1
|
Kitayama E, Kimura M, Ouchi T, Furusawa M, Shibukawa Y. Functional Expression of IP, 5-HT 4, D 1, A 2A, and VIP Receptors in Human Odontoblast Cell Line. Biomolecules 2023; 13:879. [PMID: 37371459 DOI: 10.3390/biom13060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Odontoblasts are involved in sensory generation as sensory receptor cells and in dentin formation. We previously reported that an increase in intracellular cAMP levels by cannabinoid 1 receptor activation induces Ca2+ influx via transient receptor potential vanilloid subfamily member 1 channels in odontoblasts, indicating that intracellular cAMP/Ca2+ signal coupling is involved in dentinal pain generation and reactionary dentin formation. Here, intracellular cAMP dynamics in cultured human odontoblasts were investigated to understand the detailed expression patterns of the intracellular cAMP signaling pathway activated by the Gs protein-coupled receptor and to clarify its role in cellular functions. The presence of plasma membrane Gαs as well as prostaglandin I2 (IP), 5-hydroxytryptamine 5-HT4 (5-HT4), dopamine D1 (D1), adenosine A2A (A2A), and vasoactive intestinal polypeptide (VIP) receptor immunoreactivity was observed in human odontoblasts. In the presence of extracellular Ca2+, the application of agonists for the IP (beraprost), 5-HT4 (BIMU8), D1 (SKF83959), A2A (PSB0777), and VIP (VIP) receptors increased intracellular cAMP levels. This increase in cAMP levels was inhibited by the application of the adenylyl cyclase (AC) inhibitor SQ22536 and each receptor antagonist, dose-dependently. These results suggested that odontoblasts express Gs protein-coupled IP, 5-HT4, D1, A2A, and VIP receptors. In addition, activation of these receptors increased intracellular cAMP levels by activating AC in odontoblasts.
Collapse
Affiliation(s)
- Eri Kitayama
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Endodontics, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Masahiro Furusawa
- Department of Endodontics, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
2
|
Tasma Z, Siow A, Harris PWR, Brimble MA, O’Carroll SJ, Hay DL, Walker CS. PAC 1, VPAC 1, and VPAC 2 Receptor Expression in Rat and Human Trigeminal Ganglia: Characterization of PACAP-Responsive Receptor Antibodies. Int J Mol Sci 2022; 23:ijms232213797. [PMID: 36430275 PMCID: PMC9697343 DOI: 10.3390/ijms232213797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide expressed in the trigeminal ganglia (TG). The TG conducts nociceptive signals in the head and may play roles in migraine. PACAP infusion provokes headaches in healthy individuals and migraine-like attacks in patients; however, it is not clear whether targeting this system could be therapeutically efficacious. To effectively target the PACAP system, an understanding of PACAP receptor distribution is required. Therefore, this study aimed to characterize commercially available antibodies and use these to detect PACAP-responsive receptors in the TG. Antibodies were initially validated in receptor transfected cell models and then used to explore receptor expression in rat and human TG. Antibodies were identified that could detect PACAP-responsive receptors, including the first antibody to differentiate between the PAC1n and PAC1s receptor splice variants. PAC1, VPAC1, and VPAC2 receptor-like immunoreactivity were observed in subpopulations of both neuronal and glial-like cells in the TG. In this study, PAC1, VPAC1, and VPAC2 receptors were detected in the TG, suggesting they are all potential targets to treat migraine. These antibodies may be useful tools to help elucidate PACAP-responsive receptor expression in tissues. However, most antibodies exhibited limitations, requiring the use of multiple methodologies and the careful inclusion of controls.
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging, and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland 1023, New Zealand
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin 9016, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
3
|
Semaniakou A, Chappe F, Anini Y, Chappe V. VIP reduction in the pancreas of F508del homozygous CF mice and early signs of Cystic Fibrosis Related Diabetes (CFRD). J Cyst Fibros 2021; 20:881-890. [PMID: 34034984 DOI: 10.1016/j.jcf.2021.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation. VIP deficiency resulted from a reduction in VIPergic and cholinergic innervation, starting before signs of CF disease were observed. As VIP functions as a neuromodulator with insulinotropic effect on pancreatic beta cells, we sought to study changes in VIP in the pancreas of CF mice. Our goal was to examine VIP content and VIPergic innervation in the pancreas of 8- and 17-week-old F508del-CFTR homozygous mice and to determine whether changes in VIP levels would contribute to CFRD development. Our data showed that a decreased amount of VIP and reduced innervation are found in CF mice pancreas, and that these mice also exhibited reduced insulin secretion, up-regulation of glucagon production and high random blood glucose levels compared to same-age wild-type mice. We propose that low level of VIP, due to reduced innervation of the CF pancreas and starting at an early disease stage, contributes to changes in insulin and glucagon secretion that can lead to CFRD development.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Obstetrics and Gynecology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology & Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
4
|
Semaniakou A, Brothers S, Gould G, Zahiremani M, Paton J, Chappe F, Li A, Anini Y, Croll RP, Chappe V. Disrupted local innervation results in less VIP expression in CF mice tissues. J Cyst Fibros 2020; 20:154-164. [PMID: 32600901 DOI: 10.1016/j.jcf.2020.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Vasoactive Intestinal Peptide (VIP) is the major physiological agonist of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channel activity. VIP functions as a neuromodulator and neurotransmitter secreted by neurons innervating all exocrine glands. VIP is also a potent vasodilator and bronchodilator that regulates exocrine gland secretions, contributing to local innate defense by stimulating the movement of water and chloride transport across intestinal and tracheobronchial epithelia. Previous human studies have shown that the rich intrinsic neuronal networks for VIP secretion around exocrine glands could be lost in tissues from patients with cystic fibrosis. Our research has since confirmed, in vitro and in vivo, the need for chronic VIP exposure to maintain functional CFTR chloride channels at the cell surface of airways and intestinal epithelium, as well as normal exocrine tissues morphology [1]. The goal of the present study was to examine changes in VIP in the lung, duodenum and sweat glands of 8- and 17-weeks old F508del/F508del mice and to investigate VIPergic innervation in the small intestine of CF mice, before important signs of the disease development. Our data show that a low amount of VIP is found in CF tissues prior to tissue damage. Moreover, we found a specific reduction in VIPergic and cholinergic innervation of the small intestine. The general innervation of the primary and secondary myenteric plexus was lost in CF tissues, with the presence of enlarged ganglionic cells in the tertiary layer. We propose that low amount of VIP in CF tissues is due to a reduction in VIPergic and cholinergic innervation and represents an early defect that constitutes an aggravating factor for CF disease progression.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah Brothers
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Grayson Gould
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mehrsa Zahiremani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jamie Paton
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Frederic Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Audrey Li
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Younes Anini
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada; Department of Obstetrics and Gynecology, IWK Health Center, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Strub MD, McCray, Jr. PB. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Genes (Basel) 2020; 11:genes11050546. [PMID: 32414011 PMCID: PMC7288469 DOI: 10.3390/genes11050546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The diversity of mutations and the multiple ways by which the protein is affected present challenges for therapeutic development. The observation that the Phe508del-CFTR mutant protein is temperature sensitive provided proof of principle that mutant CFTR could escape proteosomal degradation and retain partial function. Several specific protein interactors and quality control checkpoints encountered by CFTR during its proteostasis have been investigated for therapeutic purposes, but remain incompletely understood. Furthermore, pharmacological manipulation of many CFTR interactors has not been thoroughly investigated for the rescue of Phe508del-CFTR. However, high-throughput screening technologies helped identify several small molecule modulators that rescue CFTR from proteosomal degradation and restore partial function to the protein. Here, we discuss the current state of CFTR transcriptomic and biogenesis research and small molecule therapy development. We also review recent progress in CFTR proteostasis modulators and discuss how such treatments could complement current FDA-approved small molecules.
Collapse
Affiliation(s)
- Matthew D. Strub
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray, Jr.
- Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA;
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-(319)-335-6844
| |
Collapse
|
6
|
Pranke I, Golec A, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Emerging Therapeutic Approaches for Cystic Fibrosis. From Gene Editing to Personalized Medicine. Front Pharmacol 2019; 10:121. [PMID: 30873022 PMCID: PMC6400831 DOI: 10.3389/fphar.2019.00121] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
An improved understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein structure and the consequences of CFTR gene mutations have allowed the development of novel therapies targeting specific defects underlying CF. Some strategies are mutation specific and have already reached clinical development; some strategies include a read-through of the specific premature termination codons (read-through therapies, nonsense mediated decay pathway inhibitors for Class I mutations); correction of CFTR folding and trafficking to the apical plasma membrane (correctors for Class II mutations); and an increase in the function of CFTR channel (potentiators therapy for Class III mutations and any mutant with a residual function located at the membrane). Other therapies that are in preclinical development are not mutation specific and include gene therapy to edit the genome and stem cell therapy to repair the airway tissue. These strategies that are directed at the basic CF defects are now revolutionizing the treatment for patients and should positively impact their survival rates.
Collapse
Affiliation(s)
- Iwona Pranke
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Anita Golec
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Descartes, Paris, France.,Centre de Référence Maladie Rare, Mucoviscidose et Maladies de CFTR, Paris, France.,Faculté de Médecine, Université Paris Descartes, Paris, France
| |
Collapse
|
7
|
Starr CG, Maderdrut JL, He J, Coy DH, Wimley WC. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides 2018; 104:35-40. [PMID: 29654809 PMCID: PMC5982112 DOI: 10.1016/j.peptides.2018.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
8
|
Lopes-Pacheco M. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis. Front Pharmacol 2016; 7:275. [PMID: 27656143 PMCID: PMC5011145 DOI: 10.3389/fphar.2016.00275] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients' debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Alshafie W, Chappe FG, Li M, Anini Y, Chappe VM. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner. Am J Physiol Cell Physiol 2014; 307:C107-19. [DOI: 10.1152/ajpcell.00296.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a topical airway gland secretagogue regulating fluid secretions, primarily by stimulating cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride secretion that contributes to the airways innate defense mechanism. We previously reported that prolonged VIP stimulation of pituitary adenylate cyclase-activating peptide receptors (VPAC1) in airway cells enhances CFTR function by increasing its membrane stability. In the present study, we identified the key effectors in the VIP signaling cascade in the human bronchial serous cell line Calu-3. Using immunocytochemistry and in situ proximity ligation assays, we found that VIP stimulation increased CFTR membrane localization by promoting its colocalization and interaction with the scaffolding protein Na+/H+ exchange factor 1 (NHERF1), a PDZ protein known as a positive regulator for CFTR membrane localization. VIP stimulation also increased phosphorylation, by protein kinase Cε of the actin-binding protein complex ezrin/radixin/moesin (ERM) and its interaction with NHERF1 and CFTR complex. On the other hand, it reduced intracellular CFTR colocalization and interaction with CFTR associated ligand, another PDZ protein known to compete with NHERF1 for CFTR interaction, inducing cytoplasmic retention and lysosomal degradation. Reducing NHERF1 or ERM expression levels by specific siRNAs prevented the VIP effect on CFTR membrane stability. Furthermore, iodide efflux assays confirmed that NHERF1 and P-ERM are necessary for VIP regulation of the stability and sustained activity of membrane CFTR. This study shows the cellular mechanism by which prolonged VIP stimulation of airway epithelial cells regulates CFTR-dependent secretions.
Collapse
Affiliation(s)
- Walaa Alshafie
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Frederic G. Chappe
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Mansong Li
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
- Obstetrics and Gynecology, Dalhousie University, Nova Scotia, Canada
| | - Valerie M. Chappe
- Departments of Physiology and Biophysics, Dalhousie University, Nova Scotia, Canada and
| |
Collapse
|
10
|
Alcolado NG, Conrad DJ, Poroca D, Li M, Alshafie W, Chappe FG, Pelis RM, Anini Y, Xu Z, Hamidi S, Said SI, Chappe VM. Cystic fibrosis transmembrane conductance regulator dysfunction in VIP knockout mice. Am J Physiol Cell Physiol 2014; 307:C195-207. [PMID: 24898584 DOI: 10.1152/ajpcell.00293.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vasoactive intestinal peptide (VIP), a neuropeptide, controls multiple functions in exocrine tissues, including inflammation, and relaxation of airway and vascular smooth muscles, and regulates CFTR-dependent secretion, which contributes to mucus hydration and local innate defense of the lung. We had previously reported that VIP stimulates the VPAC1 receptor, PKCϵ signaling cascade, and increases CFTR stability and function at the apical membrane of airway epithelial cells by reducing its internalization rate. Moreover, prolonged VIP stimulation corrects the molecular defects associated with F508del, the most common CFTR mutation responsible for the genetic disease cystic fibrosis. In the present study, we have examined the impact of the absence of VIP on CFTR maturation, cellular localization, and function in vivo using VIP knockout mice. We have conducted pathological assessments and detected signs of lung and intestinal disease. Immunodetection methods have shown that the absence of VIP results in CFTR intracellular retention despite normal expression and maturation levels. A subsequent loss of CFTR-dependent chloride current was measured in functional assays with Ussing chamber analysis of the small intestine ex vivo, creating a cystic fibrosis-like condition. Interestingly, intraperitoneal administration of VIP corrected tissue abnormalities, close to the wild-type phenotype, as well as associated defects in the vital CFTR protein. The results show in vivo a primary role for VIP chronic exposure in CFTR membrane stability and function and confirm in vitro data.
Collapse
Affiliation(s)
- Nicole G Alcolado
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dustin J Conrad
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Diogo Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mansong Li
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Walaa Alshafie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frederic G Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Younes Anini
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia, Canada; and
| | - Zhaolin Xu
- Department of Pathology, Dalhousie University and QE II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Sayyed Hamidi
- Department of Medicine and Pulmonary Critical Care, Stony Brook University, Stony Brook, New York
| | - Sami I Said
- Department of Medicine and Pulmonary Critical Care, Stony Brook University, Stony Brook, New York
| | - Valerie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada;
| |
Collapse
|
11
|
Hanrahan JW, Sampson HM, Thomas DY. Novel pharmacological strategies to treat cystic fibrosis. Trends Pharmacol Sci 2013; 34:119-25. [PMID: 23380248 DOI: 10.1016/j.tips.2012.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/28/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is a lethal disease caused by mutations in the CFTR gene. The most frequent mutation is deletion of a phenylalanine residue (ΔF508) that results in retention of the mutant, but otherwise functional, protein in the endoplasmic reticulum (ER). There have been recent advances in the identification of chemically diverse corrector compounds that allow ΔF508-CFTR protein to traffic from the ER to the plasma membrane. The most studied correctors fall into two categories, pharmacological chaperones that bind to the mutant protein and circumvent its recognition by the cellular protein quality control systems and proteostasis regulators that modify the cellular pathways responsible for protein quality control and trafficking. This review focuses on recent advances in the field, strategies for the development of drugs from corrector compounds for the treatment of CF, and identification of their targets and mechanism(s) of action.
Collapse
Affiliation(s)
- John W Hanrahan
- Cystic Fibrosis Translation Research centre, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, Quebec, Canada
| | | | | |
Collapse
|
12
|
Colas J, Faure G, Saussereau E, Trudel S, Rabeh WM, Bitam S, Guerrera IC, Fritsch J, Sermet-Gaudelus I, Davezac N, Brouillard F, Lukacs GL, Herrmann H, Ollero M, Edelman A. Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 2011; 21:623-34. [PMID: 22038833 DOI: 10.1093/hmg/ddr496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported an increased expression of cytokeratins 8/18 (K8/K18) in cells expressing the F508del mutation of cystic fibrosis transmembrane conductance regulator (CFTR). This is associated with increased colocalization of CFTR and K18 in the vicinity of the endoplasmic reticulum, although this is reversed by treating cells with curcumin, resulting in the rescue of F508del-CFTR. In the present work, we hypothesized that (i) the K8/K18 network may interact physically with CFTR, and that (ii) this interaction may modify CFTR function. CFTR was immunoprecipitated from HeLa cells transfected with either wild-type (WT) CFTR or F508del-CFTR. Precipitates were subjected to 2D-gel electrophoresis and differential spots identified by mass spectrometry. K8 and K18 were found significantly increased in F508del-CFTR precipitates. Using surface plasmon resonance, we demonstrate that K8, but not K18, binds directly and preferentially to the F508del over the WT human NBD1 (nucleotide-binding domain-1). In vivo K8 interaction with F508del-CFTR was confirmed by proximity ligation assay in HeLa cells and in primary cultures of human respiratory epithelial cells. Ablation of K8 expression by siRNA in F508del-expressing HeLa cells led to the recovery of CFTR-dependent iodide efflux. Moreover, F508del-expressing mice topically treated with K8-siRNA showed restored nasal potential difference, equivalent to that of WT mice. These results show that disruption of F508del-CFTR and K8 interaction leads to the correction of the F508del-CFTR processing defect, suggesting a novel potential therapeutic target in CF.
Collapse
Affiliation(s)
- Julien Colas
- Faculté de Médecine Paris-Descartes, INSERM, U845, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Alcolado N, Conrad DJ, Rafferty S, Chappe FG, Chappe VM. VIP-dependent increase in F508del-CFTR membrane localization is mediated by PKCε. Am J Physiol Cell Physiol 2011; 301:C53-65. [DOI: 10.1152/ajpcell.00568.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most common cystic fibrosis causing mutation F508del induces early degradation and reduced trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. In the human nasal epithelial cells JME/CF15, we previously reported that vasoactive intestinal peptide (VIP) exposure corrects trafficking and membrane insertion of functional F508del-CFTR channels at 37°C. Correction of trafficking was PKA dependent, whereas enhanced membrane localization involved PKC. In the present study, we have identified PKCε as the isoform involved in VIP-dependent F508del-CFTR membrane insertion. Iodide effluxes were used to monitor the presence of VIP-rescued functional F508del-CFTR channels at the surface of JME/CF15 cells maintained at 37°C. Iodide efflux peaks measured in response to stimulation with forskolin were insensitive to PKC α, β, γ, δ, ζ inhibitors. In contrast, efflux peaks were completely inhibited by pretreatment with the PKCε inhibitor peptide EAVSLKPT with an IC50 of 4.9 μM or by PKCε small interfering RNA (siRNA). Immunostaining and confocal microscopy confirmed that membrane localization of F508del-CFTR induced by VIP was abolished in the presence of EAVSLKPT but not with other isoform inhibitors. In recombinant baby hamster kidney cells, endogenously expressing PKCε but no VIP receptor, wild-type, and F508del-CFTR sensitivity to cpt-cAMP stimulation was increased by PMA treatment. Biotinylation assays and immunoblots confirmed that PMA (0.5–2 h) induced a greater than threefold increase in membrane CFTR, whereas forskolin had no effect. The PMA effect was abolished by specifically inhibiting PKCε (EAVSLKPT IC50 = 5.7 μM) but not other PKC isoforms. Taken together, these results indicate that stimulating PKCε by VIP or PMA increases membrane insertion and activity of WT- and F508del-CFTR.
Collapse
Affiliation(s)
- Nicole Alcolado
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dustin J. Conrad
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara Rafferty
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Frédéric G. Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Valérie M. Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|