1
|
Shi HJ, Xue YR, Shao H, Wei C, Liu T, He J, Yang YH, Wang HM, Li N, Ren SQ, Chang L, Wang Z, Zhu LJ. Hippocampal excitation-inhibition balance underlies the 5-HT2C receptor in modulating depressive behaviours. Brain 2024; 147:3764-3779. [PMID: 38701344 DOI: 10.1093/brain/awae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) activity in depression is a topic of debate, and the underlying mechanisms remain largely unclear. Here, we elucidate how hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviours, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons using behavioural analyses, microdialysis coupled with mass spectrometry and electrophysiological recordings. Moreover, 5-HT2CR modulated the neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction by influencing intracellular Ca2+ release, as determined by fibre photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON with the specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP abolished 5-HT2CR inhibition-induced depressive-like behaviours, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviours in the presence of a 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviours and highlight hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioural consequences of 5-HT2CR inhibition.
Collapse
Affiliation(s)
- Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Yi-Ren Xue
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hua Shao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Cheng Wei
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jie He
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu-Hao Yang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hong-Mei Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Na Li
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Si-Qiang Ren
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 210009, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| |
Collapse
|
2
|
Hon OJ, DiBerto JF, Mazzone CM, Sugam J, Bloodgood DW, Hardaway JA, Husain M, Kendra A, McCall NM, Lopez AJ, Kash TL, Lowery-Gionta EG. Serotonin modulates an inhibitory input to the central amygdala from the ventral periaqueductal gray. Neuropsychopharmacology 2022; 47:2194-2204. [PMID: 35999277 PMCID: PMC9630515 DOI: 10.1038/s41386-022-01392-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Fear is an adaptive state that drives defensive behavioral responses to specific and imminent threats. The central nucleus of the amygdala (CeA) is a critical site of adaptations that are required for the acquisition and expression of fear, in part due to alterations in the activity of inputs to the CeA. Here, we characterize a novel GABAergic input to the CeA from the ventral periaqueductal gray (vPAG) using fiber photometry and ex vivo whole-cell slice electrophysiology combined with optogenetics and pharmacology. GABA transmission from this ascending vPAG-CeA input was enhanced by serotonin via activation of serotonin type 2 C (5HT2C) receptors. Results suggest that these receptors are presynaptic. Interestingly, we found that GABA release from the vPAG-CeA input is enhanced following fear learning via activation of 5HT2C receptors and that this pathway is dynamically engaged in response to aversive stimuli. Additionally, we characterized serotonin release in the CeA during fear learning and recall for the first time using fiber photometry coupled to a serotonin biosensor. Together, these findings describe a mechanism by which serotonin modulates GABA release from ascending vPAG GABA inputs to the CeA and characterize a role for this pathway in fear.
Collapse
Affiliation(s)
- Olivia J Hon
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey F DiBerto
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher M Mazzone
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel W Bloodgood
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Andrew Hardaway
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mariya Husain
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Kendra
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nora M McCall
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alberto J Lopez
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Kimmey BA, Wittenberg RE, Croicu A, Shadani N, Ostroumov A, Dani JA. The serotonin 2A receptor agonist TCB-2 attenuates heavy alcohol drinking and alcohol-induced midbrain inhibitory plasticity. Addict Biol 2022; 27:e13147. [PMID: 35229942 PMCID: PMC8896307 DOI: 10.1111/adb.13147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
Disruption of neuronal chloride ion (Cl- ) homeostasis has been linked to several pathological conditions, including substance use disorder, yet targeted pharmacotherapies are lacking. In this study, we explored the potential of serotonin 2A receptor (5-HT2A R) agonism to reduce alcohol consumption in male wild-type C57Bl/6J mice and to ameliorate alcohol-induced inhibitory plasticity in the midbrain. We found that administration of the putative 5-HT2A R agonist TCB-2 attenuated alcohol consumption and preference but did not alter water or saccharin consumption. We hypothesized that the selective behavioural effects of TCB-2 on alcohol drinking were due, at least in part, to effects of the agonist on ventral tegmental area (VTA) neurocircuitry. Alcohol consumption impairs Cl- transport in VTA GABA neurons, which acts as a molecular adaptation leading to increased alcohol self-administration. Using ex vivo electrophysiological recordings, we found that exposure to either intermittent volitional alcohol drinking or an acute alcohol injection diminished homeostatic Cl- transport in VTA GABA neurons. Critically, in vivo TCB-2 administration normalized Cl- transport in the VTA after alcohol exposure. Thus, we show a potent effect of alcohol consumption on VTA inhibitory circuitry, in the form of dysregulated Cl- homeostasis that is reversible with agonism of 5-HT2A Rs. Our results provide insight into the potential therapeutic action of 5-HT2A R agonists for alcohol abuse.
Collapse
Affiliation(s)
| | | | | | | | - Alexey Ostroumov
- Co-corresponding authors: Alexey Ostroumov, Ph.D., Georgetown University, Department of Pharmacology and Physiology, New Research Building, Room W226, 3970 Reservoir Road, N.W., Washington D.C. 20057, USA, Phone: (832) 641-5562, , John A. Dani, Ph.D., University of Pennsylvania, Department of Neuroscience, Clinical Research Building, Room 211, 415 Curie Boulevard, Philadelphia, P.A. 19104, USA, Phone: (215) 898-8498,
| | - John A. Dani
- Co-corresponding authors: Alexey Ostroumov, Ph.D., Georgetown University, Department of Pharmacology and Physiology, New Research Building, Room W226, 3970 Reservoir Road, N.W., Washington D.C. 20057, USA, Phone: (832) 641-5562, , John A. Dani, Ph.D., University of Pennsylvania, Department of Neuroscience, Clinical Research Building, Room 211, 415 Curie Boulevard, Philadelphia, P.A. 19104, USA, Phone: (215) 898-8498,
| |
Collapse
|
4
|
Lopes LT, Canto-de-Souza L, Baptista-de-Souza D, de Souza RR, Nunes-de-Souza RL, Canto-de-Souza A. The interplay between 5-HT 2C and 5-HT 3A receptors in the dorsal periaqueductal gray mediates anxiety-like behavior in mice. Behav Brain Res 2022; 417:113588. [PMID: 34547341 DOI: 10.1016/j.bbr.2021.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The monoamine neurotransmitter serotonin (5-HT) modulates anxiety by its activity on 5-HT2C receptors (5-HT2CR) expressed in the dorsal periaqueductal gray (dPAG). Here, we investigated the presence of 5-HT3A receptors (5-HT3AR) in the dPAG, and the interplay between 5-HT2CR and 5-HT3AR in the dPAG in mediating anxiety-like behavior in mice. We found that 5-HT3AR is expressed in the dPAG and the blockade of these receptors using intra-dPAG infusion of ondansetron (5-HT3AR antagonist; 3.0 nmol) induced an anxiogenic-like effect. The activation of 5-HT3ABR by the infusion of mCPBG [1-(m-Chlorophenyl)-biguanide; 5-HT3R agonist] did not alter anxiety-like behaviors. In addition, blockade of 5-HT3AR (1.0 nmol) prevented the anxiolytic-like effect induced by the infusion of the 5-HT2CR agonist mCPP (1-(3-chlorophenyl) piperazine; 0.03 nmol). None of the treatment effects on anxiety-like behaviors altered the locomotor activity levels. The present results suggest that the anxiolytic-like effect exerted by serotonin activity on 5-HT2CR in the dPAG is modulated by 5-HT3AR expressed in same region.
Collapse
Affiliation(s)
- Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada.
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Daniela Baptista-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Rimenez Rodrigues de Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Ricardo L Nunes-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|
6
|
Campos-Jurado Y, Martí-Prats L, Morón JA, Polache A, Granero L, Hipólito L. Dose-dependent induction of CPP or CPA by intra-pVTA ethanol: Role of mu opioid receptors and effects on NMDA receptors. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109875. [PMID: 31978422 PMCID: PMC7096259 DOI: 10.1016/j.pnpbp.2020.109875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
The neurobiological mechanisms underlying alcohol motivational properties are still not fully understood, however, the mu-opioid receptors (MORs) have been evidenced as central elements in the manifestation of the alcohol reinforcing properties. Drug-associated environmental stimuli can trigger alcohol relapse and promote alcohol consumption whereby N-methyl-d-aspartate (NMDA) receptors play a pivotal role. Here we sought to demonstrate, for the first time, that ethanol induces conditioned place preference or aversion (CPP or CPA) when administered locally into the ventral tegmental area (VTA) and the associated role of MORs. We further analyzed the changes in the expression and mRNA levels of GluN1 and GluN2A subunits in designated brain areas. The expression of CPP or CPA was characterized following intra-VTA ethanol administration and we showed that either reinforcing (CPP) or aversive (CPA) properties are dependent on the dose administered (ranging here from 35 to 300 nmol). Furthermore, the critical contribution of local MORs in the acquisition of CPP was revealed by a selective antagonist, namely β-Funaltrexamine. Finally, modifications of the expression of NMDA receptor subunits in the Nucleus Accumbens (NAc) and Hippocampus after ethanol-induced CPP were analyzed at the proteomic and transcriptomic levels by western blot and In Situ Hybridation RNAscope techniques, respectively. Results showed that the mRNA levels of GluN2A but not GluN1 in NAc are higher after ethanol CPP. These novel results pave the way for further characterisation of the mechanisms by which ethanol motivational properties are associated with learned environmental cues.
Collapse
Affiliation(s)
- Yolanda Campos-Jurado
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Lucía Martí-Prats
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ana Polache
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Luis Granero
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain
| | - Lucía Hipólito
- Department of Pharmacy and Pharmaceutical Tech. and Parasit., University of València, Spain.
| |
Collapse
|
7
|
Wold EA, Wild CT, Cunningham KA, Zhou J. Targeting the 5-HT2C Receptor in Biological Context and the Current State of 5-HT2C Receptor Ligand Development. Curr Top Med Chem 2019; 19:1381-1398. [PMID: 31288724 DOI: 10.2174/1568026619666190709101449] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Serotonin (5-HT) 5-HT2C receptor (5-HT2CR) is recognized as a critical mediator of diseaserelated pathways and behaviors based upon actions in the central nervous system (CNS). Since 5-HT2CR is a class A G protein-coupled receptor (GPCR), drug discovery efforts have traditionally pursued the activation of the receptor through synthetic ligands with agonists proposed for the treatment of obesity, substance use disorders and impulse control disorders while antagonists may add value for the treatment of anxiety, depression and schizophrenia. The most significant agonist discovery to date is the FDAapproved anti-obesity medication lorcaserin. In recent years, efforts towards developing other mechanisms to enhance receptor function have resulted in the discovery of Positive Allosteric Modulators (PAMs) for the 5-HT2CR, with several molecule series now reported. The biological significance and context for signaling and function of the 5-HT2CR, and the current status of 5-HT2CR agonists and PAMs are discussed in this review.
Collapse
Affiliation(s)
- Eric A Wold
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Christopher T Wild
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A Cunningham
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
8
|
Abstract
Ethanol produces intoxication through actions on numerous molecular and cellular targets. Adaptations involving these and other targets contribute to chronic drug actions that underlie continued and problematic drinking. Among the mechanisms involved in these ethanol actions are alterations in presynaptic mechanisms of synaptic transmission, including presynaptic protein function and excitation-secretion coupling. At synapses in the central nervous system (CNS), excitation-secretion coupling involves ion channel activation followed by vesicle fusion and neurotransmitter release. These mechanisms are altered by presynaptic neurotransmitter receptors and prominently by G protein-coupled receptors (GPCRs). Studies over the last 20-25 years have revealed that acute ethanol exposure alters neurotransmitter secretion, with especially robust effects on synapses that use the neurotransmitter gamma-aminobutyric acid (GABA). Intracellular signaling pathways involving second messengers such as cyclic AMP and calcium are implicated in these acute ethanol actions. Ethanol-induced release of neuropeptides and small molecule neurotransmitters that act on presynaptic GPCRs also contribute to presynaptic potentiation at synapses in the amygdala and hippocampus and inhibition of GABA release in the striatum. Prolonged exposure to ethanol alters neurotransmitter release at many CNS GABAergic and glutamatergic synapses, and changes in GPCR function are implicated in many of these neuroadaptations. These presynaptic neuroadaptations appear to involve compensation for acute drug effects at some synapses, but "allostatic" effects that result in long-term resetting of synaptic efficacy occur at others. Current investigations are determining how presynaptic neuroadaptations contribute to behavioral changes at different stages of alcohol drinking, with increasing focus on circuit adaptations underlying these behaviors. This chapter will discuss the acute and chronic presynaptic effects of ethanol in the CNS, as well as some of the consequences of these effects in amygdala and corticostriatal circuits that are related to excessive seeking/drinking and ethanol abuse.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| |
Collapse
|
9
|
Panula P. Histamine, histamine H 3 receptor, and alcohol use disorder. Br J Pharmacol 2019; 177:634-641. [PMID: 30801695 DOI: 10.1111/bph.14634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder is associated with several mental, physical, and social problems. Its treatment is difficult and often requires a combination of pharmacological and behavioural therapy. The brain histaminergic system, one of the wake-active systems that controls whole-brain activity, operates through three neuronal GPCRs. The histamine H3 receptor (Hrh3), which is expressed in many brain areas involved in alcohol drinking and alcohol reward, can be targeted with a number of drugs developed initially for cognitive disorders and/or disorders related to sleep, wakefulness, and alertness. In all rodent alcohol drinking models tested so far, H3 receptor antagonists have reduced alcohol drinking and alcohol-induced place preference and cue-induced alcohol reinstatement. Several H3 receptor antagonists tested and found to be safe for humans could be subjected to clinical tests to treat alcohol use disorder. Preference should be given to short-acting drugs to avoid the sleep problems associated with the wake-maintaining effects of the drugs. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
11
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Varodayan FP, Logrip ML, Roberto M. P/Q-type voltage-gated calcium channels mediate the ethanol and CRF sensitivity of central amygdala GABAergic synapses. Neuropharmacology 2017; 125:197-206. [PMID: 28734867 DOI: 10.1016/j.neuropharm.2017.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
The central amygdala (CeA) GABAergic system is hypothesized to drive the development of alcohol dependence, due to its pivotal roles in the reinforcing actions of alcohol and the expression of negative emotion, anxiety and stress. Recent work has also identified an important role for the CeA corticotropin-releasing factor (CRF) system in the interaction between anxiety/stress and alcohol dependence. We have previously shown that acute alcohol and CRF each increase action potential-independent GABA release in the CeA via their actions at presynaptic CRF type 1 receptors (CRF1s); however, the shared mechanism employed by these two compounds requires further investigation. Here we report that acute alcohol interacts with the CRF/CRF1 system, such that CRF and alcohol act via presynaptic CRF1s and P/Q-type voltage-gated calcium channels to promote vesicular GABA release and that both compounds occlude the effects of each other at these synapses. Chronic alcohol exposure does not alter P/Q-type voltage-gated calcium channel membrane abundance or this CRF1/P/Q-type voltage-gated calcium channel mechanism of acute alcohol-induced GABA release, indicating that alcohol engages this molecular mechanism at CeA GABAergic synapses throughout the transition to dependence. Thus, P/Q-type voltage-gated calcium channels, like CRF1s, are key regulators of the effects of alcohol on GABAergic signaling in the CeA.
Collapse
Affiliation(s)
- F P Varodayan
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA 92037, USA.
| | - M L Logrip
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA 92037, USA
| | - M Roberto
- The Scripps Research Institute, Department of Neuroscience, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Neelakantan H, Holliday ED, Fox RG, Stutz SJ, Comer SD, Haney M, Anastasio NC, Moeller FG, Cunningham KA. Lorcaserin Suppresses Oxycodone Self-Administration and Relapse Vulnerability in Rats. ACS Chem Neurosci 2017; 8:1065-1073. [PMID: 28107783 DOI: 10.1021/acschemneuro.6b00413] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Opioid use disorder (OUD) is a major public health problem. High relapse rates and poor treatment retention continue to pose major challenges in OUD treatment. Of the abused opioids, oxycodone is well described to maintain self-administration and evoke the durable conditioned responses ("cue reactivity") that result from pairing of opioid-related stimuli (e.g., paraphernalia) with repeated abuse. Serotonin (5-HT) neurotransmission, particularly through the 5-HT2C receptor (5-HT2CR), regulates psychostimulant reward and cue reactivity, and in the present experiments, we investigated the hypothesis that the selective 5-HT2CR agonist lorcaserin, which is approved by the United States Food and Drug Administration (FDA) for the treatment of obesity, will suppress oxycodone self-administration and oxycodone-associated cue reactivity in rats. We found that lorcaserin inhibited oxycodone intake, an effect blocked by the selective 5-HT2CR antagonist SB242084. Lorcaserin also decreased responding for the discrete cue complex ("cue reactivity") previously associated with delivery of oxycodone (i.e., stimulus lights, infusion pump sounds) in both abstinence and extinction-reinstatement models. The selected dose range of lorcaserin (0.25-1 mg/kg) does not overtly alter spontaneous behaviors nor operant responding on inactive levers in the present study. Taken together, the ability of lorcaserin to reduce the oxycodone self-administration and decrease cue reactivity associated with relapse highlights the therapeutic potential for lorcaserin in the treatment of OUD.
Collapse
Affiliation(s)
- Harshini Neelakantan
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Erica D. Holliday
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Robert G. Fox
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sonja J. Stutz
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sandra D. Comer
- New
York State Psychiatric Institute Division on Substance Use Disorders, Columbia University, New York, New York 10032, United States
| | - Margaret Haney
- New
York State Psychiatric Institute Division on Substance Use Disorders, Columbia University, New York, New York 10032, United States
| | - Noelle C. Anastasio
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - F. Gerard Moeller
- Institute
for Drug and Alcohol Studies and Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Kathryn A. Cunningham
- Center
for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
14
|
Alcohol Dependence Disrupts Amygdalar L-Type Voltage-Gated Calcium Channel Mechanisms. J Neurosci 2017; 37:4593-4603. [PMID: 28363981 DOI: 10.1523/jneurosci.3721-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
L-type voltage-gated calcium channels (LTCCs) are implicated in several psychiatric disorders that are comorbid with alcoholism and involve amygdala dysfunction. Within the amygdala, the central nucleus (CeA) is critical in acute alcohol's reinforcing actions, and its dysregulation in human alcoholics drives their negative emotional state and motivation to drink. Here we investigated the specific role of CeA LTCCs in the effects of acute alcohol at the molecular, cellular physiology, and behavioral levels, and their potential neuroadaptation in alcohol-dependent rats. Alcohol increases CeA activity (neuronal firing rates and GABA release) in naive rats by engaging LTCCs, and intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence reduces CeA LTCC membrane abundance and disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohol's effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. Collectively, our data indicate that alcohol dependence functionally alters the molecular mechanisms underlying the CeA's response to alcohol (from LTCC- to CRF1-driven). This mechanistic switch contributes to and reflects the prominent role of the CeA in the negative emotional state that drives excessive drinking.SIGNIFICANCE STATEMENT The central amygdala (CeA) plays a critical role in the development of alcohol dependence. As a result, much preclinical alcohol research aims to identify relevant CeA neuroadaptions that promote the transition to dependence. Here we report that acute alcohol increases CeA neuronal activity in naive rats by engaging L-type calcium channels (LTCCs) and that intra-CeA LTCC blockade reduces alcohol intake in nondependent rats. Alcohol dependence disrupts this LTCC-based mechanism; instead, corticotropin-releasing factor type 1 receptors (CRF1s) mediate alcohol's effects on CeA activity and drive the escalated alcohol intake of alcohol-dependent rats. This switch reflects the important role of the CeA in the pathophysiology of alcohol dependence and represents a new potential avenue for therapeutic intervention during the transition period.
Collapse
|
15
|
Belmer A, Klenowski PM, Patkar OL, Bartlett SE. Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain. Brain Struct Funct 2016; 222:1297-1314. [PMID: 27485750 PMCID: PMC5368196 DOI: 10.1007/s00429-016-1278-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
Abstract
Serotonin neurons arise from the brainstem raphe nuclei and send their projections throughout the brain to release 5-HT which acts as a modulator of several neuronal populations. Previous electron microscopy studies in rats have morphologically determined the distribution of 5-HT release sites (boutons) in certain brain regions and have shown that 5-HT containing boutons form synaptic contacts that are either symmetric or asymmetric. In addition, 5-HT boutons can form synaptic triads with the pre- and postsynaptic specializations of either symmetrical or asymmetrical synapses. However, due to the labor intensive processing of serial sections required by electron microscopy, little is known about the neurochemical properties or the quantitative distribution of 5-HT triads within whole brain or discrete subregions. Therefore, we used a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label serotonin transporter (SERT) immunoreactive axons and reconstruct in 3D their distribution within limbic brain regions. We also used antibodies against key pre- (synaptophysin) and postsynaptic components of excitatory (PSD95) or inhibitory (gephyrin) synapses to (1) identify putative 5-HTergic boutons within SERT immunoreactive axons and, (2) quantify their close apposition to neurochemical excitatory or inhibitory synapses. We provide a 5-HTergic axon density map and have determined the ratio of synaptic triads consisting of a 5-HT bouton in close proximity to either neurochemical excitatory or inhibitory synapses within different limbic brain areas. The ability to model and map changes in 5-HTergic axonal density and the formation of triadic connectivity within whole brain regions using this rapid and quantitative approach offers new possibilities for studying neuroplastic changes in the 5-HTergic pathway.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Paul M Klenowski
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Qld 4059, Australia. .,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
16
|
Marcinkiewcz CA, Lowery-Gionta EG, Kash TL. Serotonin's Complex Role in Alcoholism: Implications for Treatment and Future Research. Alcohol Clin Exp Res 2016; 40:1192-201. [PMID: 27161942 DOI: 10.1111/acer.13076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022]
Abstract
Current pharmacological treatments for alcohol dependence have focused on reducing alcohol consumption, but to date there are few treatments that also address the negative affective symptoms during acute and protracted alcohol withdrawal which are often exacerbated in people with comorbid anxiety and depression. Selective serotonin reuptake inhibitors (SSRIs) are sometimes prescribed to ameliorate these symptoms but can exacerbate anxiety and cravings in a select group of patients. In this critical review, we discuss recent literature describing an association between alcohol dependence, the SERT linked polymorphic region (5-HTTLPR), and pharmacological response to SSRIs. Given the heterogeneity in responsiveness to serotonergic drugs across the spectrum of alcoholic subtypes, we assess the contribution of specific 5-HT circuits to discrete endophenotypes of alcohol dependence. 5-HT circuits play a distinctive role in reward, stress, and executive function which may account for the variation in response to serotonergic drugs. New optogenetic and chemogenetic methods for dissecting 5-HT circuits in alcohol dependence may provide clues leading to more effective pharmacotherapies. Although our current understanding of the role of 5-HT systems in alcohol dependence is incomplete, there is some evidence to suggest that 5-HT3 receptor antagonists are effective in people with the L/L genotype of the 5-HTTLPR polymorphism while SSRIs may be more beneficial to people with the S/L or S/S genotype. Studies that assess the impact of serotonin transporter polymorphisms on 5-HT circuit function and the subsequent development of alcohol use disorders will be an important step forward in treating alcohol dependence.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
18
|
Martí-Prats L, Orrico A, Polache A, Granero L. Dual motor responses elicited by ethanol in the posterior VTA: Consequences of the blockade of μ-opioid receptors. J Psychopharmacol 2015. [PMID: 26216379 DOI: 10.1177/0269881115598337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A recent hypothesis, based on electrophysiological and behavioural findings, suggests that ethanol simultaneously exerts opposed effects on the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) through two parallel mechanisms, one promoting and the other reducing the GABA release onto VTA DA neurons. In this sense, the activating effects are mediated by salsolinol, a metabolite of ethanol, acting on the μ-opioid receptors (MORs) located in VTA GABA neurons. The inhibitory effects are, however, triggered by the non-metabolized fraction of ethanol which would cause the GABAA receptors-mediated inhibition of VTA DA neurons. Since both trends tend to offset each other, only the use of appropriate pharmacological tools allows analysis of this phenomenon in depth. Herein, we present new behavioural findings supporting this hypothesis. Motor activity was evaluated in rats after intra-VTA administration of ethanol 35 nmol, an apparently ineffective dose, 24 h after the irreversible blockade of MORs in the VTA with β-FNA. Our results showed that this pre-treatment turned the initially ineffective ethanol dose into a depressant one, confirming that the activating effect of ethanol can be selectively suppressed without affecting the depressant effects mediated by the non-biotransformed fraction of ethanol.
Collapse
Affiliation(s)
- Lucía Martí-Prats
- Departament de Farmàcia i Tecnologia Farmacèutica, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Alejandro Orrico
- Departament de Farmàcia i Tecnologia Farmacèutica, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Ana Polache
- Departament de Farmàcia i Tecnologia Farmacèutica, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Luis Granero
- Departament de Farmàcia i Tecnologia Farmacèutica, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| |
Collapse
|
19
|
Marcinkiewcz CA. Serotonergic Systems in the Pathophysiology of Ethanol Dependence: Relevance to Clinical Alcoholism. ACS Chem Neurosci 2015; 6:1026-39. [PMID: 25654315 DOI: 10.1021/cn5003573] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alcoholism is a progressive brain disorder that is marked by increased sensitivity to the positive and negative reinforcing properties of ethanol, compulsive and habitual use despite negative consequences, and chronic relapse to alcohol drinking despite repeated attempts to reduce intake or abstain from alcohol. Emerging evidence from preclinical and clinical studies implicates serotonin (5-hydroxytryptamine; 5-HT) systems in the pathophysiology of alcohol dependence, suggesting that drugs targeting 5-HT systems may have utility in the treatment of alcohol use disorders. In this Review, we discuss the role of 5-HT systems in alcohol dependence with a focus on 5-HT interactions with neural circuits that govern all three stages of the addiction cycle. We attempt to clarify how 5-HT influences circuit function at these different stages with the goal of identifying neural targets for pharmacological treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Catherine A. Marcinkiewcz
- Bowles Center for
Alcohol
Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Kasper JM, Booth RG, Peris J. Serotonin-2C receptor agonists decrease potassium-stimulated GABA release in the nucleus accumbens. Synapse 2015; 69:78-85. [PMID: 25382408 PMCID: PMC4275350 DOI: 10.1002/syn.21790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 01/15/2023]
Abstract
The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C -mediated negative modulation of ethanol self-administration.
Collapse
Affiliation(s)
- James M Kasper
- University of Texas - Medical Branch, Department of Pharmacology and Toxicology, 301 University Blvd., Galveston, TX USA 77555
| | - Raymond G Booth
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, Boston, MA USA 02115
| | - Joanna Peris
- University of Florida, Department of Pharmacodynamics, Box 100487, 1600 SW Archer Road, Gainesville, FL USA 32610
| |
Collapse
|
21
|
Vena AA, Gonzales RA. Temporal profiles dissociate regional extracellular ethanol versus dopamine concentrations. ACS Chem Neurosci 2015; 6:37-47. [PMID: 25537116 PMCID: PMC4304481 DOI: 10.1021/cn500278b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25-30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these "response ratios" differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research.
Collapse
Affiliation(s)
- Ashley A. Vena
- College
of Pharmacy, Division of Pharmacology and
Toxicology, University of Texas at Austin, Austin, Texas 78712, United States
| | - Rueben A. Gonzales
- College
of Pharmacy, Division of Pharmacology and
Toxicology, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Pietrzak B, Zwierzyńska E, Krupa A. A Pharmaco-EEG-Based Assessment of the Interaction Between Ethanol and Zonisamide. Alcohol Alcohol 2014; 49:505-14. [DOI: 10.1093/alcalc/agu024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Goel RK, Singh D. Exploring selective serotonergic modulation involved in the anticonvulsant effect of Ficus religiosa fig extract. Indian J Pharmacol 2014; 45:537-8. [PMID: 24130399 PMCID: PMC3793535 DOI: 10.4103/0253-7613.117768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjab University, Patiala, Punjab, India
| | | |
Collapse
|
24
|
Kaplan JS, Mohr C, Rossi DJ. Opposite actions of alcohol on tonic GABA(A) receptor currents mediated by nNOS and PKC activity. Nat Neurosci 2013; 16:1783-93. [PMID: 24162656 PMCID: PMC4022289 DOI: 10.1038/nn.3559] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023]
Abstract
The molecular mechanisms that mediate genetic variability in response to alcohol are unclear. We found that alcohol had opposite actions (enhancement or suppression) on GABA(A) receptor (GABA(A)R) inhibition in granule cells from the cerebellum of behaviorally sensitive, low alcohol-consuming Sprague-Dawley rats and DBA/2 mice and behaviorally insensitive, high alcohol-consuming C57BL/6 mice, respectively. The effect of alcohol on granule cell GABA(A)R inhibition was determined by a balance between two opposing effects: enhanced presynaptic vesicular release of GABA via alcohol inhibition of nitric oxide synthase (NOS) and a direct suppression of the activity of postsynaptic GABA(A)Rs. The balance of these two processes was determined by differential expression of neuronal NOS (nNOS) and postsynaptic PKC activity, both of which varied across the rodent genotypes. These findings identify opposing molecular processes that differentially control the magnitude and polarity of GABA(A)R responses to alcohol across rodent genotypes.
Collapse
Affiliation(s)
- Joshua S Kaplan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Rossi
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
25
|
Mohr C, Kolotushkina O, Kaplan JS, Welsh J, Daunais JB, Grant KA, Rossi DJ. Primate cerebellar granule cells exhibit a tonic GABAAR conductance that is not affected by alcohol: a possible cellular substrate of the low level of response phenotype. Front Neural Circuits 2013; 7:189. [PMID: 24324408 PMCID: PMC3840389 DOI: 10.3389/fncir.2013.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/08/2013] [Indexed: 11/13/2022] Open
Abstract
In many rodent brain regions, alcohol increases vesicular release of GABA, resulting in an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and the magnitude of tonic GABAA receptor (GABAAR) currents. A neglected issue in translating the rodent literature to humans is the possibility that phylogenetic differences alter the actions of alcohol. To address this issue we made voltage-clamp recordings from granule cells (GCs) in cerebellar slices from the non-human primate (NHP), Macaca fascicularis. We found that similar to Sprague Dawley rats (SDRs), NHP GCs exhibit a tonic conductance generated by α6δ subunit containing GABAARs, as evidenced by its blockade by the broad spectrum GABAAR antagonist, GABAzine (10 μM), inhibition by α6 selective antagonist, furosemide (100 μM), and enhancement by THDOC (10-20 nM) and THIP (500 nM). In contrast to SDR GCs, in most NHP GCs (~60%), application of EtOH (25-105 mM) did not increase sIPSC frequency or the tonic GABAAR current. In a minority of cells (~40%), EtOH did increase sIPSC frequency and the tonic current. The relative lack of response to EtOH was associated with reduced expression of neuronal nitric oxide synthase (nNOS), which we recently reported mediates EtOH-induced enhancement of vesicular GABA release in rats. The EtOH-induced increase in tonic GABAAR current was significantly smaller in NHPs than in SDRs, presumably due to less GABA release, because there were no obvious differences in the density of GABAARs or GABA transporters between SDR and NHP GCs. Thus, EtOH does not directly modulate α6δ subunit GABAARs in NHPs. Instead, EtOH enhanced GABAergic transmission is mediated by enhanced GABA release. Further, SDR GC responses to alcohol are only representative of a subpopulation of NHP GCs. This suggests that the impact of EtOH on NHP cerebellar physiology will be reduced compared to SDRs, and will likely have different computational and behavioral consequences.
Collapse
Affiliation(s)
- Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Opposite motor responses elicited by ethanol in the posterior VTA: The role of acetaldehyde and the non-metabolized fraction of ethanol. Neuropharmacology 2013; 72:204-14. [DOI: 10.1016/j.neuropharm.2013.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/27/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022]
|
27
|
Grégoire S, Neugebauer V. 5-HT2CR blockade in the amygdala conveys analgesic efficacy to SSRIs in a rat model of arthritis pain. Mol Pain 2013; 9:41. [PMID: 23937887 PMCID: PMC3751088 DOI: 10.1186/1744-8069-9-41] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pain, including arthritic pain, has a negative affective component and is often associated with anxiety and depression. However, selective serotonin reuptake inhibitor antidepressants (SSRIs) show limited effectiveness in pain. The amygdala plays a key role in the emotional-affective component of pain, pain modulation and affective disorders. Neuroplasticity in the basolateral and central amygdala (BLA and CeA, respectively) correlate positively with pain behaviors. Evidence suggests that serotonin receptor subtype 5-HT2CR in the amygdala contributes critically to anxiogenic behavior and anxiety disorders. In this study, we tested the hypothesis that 5-HT2CR in the amygdala accounts for the limited effectiveness of SSRIs in reducing pain behaviors and that 5-HT2CR blockade in the amygdala renders SSRIs effective. RESULTS Nocifensive reflexes, vocalizations and anxiety-like behavior were measured in adult male Sprague-Dawley rats. Behavioral experiments were done in sham controls and in rats with arthritis induced by kaolin/carrageenan injections into one knee joint. Rats received a systemic (i.p.) administration of an SSRI (fluvoxamine, 30 mg/kg) or vehicle (sterile saline) and stereotaxic application of a selective 5-HT2CR antagonist (SB242084, 10 μM) or vehicle (ACSF) into BLA or CeA by microdialysis. Compared to shams, arthritic rats showed decreased hindlimb withdrawal thresholds (increased reflexes), increased duration of audible and ultrasonic vocalizations, and decreased open-arm choices in the elevated plus maze test suggesting anxiety-like behavior. Fluvoxamine (i.p.) or SB242084 (intra-BLA) alone had no significant effect, but their combination inhibited the pain-related increase of vocalizations and anxiety-like behavior without affecting spinal reflexes. SB242084 applied into the CeA in combination with systemic fluvoxamine had no effect on vocalizations and spinal reflexes. CONCLUSIONS The data suggest that 5-HT2CR in the amygdala, especially in the BLA, limits the effectiveness of SSRIs to inhibit pain-related emotional-affective behaviors.
Collapse
Affiliation(s)
- Stéphanie Grégoire
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| | - Volker Neugebauer
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston Texas 77555-1069, USA
| |
Collapse
|
28
|
Doyon WM, Thomas AM, Ostroumov A, Dong Y, Dani JA. Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system. Biochem Pharmacol 2013; 86:1181-93. [PMID: 23876345 DOI: 10.1016/j.bcp.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Epidemiological studies consistently find correlations between nicotine and alcohol use, yet the neural mechanisms underlying their interaction remain largely unknown. Nicotine and alcohol (i.e., ethanol) share many common molecular and cellular targets that provide potential substrates for nicotine-alcohol interactions. These targets for interaction often converge upon the mesocorticolimbic dopamine system, where the link to drug self-administration and reinforcement is well documented. Both nicotine and alcohol activate the mesocorticolimbic dopamine system, producing downstream dopamine signals that promote the drug reinforcement process. While nicotine primarily acts via nicotinic acetylcholine receptors, alcohol acts upon a wider range of receptors and molecular substrates. The complex pharmacological profile of these two drugs generates overlapping responses that ultimately intersect within the mesocorticolimbic dopamine system to promote drug use. Here we will examine overlapping targets between nicotine and alcohol and provide evidence for their interaction. Based on the existing literature, we will also propose some potential targets that have yet to be directly tested. Mechanistic studies that examine nicotine-alcohol interactions would ultimately improve our understanding of the factors that contribute to the associations between nicotine and alcohol use.
Collapse
Affiliation(s)
- William M Doyon
- Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. This chapter reviews the literature describing these acute and chronic synaptic effects of EtOH and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, NIAAA, 5625 Fishers Lane, Room TS-13A, Rockville, MD 20852, USA.
| | | |
Collapse
|
30
|
Ferrari LF, Levine E, Levine JD. Independent contributions of alcohol and stress axis hormones to painful peripheral neuropathy. Neuroscience 2012; 228:409-17. [PMID: 23128028 DOI: 10.1016/j.neuroscience.2012.10.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022]
Abstract
Painful small-fiber peripheral neuropathy is a debilitating complication of chronic alcohol abuse. Evidence from previous studies suggests that neuroendocrine mechanisms, in combination with other, as yet unidentified actions of alcohol, are required to produce this neuropathic pain syndrome. In addition to neurotoxic effects of alcohol, in the setting of alcohol abuse neuroendocrine stress axes release glucocorticoids and catecholamines. Since receptors for these stress hormones are located on nociceptors, at which they can act to cause neuronal dysfunction, we tested the hypothesis that alcohol and stress hormones act on the nociceptor, independently, to produce neuropathic pain. We used a rat model, which allows the distinction of the effects of alcohol from those produced by neuroendocrine stress axis mediators. We now demonstrate that topical application of alcohol and exposure to unpredictable sound stress, each alone, has no effect on the nociceptive threshold. However, when animals that had previous exposure to alcohol were subsequently exposed to stress, they rapidly developed mechanical hyperalgesia. Conversely, sound stress followed by topical alcohol exposure also produced mechanical hyperalgesia. The contribution of stress hormones was prevented by spinal intrathecal administration of oligodeoxynucleotides antisense to β(2)-adrenergic or glucocorticoid receptor mRNA, which attenuates receptor level in nociceptors, as well as by adrenal medullectomy. These experiments establish an independent role of alcohol and stress hormones on the primary afferent nociceptor in the induction of painful peripheral neuropathy.
Collapse
Affiliation(s)
- L F Ferrari
- Departments of Medicine and Oral Surgery, Division of Neuroscience, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143-0440, USA
| | | | | |
Collapse
|
31
|
Yoshimoto K, Watanabe Y, Tanaka M, Kimura M. Serotonin2C receptors in the nucleus accumbens are involved in enhanced alcohol-drinking behavior. Eur J Neurosci 2012; 35:1368-80. [PMID: 22512261 PMCID: PMC3490368 DOI: 10.1111/j.1460-9568.2012.08037.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopamine and serotonin (5-HT) in the nucleus accumbens (ACC) and ventral tegmental area of the mesoaccumbens reward pathways have been implicated in the mechanisms underlying development of alcohol dependence. We used a C57BL/6J mouse model with increased voluntary alcohol-drinking behavior by exposing the mice to alcohol vapor for 20 consecutive days. In the alcohol-exposed mice, the expression of 5-HT(2C) receptor mRNA increased in the ACC, caudate nucleus and putamen, dorsal raphe nucleus (DRN), hippocampus and lateral hypothalamus, while the protein level of 5-HT(2C) receptor significantly increased in the ACC. The expression of 5-HT(7) receptor mRNA increased in the ACC and DRN. Contents of 5-HT decreased in the ACC shell (ACC(S) ) and DRN of the alcohol-exposed mice. The basal extracellular releases of dopamine (DA) and 5-HT in the ACC(S) increased more in the alcohol-exposed mice than in alcohol-naïve mice. The magnitude of the alcohol-induced ACC(S) DA and 5-HT release in the alcohol-exposed mice was increased compared with the control mice. Intraperitoneal (i.p.) administration or local injection into ACC(S) of the 5-HT(2C) receptor antagonist, SB-242084, suppressed voluntary alcohol-drinking behavior in the alcohol-exposed mice. But the i.p. administration of the 5-HT(7) receptor antagonist, SB-258719, did not have significant effects on alcohol-drinking behavior in the alcohol-exposed mice. The effects of the 5-HT(2C) receptor antagonist were not observed in the air-exposed control mice. These results suggest that adaptations of the 5-HT system, especially the upregulation of 5-HT(2C) receptors in the ACC(S) , are involved in the development of enhanced voluntary alcohol-drinking behavior.
Collapse
Affiliation(s)
- Kanji Yoshimoto
- Department of Forensic Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | | | | | | |
Collapse
|
32
|
Guan Y, Xiao C, Krnjevic K, Xie G, Zuo W, Ye JH. GABAergic actions mediate opposite ethanol effects on dopaminergic neurons in the anterior and posterior ventral tegmental area. J Pharmacol Exp Ther 2012; 341:33-42. [PMID: 22209891 PMCID: PMC3310705 DOI: 10.1124/jpet.111.187963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/29/2011] [Indexed: 12/22/2022] Open
Abstract
It is known that the posterior ventral tegmental area (p-VTA) differs from the anterior VTA (a-VTA) in that rats learn to self-administer ethanol into the p-VTA, but not into the a-VTA. Because activation of VTA dopaminergic neurons by ethanol is a cellular mechanism underlying the reinforcement of ethanol consumption, we hypothesized that ethanol may exert different effects on dopaminergic neurons in the p-VTA and a-VTA. In patch-clamp recordings in midbrain slices from young rats (postnatal days 22-32), we detected no significant difference in electrophysiological properties between p-VTA and a-VTA dopaminergic neurons. However, acute exposure to ethanol (21-86 mM) stimulated p-VTA dopaminergic neurons but suppressed a-VTA dopaminergic neurons. Conversely, ethanol (>21 mM) dose-dependently reduced the frequency of the GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) generated by inhibitory neuronal firing but not miniature inhibitory postsynaptic currents (mIPSCs) in p-VTA dopaminergic neurons. By contrast, ethanol increased the frequency and amplitude of both sIPSCs and mIPSCs in a-VTA dopaminergic neurons. All of these effects of ethanol were abolished by a GABA(A) receptor antagonist. There was a strong negative correlation between ethanol-evoked modulation of sIPSCs and neuronal firing in VTA dopaminergic neurons. These results indicate that GABAergic inputs play an important role in ethanol's actions in the VTA. The differential effects of ethanol on sIPSCs and neuronal firing in the p-VTA and a-VTA could be the basis for ethanol reinforcement via the p-VTA.
Collapse
Affiliation(s)
- Yanzhong Guan
- Department of Anesthesiology, Pharmacology, and Physiology, UMDNJ, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
33
|
Andrade A, Abrahao K, Goeldner F, Souza-Formigoni M. Administration of the 5-HT2C receptor antagonist SB-242084 into the nucleus accumbens blocks the expression of ethanol-induced behavioral sensitization in Albino Swiss mice. Neuroscience 2011; 189:178-86. [DOI: 10.1016/j.neuroscience.2011.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/23/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
|
34
|
The many forms and functions of long term plasticity at GABAergic synapses. Neural Plast 2011; 2011:254724. [PMID: 21789285 PMCID: PMC3140781 DOI: 10.1155/2011/254724] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/22/2011] [Accepted: 05/23/2011] [Indexed: 01/12/2023] Open
Abstract
On February 12th 1973, Bliss and Lomo submitted their findings on activity-dependent plasticity of glutamatergic synapses. After this groundbreaking discovery, long-term potentiation (LTP) and depression (LTD) gained center stage in the study of learning, memory, and experience-dependent refinement of neural circuits. While LTP and LTD are extensively studied and their relevance to brain function is widely accepted, new experimental and theoretical work recently demonstrates that brain development and function relies on additional forms of plasticity, some of which occur at nonglutamatergic synapses. The strength of GABAergic synapses is modulated by activity, and new functions for inhibitory synaptic plasticity are emerging. Together with excitatory neurons, inhibitory neurons shape the excitability and dynamic range of neural circuits. Thus, the understanding of inhibitory synaptic plasticity is crucial to fully comprehend the physiology of brain circuits. Here, I will review recent findings about plasticity at GABAergic synapses and discuss how it may contribute to circuit function.
Collapse
|
35
|
Bubar MJ, Stutz SJ, Cunningham KA. 5-HT(2C) receptors localize to dopamine and GABA neurons in the rat mesoaccumbens pathway. PLoS One 2011; 6:e20508. [PMID: 21687728 PMCID: PMC3110193 DOI: 10.1371/journal.pone.0020508] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022] Open
Abstract
The serotonin 5-HT2C receptor (5-HT2CR) is localized to the limbic-corticostriatal circuit, which plays an integral role in mediating attention, motivation, cognition, and reward processes. The 5-HT2CR is linked to modulation of mesoaccumbens dopamine neurotransmission via an activation of γ-aminobutyric acid (GABA) neurons in the ventral tegmental area (VTA). However, we recently demonstrated the expression of the 5-HT2CR within dopamine VTA neurons suggesting the possibility of a direct influence of the 5-HT2CR upon mesoaccumbens dopamine output. Here, we employed double-label fluorescence immunochemistry with the synthetic enzymes for dopamine (tyrosine hydroxylase; TH) and GABA (glutamic acid decarboxylase isoform 67; GAD-67) and retrograde tract tracing with FluoroGold (FG) to uncover whether dopamine and GABA VTA neurons that possess 5-HT2CR innervate the nucleus accumbens (NAc). The highest numbers of FG-labeled cells were detected in the middle versus rostral and caudal levels of the VTA, and included a subset of TH- and GAD-67 immunoreactive cells, of which >50% also contained 5-HT2CR immunoreactivity. Thus, we demonstrate for the first time that the 5-HT2CR colocalizes in DA and GABA VTA neurons which project to the NAc, describe in detail the distribution of NAc-projecting GABA VTA neurons, and identify the colocalization of TH and GAD-67 in the same NAc-projecting VTA neurons. These data suggest that the 5-HT2CR may exert direct influence upon both dopamine and GABA VTA output to the NAc. Further, the indication that a proportion of NAc-projecting VTA neurons synthesize and potentially release both dopamine and GABA adds intriguing complexity to the framework of the VTA and its postulated neuroanatomical roles.
Collapse
Affiliation(s)
- Marcy J Bubar
- Department of Pharmacology and Toxicology and Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | |
Collapse
|
36
|
Kelm MK, Criswell HE, Breese GR. Ethanol-enhanced GABA release: a focus on G protein-coupled receptors. BRAIN RESEARCH REVIEWS 2011; 65:113-23. [PMID: 20837058 PMCID: PMC3005894 DOI: 10.1016/j.brainresrev.2010.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 12/20/2022]
Abstract
While research on the actions of ethanol at the GABAergic synapse has focused on postsynaptic mechanisms, recent data have demonstrated that ethanol also facilitates GABA release from presynaptic terminals in many, but not all, brain regions. The ability of ethanol to increase GABA release can be regulated by different G protein-coupled receptors (GPCRs), such as the cannabinoid-1 receptor, corticotropin-releasing factor 1 receptor, GABA(B) receptor, and the 5-hydroxytryptamine 2C receptor. The intracellular messengers linked to these GPCRs, including the calcium that is released from internal stores, also play a role in ethanol-enhanced GABA release. Hypotheses are proposed to explain how ethanol interacts with the GPCR pathways to increase GABA release and how this interaction contributes to the brain region specificity of ethanol-enhanced GABA release. Defining the mechanism of ethanol-facilitated GABA release will further our understanding of the GABAergic profile of ethanol and increase our knowledge of how GABAergic neurotransmission may contribute to the intoxicating effects of alcohol and to alcohol dependence.
Collapse
Affiliation(s)
- M Katherine Kelm
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
37
|
Ethanol modulation of synaptic plasticity. Neuropharmacology 2010; 61:1097-108. [PMID: 21195719 DOI: 10.1016/j.neuropharm.2010.12.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/22/2010] [Indexed: 12/19/2022]
Abstract
Synaptic plasticity in the most general terms represents the flexibility of neurotransmission in response to neuronal activity. Synaptic plasticity is essential both for the moment-by-moment modulation of neural activity in response to dynamic environmental cues and for long-term learning and memory formation. These temporal characteristics are served by an array of pre- and post-synaptic mechanisms that are frequently modulated by ethanol exposure. This modulation likely makes significant contributions to both alcohol abuse and dependence. In this review, I discuss the modulation of both short-term and long-term synaptic plasticity in the context of specific ethanol-sensitive cellular substrates. A general discussion of the available preclinical, animal-model based neurophysiology literature provides a comparison between results from in vitro and in vivo studies. Finally, in the context of alcohol abuse and dependence, the review proposes potential behavioral contributions by ethanol modulation of plasticity.
Collapse
|
38
|
Theile JW, Morikawa H, Gonzales RA, Morrisett RA. GABAergic transmission modulates ethanol excitation of ventral tegmental area dopamine neurons. Neuroscience 2010; 172:94-103. [PMID: 20974231 DOI: 10.1016/j.neuroscience.2010.10.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/14/2010] [Accepted: 10/16/2010] [Indexed: 01/17/2023]
Abstract
Activation of the dopaminergic (DA) neurons of the ventral tegmental area (VTA) by ethanol has been implicated in its rewarding and reinforcing effects. We previously demonstrated that ethanol enhances GABA release onto VTA-DA neurons via activation of 5-HT2C receptors and subsequent release of calcium from intracellular stores. Here we demonstrate that excitation of VTA-DA neurons by ethanol is limited by an ethanol-enhancement in GABA release. In this study, we performed whole-cell voltage clamp recordings of miniature inhibitory postsynaptic currents (mIPSCs) and cell-attached recordings of action potential firing from VTA-DA neurons in midbrain slices from young Long Evans rats. Acute exposure to ethanol (75 mM) transiently enhanced the firing rate of VTA-DA neurons as well as the frequency of mIPSCs. Simultaneous blockade of both GABA(A) and GABA(B) receptors (Picrotoxin (75 μM) and SCH50911 (20 μM)) disinhibited VTA-DA firing rate whereas a GABA(A) agonist (muscimol, 1 μM) strongly inhibited firing rate. In the presence of picrotoxin, ethanol enhanced VTA-DA firing rate more than in the absence of picrotoxin. Additionally, a sub-maximal concentration of muscimol together with ethanol inhibited VTA-DA firing rate more than muscimol alone. DAMGO (3 μM) inhibited mIPSC frequency but did not block the ethanol-enhancement in mIPSC frequency. DAMGO (1 and 3 μM) had no effect on VTA-DA firing rate. Naltrexone (60 μM) had no effect on basal or ethanol-enhancement of mIPSC frequency. Additionally, naltrexone (20 and 60 μM) did not block the ethanol-enhancement in VTA-DA firing rate. Overall, the present results indicate that the ethanol enhancement in GABA release onto VTA-DA neurons limits the stimulatory effect of ethanol on VTA-DA neuron activity and may have implications for the rewarding properties of ethanol.
Collapse
Affiliation(s)
- J W Theile
- Cell and Molecular Biology, The College of Pharmacy, The University of Texas at Austin, Austin, TX 78712-1074, USA
| | | | | | | |
Collapse
|
39
|
Guan YZ, Ye JH. Ethanol blocks long-term potentiation of GABAergic synapses in the ventral tegmental area involving mu-opioid receptors. Neuropsychopharmacology 2010; 35:1841-9. [PMID: 20393452 PMCID: PMC2904870 DOI: 10.1038/npp.2010.51] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is well documented that ethanol exposure alters GABA (gamma-aminobutyric acid)-releasing synapses, and ethanol addiction is associated with endogenous opioid system. Emerging evidence indicates that opioids block long-term potentiation in the fast inhibitory GABA(A) receptor synapses (LTP(GABA)) onto dopamine-containing neurons in the ventral tegmental area (VTA), a brain region essential for reward-seeking behavior. However, how ethanol affects LTP(GABA) is not known. We report here that in acute midbrain slices from rats, clinically relevant concentrations of ethanol applied both in vitro and in vivo prevents LTP(GABA), which is reversed, respectively, by in vitro and in vivo administration of naloxone, a mu-opioid receptor (MOR) antagonist. Furthermore, the blockade of LTP(GABA) induced by a brief in vitro ethanol treatment is mimicked by DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin), a MOR agonist. Paired-pulse ratios are similar in slices, 24 h after in vivo injection with either saline or ethanol. Sp-cAMPS, a stable cAMP analog, and pCPT-cGMP, a cGMP analog, potentiates GABA(A)-mediated inhibitory postsynaptic currents in slices from ethanol-treated rats, indicating that a single in vivo ethanol exposure does not maximally increase GABA release, instead, ethanol produces a long-lasting inability to generate LTP(GABA). These neuroadaptations to ethanol might contribute to early stage of addiction.
Collapse
Affiliation(s)
- Yan-zhong Guan
- Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Anesthesiology, UMDNJ, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA, Tel: + 1973-972-1866, Fax: +1973-972-4172, E-mail:
| |
Collapse
|
40
|
Kelm MK, Weinberg RJ, Criswell HE, Breese GR. The PLC/IP 3 R/PKC pathway is required for ethanol-enhanced GABA release. Neuropharmacology 2010; 58:1179-86. [PMID: 20206640 DOI: 10.1016/j.neuropharm.2010.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/31/2022]
Abstract
Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP(3)Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP(3)Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP(3)Rs requires binding of IP(3), generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP(3)R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP(3)R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells.
Collapse
Affiliation(s)
- M Katherine Kelm
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7365, USA.
| | | | | | | |
Collapse
|
41
|
Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:235-88. [PMID: 20813245 DOI: 10.1016/s0074-7742(10)91008-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience.
Collapse
|