moliner 50 46100 Burjassot València Spain
| | - M. Luz Cardona
- Departament de Química Orgànica; Facultat de Química; Universitat de València; Dr. Moliner 50 46100 Burjassot València Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada; Universitat Politècnica de València; Camino de Vera s/n 46022 València Spain
| | - José R. Pedro
- Departament de Química Orgànica; Facultat de Química; Universitat de València; Dr. Moliner 50 46100 Burjassot València Spain
| |
Collapse
|
38
|
Vila C, Slack S, Blay G, Muñoz MC, Pedro JR. Regio‐ and Stereoselective Synthesis of 3‐Pyrazolylidene‐2‐oxindole Compounds by Nucleophilic Vinylic Substitution of (
E
)‐3‐(Nitromethylene)indolin‐2‐one. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carlos Vila
- Departament de Química Orgànica, Facultat de QuímicaUniversitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Sophie Slack
- Departament de Química Orgànica, Facultat de QuímicaUniversitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de QuímicaUniversitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - M. Carmen Muñoz
- Departament de Física AplicadaUniversitat Politècnica de València Camino de Vera s/n 46022 València Spain
| | - José R. Pedro
- Departament de Química Orgànica, Facultat de QuímicaUniversitat de València Dr. Moliner 50 46100 Burjassot València Spain
| |
Collapse
|
39
|
Sertbas M, Sertbas Y, Okuroglu N, Akyildiz AB, Sancak S, Ozdemir A. Effıcacy and safety of dapagliflozin on diabetic patients receiving high-doses of insulin. Pak J Med Sci 2019; 35:399-403. [PMID: 31086522 PMCID: PMC6500813 DOI: 10.12669/pjms.35.2.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/12/2018] [Accepted: 01/28/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE In this study we aimed to investigate the efficacy and safety of dapagliflozin addition to diabetic patients using high dose insulin. METHODS The current study was carried out in the outpatient diabetic clinics of Fatih Sultan Mehmet Education and Research Hospital. Thirty diabetic patients who were receiving high dose (>0,5U/kg) insulin and oral antidiabetic treatment (other than SGLT 2 inhibitors) were included in this study. Primary end point was the change in HbA1c, insulin doses and serum electrolyte from the addition of dapagliflozin 10 mg to the week 12. RESULTS At the end of three month BMI were obviously decreased from 33.31 ±4.51 to 32.14 ±4.66 (p: 0.001). There was also an evident decrease of insulin requirement from 76 ±23.15 U/kg to 57.60 ±17.61 U/day (p<0.001). As well as the decrease in insulin doses, there was also a significant decline in HbA1c (Δ 1.6 %) and fasting blood glucose levels (Δ68.6 mg/dl) (p<0.001). Among serum electrolyte levels slight but meaningful increase of blood urea nitrogen (BUN) and sodium (Na) levels were seen (p: 0.044 and p: 0.026). There were no significant changes in serum cholesterol levels with electrolytes such as potassium, calcium, phosphorus magnesium and vitamin D (p> 0.05). CONCLUSION In diabetic patients with inadequately controlled glucose regulation despite high-dose insulin therapy, dapagliflozin may be an alternative combination choice to decrease the need of insulin dose and obtain an optimal HbA1c, fasting plasma glucose levels and weight without major side effects.
Collapse
Affiliation(s)
- Meltem Sertbas
- Meltem Sertbas, Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Yasar Sertbas
- Yasar Sertbas Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Nalan Okuroglu
- Nalan Okurglu, Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ali Burkan Akyildiz
- Ali Burkan Akyildiz, Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Seda Sancak
- Seda Sancak, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| | - Ali Ozdemir
- Ali Ozdemir, Department of Internal Medicine, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
40
|
Diastereodivergent Synthesis of Pyrazoline Derivatives through [3 + 2] Cycloaddition of Baylis–Hillman Adducts and Nitrilimines. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Yaribeygi H, Atkin SL, Butler AE, Sahebkar A. Sodium–glucose cotransporter inhibitors and oxidative stress: An update. J Cell Physiol 2018; 234:3231-3237. [DOI: 10.1002/jcp.26760] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Habib Yaribeygi
- Neurosciences Research Center, Baqiyatallah University of Medical Sciences Tehran Iran
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
42
|
The sodium-glucose co-transporter 2 inhibitor velagliflozin reduces hyperinsulinemia and prevents laminitis in insulin-dysregulated ponies. PLoS One 2018; 13:e0203655. [PMID: 30212530 PMCID: PMC6136744 DOI: 10.1371/journal.pone.0203655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022] Open
Abstract
There are no registered veterinary drugs for treating insulin dysregulation and preventing insulin-associated laminitis in horses. Velagliflozin is a sodium-glucose co-transport 2 inhibitor that reduces renal glucose reabsorption, promotes glucosuria, and consequently, decreases blood glucose and insulin concentrations. This study aimed to determine if velagliflozin reduced hyperinsulinemia and prevented laminitis in insulin-dysregulated ponies fed a challenge diet high in non-structural carbohydrates (NSC). An oral glucose test (1 g dextrose/kg BW) was used to screen 75 ponies for insulin dysregulation, of which 49 ponies with the highest insulin concentrations were selected. These animals were assigned randomly to either a treated group (n = 12) that received velagliflozin (0.3 mg/kg BW, p.o., s.i.d.) throughout the study, or a control group (n = 37). All ponies were fed a maintenance diet of alfalfa hay for 3 weeks, before transferring to a challenge diet (12 g NSC/kg BW/d) for up to 18 d. Blood glucose and serum insulin concentrations were measured over 4 h after feeding, on d 2 of the diet. The maximum glucose concentration was 22% lower (P = 0.014) in treated animals, with a geometric mean (95% CI) of 9.4 (8.0–11.0) mM, versus 12.1 (10.7–13.7) mM in the controls. This was reflected by lower (45%) maximum insulin concentrations in the treated group (P = 0.017), of 149 (97–228) μIU/mL, versus 272 (207–356) μIU/mL for controls. The diet induced Obel grade 1 or 2 laminitis in 14 of the 37 controls (38%), whereas no velagliflozin-treated pony developed laminitis (P = 0.011). Velagliflozin was well-tolerated, with no hypoglycemia or any clinical signs of adverse effects. The main limitation of this study was the sample size. Velagliflozin shows promise as a safe and effective compound for treating insulin dysregulation and preventing laminitis by reducing the hyperinsulinemic response to dietary NSC.
Collapse
|
43
|
Sharma V, Kaur A, Sahoo SC, Chimni SS. Enantioselective 1,4-Michael addition reaction of pyrazolin-5-one derivatives with 2-enoylpyridines catalyzed by Cinchona derived squaramides. Org Biomol Chem 2018; 16:6470-6478. [PMID: 30151544 DOI: 10.1039/c8ob01588k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bifunctional nature of the cinchonidine squaramides has been successfully employed to catalyze the enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones with 2-enoylpyridines under mild reaction conditions. Through this methodology, a broad range of optically active heterocyclic derivatives bearing both pyrazole and pyridine motifs have been synthesized in yields up to 88% and enantiomeric excess up to 96%.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| | | | | | | |
Collapse
|
44
|
Nishitani S, Fukuhara A, Shin J, Okuno Y, Otsuki M, Shimomura I. Metabolomic and microarray analyses of adipose tissue of dapagliflozin-treated mice, and effects of 3-hydroxybutyrate on induction of adiponectin in adipocytes. Sci Rep 2018; 8:8805. [PMID: 29891844 PMCID: PMC5995811 DOI: 10.1038/s41598-018-27181-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Sodium/glucose cotransporter 2 (SGLT2) inhibitor improves systemic glucose metabolism. To clarify the effect of dapagliflozin, we performed gene expression microarray and metabolomic analyses of murine adipose tissue. Three groups of mice were used; non-diabetic control KK mice (KK), diabetic KKAy mice (KKAy), and KKAy mice treated with dapagliflozin (KKAy + Dapa). Plasma glucose levels were significantly reduced in KKAy + Dapa compared with KKAy. Food consumption was larger in KKAy + Dapa than KKAy, and there were no significant differences in body and adipose tissue weight among the groups. Metabolomic analysis showed higher levels of many intermediate metabolites of the glycolytic pathway and TCA cycle in KKAy than KK, albeit insignificantly. Dapagliflozin partially improved accumulation of glycolytic intermediate metabolites, but not intermediate metabolites of the TCA cycle, compared with KKAy. Interestingly, dapagliflozin increased plasma and adipose 3-hydroxybutyric acid (3-HBA) levels. Microarray analysis showed that adipocytokines were downregulated in KKAy compared with KK mice, and upregulated by dapagliflozin. In vitro, 3-HBA induced β-hydroxybutyrylation of histone H3 at lysine 9 and upregulation of adiponectin in 3T3-L1 adipocytes independent of their acetylation or methylation. Our results suggest that 3-HBA seems to provide protection through epigenetic modifications of adiponectin gene in adipocytes.
Collapse
Affiliation(s)
- Shigeki Nishitani
- Departments of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsunori Fukuhara
- Departments of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan. .,Departments of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Jihoon Shin
- Departments of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Departments of Diabetes Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yosuke Okuno
- Departments of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michio Otsuki
- Departments of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Departments of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
45
|
da Silva PN, da Conceição RA, do Couto Maia R, de Castro Barbosa ML. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors: a new antidiabetic drug class. MEDCHEMCOMM 2018; 9:1273-1281. [PMID: 30151080 DOI: 10.1039/c8md00183a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus is a chronic, complex and multifactorial disease associated characteristically with hyperglycemia. One of the most recently approved antidiabetic drug classes for clinical use are sodium-glucose cotransporter type 2 (SGLT-2) inhibitors. SGLT-2 is a protein expressed in the kidneys, responsible for glucose reabsorption from the glomerular filtrate to the plasma. It is known, nowadays, that diabetic patients show an increased glucose renal reabsorption capacity, caused by the overexpression of the SGLT-2 transporter, thus contributing to hyperglycemia. From establishing this correlation, the SGLT-2 transporter started to be considered as a therapeutic target of interest, culminating in the approval of the first antidiabetic SGLT-2 inhibitor, dapagliflozin (Forxiga® or Farxiga®, Bristol-Myers Squibb & AstraZeneca), in 2012 in Europe. On the other hand, canagliflozin (Invokana®, Janssen Pharmaceutical) was the first drug in this class to be approved by the FDA, the U.S. Food and Drug Administration, in 2013. This review concerns the discovery and development of the first representatives of this class of antidiabetic drugs, and the description of new optimized analogues that are currently in the clinical and preclinical stages of development.
Collapse
Affiliation(s)
- Paula Nogueira da Silva
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM) , Faculty of Pharmacy , Federal University of Rio de Janeiro , Carlos Chagas Filho Av., 373, Cidade Universitária, ZIP: 21.941-902 , Rio de Janeiro-RJ , Brazil .
| | - Raissa Alves da Conceição
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM) , Faculty of Pharmacy , Federal University of Rio de Janeiro , Carlos Chagas Filho Av., 373, Cidade Universitária, ZIP: 21.941-902 , Rio de Janeiro-RJ , Brazil .
| | - Rodolfo do Couto Maia
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio) , Institute of Biomedical Sciences , Federal University of Rio de Janeiro , Carlos Chagas Filho Av., 373, Cidade Universitária, ZIP: 21.941-902 , Rio de Janeiro-RJ , Brazil
| | - Maria Leticia de Castro Barbosa
- Laboratory of Organic Synthesis and Medicinal Chemistry (LaSOQuiM) , Faculty of Pharmacy , Federal University of Rio de Janeiro , Carlos Chagas Filho Av., 373, Cidade Universitária, ZIP: 21.941-902 , Rio de Janeiro-RJ , Brazil . .,Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio) , Institute of Biomedical Sciences , Federal University of Rio de Janeiro , Carlos Chagas Filho Av., 373, Cidade Universitária, ZIP: 21.941-902 , Rio de Janeiro-RJ , Brazil
| |
Collapse
|
46
|
Urakami T, Yoda M, Yoshida K, Mine Y, Aoki M, Suzuki J. Renal glucosuria in schoolchildren: Clinical characteristics. Pediatr Int 2018; 60:35-40. [PMID: 29110414 DOI: 10.1111/ped.13456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/04/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND We conducted an annual urine glucose screening program at schools, and diagnosed schoolchildren with diabetes at an early stage of the disease. We also identified some cases of renal glucosuria (RG), based on positive urine glucose with normal glucose tolerance. METHODS During 2000-2015, 3 309 631 schoolchildren participated in the screening program. The positive rate for glucosuria in the first test was approximately 0.1%, whereas on repeat urine test it was approximately 0.05%. In total 350 schoolchildren were positive for glucosuria on detailed examination. Oral glucose tolerance test (OGTT) was also used to evaluate glucose intolerance. RESULTS One hundred and two schoolchildren (29.7%) were diagnosed with diabetes, whereas RG was identified in 246 (70.3%) with normal glucose metabolism. In regard to the characteristics of RG, the percentage of boys was 50.3%, and the mean age at diagnosis was 11.2 ± 2.4 years. Twenty-eight children (11.4%) were overweight (body mass index standard deviation score [BMI-SDS] > +2.0 SD), whereas five (2.0%) were underweight (BMI-SDS < -2.0 SD). First-degree family history was suspected in 176 cases (71.5%). All RG subjects had normal glucose tolerance in the absence of insulin resistance and decreased insulin secretion (homeostasis model assessment for β-cell function, 78.8 ± 59.5%) on OGTT. CONCLUSIONS RG is not rare in Japanese schoolchildren with glucosuria. This disorder seems to have a strong genetic background, and to involve less growth retardation and weight loss than expected despite continuous excretion of glucose in urine.
Collapse
Affiliation(s)
- Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Midori Yoda
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Kei Yoshida
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Mine
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Masako Aoki
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| | - Junichi Suzuki
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Kobayashi M, Ainai T. An Efficient and Practical Synthesis of Remogliflozin Etabonate, a Potent Inhibitor of Low-Affinity Na+-Dependent Glucose Co-Transporter (SGLT2). HETEROCYCLES 2018. [DOI: 10.3987/com-18-13881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Sadurní A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R. Fluorine-Directed Glycosylation Enables the Stereocontrolled Synthesis of Selective SGLT2 Inhibitors for Type II Diabetes. Chemistry 2017; 24:2832-2836. [DOI: 10.1002/chem.201705373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Sadurní
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Germany
| | - Marie Ahlqvist
- DMPK, Drug Safety and Metabolism, IMED Biotech Unit; Astrazeneca; Gothenburg Sweden
| | - Johan Wernevik
- Discovery Sciences, IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
| | | | - Cecilia Kankkonen
- Discovery Sciences, IMED Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Cardiovascular and Metabolic Diseases, IMED Biotech Unit; Astrazeneca; Gothenburg Sweden
| | - Ryan Gilmour
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Germany
- Excellence Cluster EXC 1003, Cells in Motion; Westfälische Wilhelms-Universität Münster; Münster Germany
| |
Collapse
|
49
|
Wang Z, Zhu Y, Zhang J, Li J, Wu M, Yan X, Li Y, Chen L. Enantioselective synthesis of chiral 4 H -pyran derivatives through [3+3] tandem reaction over a squaramide catalyst. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Rautio J, Kärkkäinen J, Sloan KB. Prodrugs – Recent approvals and a glimpse of the pipeline. Eur J Pharm Sci 2017; 109:146-161. [DOI: 10.1016/j.ejps.2017.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
|