1
|
Zhao N, Xu B, Xia J, Wang J, Zhang X, Yan Q. Effect of alternating nicotinamide phosphoribosyltransferase expression levels on mitophagy in Alzheimer's disease mouse models. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167288. [PMID: 38862096 DOI: 10.1016/j.bbadis.2024.167288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
AD is the abbreviation for Alzheimer's Disease, which is a neurodegenerative disorder that features progressive dysfunction in cognition. Previous research has reported that mitophagy impairment and mitochondrial dysfunction have been crucial factors in the AD's pathogenesis. More recently, literature has emerged which offers findings suggesting that the nicotinamide adenine dinucleotide (short for NAD+) augmentation eliminates the defective mitochondria and restores mitophagy. Meanwhile, as an enzyme which is rate-limiting, the Nicotinamide phosphoribosyltransferase, or NAMPT, is part of the salvage pathway of NAD+ synthesis. Therefore, the aim of the research project has been to produce proof for how the NAMPT-NAD +-silent information-regulated transcription factors1/3 (short for SIRT1/3) axis function in mediating mitophagy in APP/PS1 mice aged six months. The results revealed that the NAMPT-NAD+-SIRT1/3 axis in the APP/PS1 mice's hippocampus was considerably declined. Surprisingly, P7C3 (an NAMPT activator) noticeably promoted the NAD+-SIRT1/3 axis, improved mitochondrial structure and function, enhanced mitophagy activity along with the ability of learning and memory. While FK866 (an NAMPT inhibitor) reversed the decreased NAD+-SIRT1/3 axis, and even exacerbated Aβ plaque deposition level in the APP/PS1 mice's hippocampus. The findings observed in this study indicate two main points: avoiding downregulation of the NAMPT activity can prevent AD-related mitophagy impairment; on the other hand, NAMPT characterizes a potential therapeutic intervention regarding AD pathogenesis.
Collapse
Affiliation(s)
- Na Zhao
- College of Sports and Health, Shandong Sport University, Jinan 250102, China.
| | - Bo Xu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jie Xia
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xianliang Zhang
- School of Physical Education, Shandong University, Jinan, China
| | - Qingwei Yan
- School of Physical Education, Xizang Minzu University, Xianyang 712082, Shanxi, China
| |
Collapse
|
2
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
3
|
Gąsiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pękala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs 2020; 39:538-563. [PMID: 33159673 PMCID: PMC7960624 DOI: 10.1007/s10637-020-01032-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Although cisplatin is one of the most common antineoplastic drug, its successful utilisation in cancer treatment is limited by the drug resistance. Multiple attempts have been made to find potential cisplatin chemosensitisers which would overcome cancer cells resistance thus improving antineoplastic efficacy. Autophagy modulation has become an important area of interest regarding the aforementioned topic. Autophagy is a highly conservative cellular self-digestive process implicated in response to multiple environmental stressors. The high basal level of autophagy is a common phenomenon in cisplatin-resistant cancer cells which is thought to grant survival benefit. However current evidence supports the role of autophagy in either promoting or limiting carcinogenesis depending on the context. This encourages the search of substances modulating the process to alleviate cisplatin resistance. Such a strategy encompasses not only simple autophagy inhibition but also harnessing the process to induce autophagy-dependent cell death. In this paper, we briefly describe the mechanism of cisplatin resistance with a special emphasis on autophagy and we give an extensive literature review of potential substances with cisplatin chemosensitising properties related to autophagy modulation.
Collapse
Affiliation(s)
- Bartosz Mateusz Gąsiorkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
4
|
Galli U, Colombo G, Travelli C, Tron GC, Genazzani AA, Grolla AA. Recent Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Front Pharmacol 2020; 11:656. [PMID: 32477131 PMCID: PMC7235340 DOI: 10.3389/fphar.2020.00656] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a cofactor of many enzymatic reactions as well as being a substrate for a number of NAD-consuming enzymes (e.g., PARPS, sirtuins, etc). NAD can be synthesized de novo starting from tryptophan, nicotinamide, nicotinic acid, or nicotinamide riboside from the diet. On the other hand, the nicotinamide that is liberated by NAD-consuming enzymes can be salvaged to re-form NAD. In this former instance, nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme. In the many cells in which the salvage pathway is predominant, NAMPT, therefore, represents an important controller of intracellular NAD concentrations, and as a consequence of energy metabolism. It is, therefore, not surprising that NAMPT is over expressed by tumoral cells, which take advantage from this to sustain growth rate and tumor progression. This has led to the initiation of numerous medicinal chemistry programs to develop NAMPT inhibitors in the context of oncology. More recently, however, it has been shown that NAMPT inhibitors do not solely target the tumor but also have an effect on the immune system. To add complexity, this enzyme can also be secreted by cells, and in the extracellular space it acts as a cytokine mainly through the activation of Toll like Receptor 4 (TLR4), although it has not been clarified yet if this is the only receptor responsible for its actions. While specific small molecules have been developed only against the intracellular form of NAMPT, growing evidences sustain the possibility to target the extracellular form. In this contribution, the most recent evidences on the medicinal chemistry of NAMPT will be reviewed, together with the key elements that sustain the hypothesis of NAMPT targeting and the drawbacks so far encountered.
Collapse
Affiliation(s)
- Ubaldina Galli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giorgia Colombo
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Pharmaceutical Sciences, University of Pavia, Pavia, Italy
| | - Gian Cesare Tron
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ambra A Grolla
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
5
|
Cloux AJ, Aubry D, Heulot M, Widmann C, ElMokh O, Piacente F, Cea M, Nencioni A, Bellotti A, Bouzourène K, Pellegrin M, Mazzolai L, Duchosal MA, Nahimana A. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget 2019; 10:6723-6738. [PMID: 31803365 PMCID: PMC6877101 DOI: 10.18632/oncotarget.27336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
APO866 is a small molecule drug that specifically inhibits nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Although, the antitumor activity of APO866 on various types of cancer models has been reported, information regarding mechanisms by which APO866 exerts its cytotoxic effects is not well defined. Here we show that APO866 induces a strong, time-dependent increase in highly reactive ROS, nitric oxide, cytosolic/mitochondrial superoxide anions and hydrogen peroxide. We provide evidence that APO866-mediated ROS production is modulated by PARP1 and triggers cell death through mitochondria depolarization and ATP loss. Genetic or pharmacologic inhibition of PARP1 prevented hydrogen peroxide accumulation, caspase activation, mitochondria depolarization, ATP loss and abrogates APO866-induced cell death, suggesting that the integrity of PARP1 status is required for cell death. Conversely, PARP1 activating drugs enhanced the anti-leukemia activity of APO866 Collectively, our studies show that APO866 induces ROS/RNS productions, which mediate its anti-leukemia effect. These results support testing new combinatorial strategies to enhance the antitumor activities of APO866.
Collapse
Affiliation(s)
- Anne-Julie Cloux
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dominique Aubry
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mathieu Heulot
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Oussama ElMokh
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Inhibition of NAMPT markedly enhances plasma-activated medium-induced cell death in human breast cancer MDA-MB-231 cells. Arch Biochem Biophys 2019; 676:108155. [PMID: 31628926 DOI: 10.1016/j.abb.2019.108155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Plasma-activated medium (PAM), which is prepared by non-thermal atmospheric pressure plasma (NTP) irradiation of cell-free medium, has been shown to exhibit tumor-specific cytotoxicity. Since PAM contains reactive oxygen species (ROS) and reactive nitrogen species (RNS), its anticancer effects are considered to be responsible for oxidative stress induced by these reactive molecules. We previously reported that PAM-induced cell death is closely related to energy failure associated with a decrease in intracellular nicotinamide adenine dinucleotide (NAD+) and ATP levels. Nicotinamide phosphoribosyltransferase (NAMPT), which is a rate-limiting enzyme for NAD+ synthesis in the salvage pathway, was shown to be overexpressed in many types of cancer cells. The NAMPT inhibitor FK866 significantly depletes NAD+ and subsequently suppresses cancer cell proliferation. In this study, we examined the effects of FK866 on PAM-induced cytotoxicity using human breast cancer MDA-MB-231 cells. FK866 dose-dependently enhanced PAM-induced cell death in MDA-MB-231 cells. The combination of PAM and FK866 markedly induced intracellular NAD+ and ATP depletion. Knockdown of NAMPT by siRNA increased the cytotoxicity of PAM. The addition of NAD+ mitigated PAM-induced cell death. In addition, cotreatment with PAM and FK866 augmented ROS production and the decrease in intracellular reduced glutathione (GSH) compared to treatment with PAM alone. FK866 had little effect on PAM-induced mitochondrial dysfunction. Furthermore, the combination of PAM and FK866 decreased the level of NADPH, which is required for GSH metabolism, compared with PAM alone. Taken together, we conclude that cotreatment with NAMPT inhibitors is beneficial for anticancer therapy using PAM.
Collapse
|
7
|
Rodrigo MAM, Buchtelova H, Jimenez AMJ, Adam P, Babula P, Heger Z, Adam V. Transcriptomic Landscape of Cisplatin-Resistant Neuroblastoma Cells. Cells 2019; 8:E235. [PMID: 30871063 PMCID: PMC6469049 DOI: 10.3390/cells8030235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
The efficiency of cisplatin (CDDP) is significantly hindered by the development of resistance during the treatment course. To gain a detailed understanding of the molecular mechanisms underlying the development of cisplatin resistance, we comparatively analyzed established a CDDP-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its susceptible parental cells (UKF-NB-4). We verified increased chemoresistance of UKF-NB-4CDDP cells by analyzing the viability, induction of apoptosis and clonal efficiency. To shed more light on this phenomenon, we employed custom cDNA microarray (containing 2234 probes) to perform parallel transcriptomic profiling of RNA and identified that 139 genes were significantly up-regulated due to CDDP chemoresistance. The analyses of molecular pathways indicated that the top up-regulation scoring functions were response to stress, abiotic stimulus, regulation of metabolic process, apoptotic processes, regulation of cell proliferation, DNA repair or regulation of catalytic activity, which was also evidenced by analysis of molecular functions revealing up-regulation of genes encoding several proteins with a wide-spectrum of enzymatic activities. Functional analysis using lysosomotropic agents chloroquine and bafilomycin A1 validated their potential to re-sensitize UKF-NB-4CDDP cells to CDDP. Taken together, the identification of alterations in specific genes and pathways that contribute to CDDP chemoresistance may potentially lead to a renewed interest in the development of novel rational therapeutics and prognostic biomarkers for the management of CDDP-resistant neuroblastoma.
Collapse
Affiliation(s)
- Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Ana Maria Jimenez Jimenez
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| | - Pavlina Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|
8
|
Grohmann T, Penke M, Petzold-Quinque S, Schuster S, Richter S, Kiess W, Garten A. Inhibition of NAMPT sensitizes MOLT4 leukemia cells for etoposide treatment through the SIRT2-p53 pathway. Leuk Res 2018; 69:39-46. [PMID: 29653431 DOI: 10.1016/j.leukres.2018.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
Abstract
NAMPT (Nicotinamide phosphoribosyltransferase) catalyses the rate-limiting step in the NAD biosynthesis from nicotinamide and thereby regulates the activity of NAD-dependent enzymes. Cancer cells are highly dependent on NAD for energy and DNA repair processes and are assumed to be more susceptible to an inhibition of NAD synthesis than non-transformed cells. We aimed to investigate whether or not inhibition of NAMPT with its specific inhibitor FK866 can sensitize leukemia cells for chemotherapeutic agents. NAMPT protein abundance, enzymatic activity and NAD concentrations were significantly higher in Jurkat and Molt-4 leukemia cell lines compared to normal peripheral blood mononuclear cells. Combination of etoposide and FK866 caused increased cell death in leukemia cell lines compared to etoposide alone. Etoposide decreased protein abundance of NAD-dependent deacetylases SIRTUIN1. After combining etoposide and FK866 treatment SIRTUIN2 was further decreased and accumulation and acetylation of the downstream target p53 was further enhanced in MOLT4 cells. Concomitantly, protein abundance of p21 and cleaved BAX was increased. Targeting NAMPT could be a novel therapeutic strategy to enhance the efficacy of chemotherapeutic agents such as etoposide against leukemia.
Collapse
Affiliation(s)
- Theresa Grohmann
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Melanie Penke
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Stefanie Petzold-Quinque
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Susanne Schuster
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Sandy Richter
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Wieland Kiess
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany
| | - Antje Garten
- Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, University of Leipzig, Germany; University of Birmingham, Institute of Metabolism and Systems Research (IMSR), Birmingham, UK.
| |
Collapse
|
9
|
Barraud M, Garnier J, Loncle C, Gayet O, Lequeue C, Vasseur S, Bian B, Duconseil P, Gilabert M, Bigonnet M, Maignan A, Moutardier V, Garcia S, Turrini O, Delpero JR, Giovannini M, Grandval P, Gasmi M, Ouaissi M, Secq V, Poizat F, Guibert N, Iovanna J, Dusetti N. A pancreatic ductal adenocarcinoma subpopulation is sensitive to FK866, an inhibitor of NAMPT. Oncotarget 2018; 7:53783-53796. [PMID: 27462772 PMCID: PMC5288221 DOI: 10.18632/oncotarget.10776] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/09/2016] [Indexed: 01/05/2023] Open
Abstract
Treating pancreatic cancer is extremely challenging due to multiple factors, including chemoresistance and poor disease prognosis. Chemoresistance can be explained by: the presence of a dense stromal barrier leading to a lower vascularized condition, therefore limiting drug delivery; the huge intra-tumoral heterogeneity; and the status of epithelial-to-mesenchymal transition. These factors are highly variable between patients making it difficult to predict responses to chemotherapy. Nicotinamide phosphoribosyl transferase (NAMPT) is the main enzyme responsible for recycling cytosolic NAD+ in hypoxic conditions. FK866 is a noncompetitive specific inhibitor of NAMPT, which has proven anti-tumoral effects, although a clinical advantage has still not been demonstrated. Here, we tested the effect of FK866 on pancreatic cancer-derived primary cell cultures (PCCs), both alone and in combination with three different drugs typically used against this cancer: gemcitabine, 5-Fluorouracil (5FU) and oxaliplatin. The aims of this study were to evaluate the benefit of drug combinations, define groups of sensitivity, and identify a potential biomarker for predicting treatment sensitivity. We performed cell viability tests in the presence of either FK866 alone or in combination with the drugs above-mentioned. We confirmed both inter- and intra-tumoral heterogeneity. Interestingly, only the in vitro effect of gemcitabine was influenced by the addition of FK866. We also found that NAMPT mRNA expression levels can predict the sensitivity of cells to FK866. Overall, our results suggest that patients with tumors sensitive to FK866 can be identified using NAMPT mRNA levels as a biomarker and could therefore benefit from a co-treatment of gemcitabine plus FK866.
Collapse
Affiliation(s)
- Marine Barraud
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jonathan Garnier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Celine Loncle
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Charlotte Lequeue
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Benjamin Bian
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Pauline Duconseil
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Marine Gilabert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Aurélie Maignan
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Vincent Moutardier
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.,Hôpital Nord, Marseille, France.,CIC1409, AP-HM - Nord University Hospital, Aix-Marseille University, Marseille, France
| | - Stephane Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.,Hôpital Nord, Marseille, France
| | - Olivier Turrini
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France.,Institut Paoli-Calmettes, Marseille, France
| | | | | | | | - Mohamed Gasmi
- Hôpital Nord, Marseille, France.,CIC1409, AP-HM - Nord University Hospital, Aix-Marseille University, Marseille, France
| | | | | | | | | | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
10
|
Sun W, Rojas Y, Wang H, Yu Y, Wang Y, Chen Z, Rajapakshe K, Xu X, Huang W, Agarwal S, Patel RH, Woodfield S, Zhao Y, Jin J, Zhang H, Major A, Hicks MJ, Shohet JM, Vasudevan SA, Coarfa C, Yang J, Nuchtern JG. EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279 inhibits growth of neuroblastoma. Oncotarget 2017; 8:94780-94792. [PMID: 29212266 PMCID: PMC5706912 DOI: 10.18632/oncotarget.21933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Treatment failure in high risk neuroblastoma (NB) is largely due to the development of chemotherapy resistance. We analyzed the gene expression changes associated with exposure to chemotherapy in six high risk NB tumors with the aid of the Connectivity Map bioinformatics platform. Ten therapeutic agents were predicted to have a high probability of reversing the transcriptome changes associated with neoadjuvant chemotherapy treatment. Among these agents, initial screening showed the EWS-FLI1 and RNA helicase A interaction inhibitor YK-4-279, had obvious cytotoxic effects on NB cell lines. Using a panel of NB cell lines, including MYCN nonamplified (SK-N-AS, SH-SY5Y, and CHLA-255), and MYCN amplified (NB-19, NGP, and IMR-32) cell lines, we found that YK-4-279 had cytotoxic effects on all lines tested. In addition, YK-4-279 also inhibited cell proliferation and anchorage-independent growth and induced cell apoptosis of these cells. YK-4-279 enhanced the cytotoxic effect of doxorubicin (Dox). Moreover, YK-4-279 was able to overcome the established chemoresistance of LA-N-6 NB cells. In an orthotopic xenograft NB mouse model, YK-4-279 inhibited NB tumor growth and induced apoptosis in tumor cells through PARP and Caspase 3 cleavage in vivo. While EWS-FLI1 fusion protein is not frequently found in NB, using the R2 public database of neuroblastoma outcome and gene expression, we found that high expression of EWSR1 was associated with poor patient outcome. Knockdown of EWSR1 inhibited the oncogenic potential of neuroblastoma cell lines. Taken together, our results indicate that YK-4-279 might be a promising agent for treatment of NB that merits further exploration.
Collapse
Affiliation(s)
- Wenjing Sun
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yesenia Rojas
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hao Wang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yang Yu
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongfeng Wang
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhenghu Chen
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xin Xu
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Huang
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saurabh Agarwal
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roma H Patel
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Woodfield
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingling Jin
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Zhang
- Department of Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angela Major
- Department of Pathology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - M John Hicks
- Department of Pathology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason M Shohet
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjeev A Vasudevan
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhua Yang
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jed G Nuchtern
- Pediatric Surgery Division, Michael E. Debakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Hernandez-Martinez JM, Forrest CM, Darlington LG, Smith RA, Stone TW. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation. Eur J Neurosci 2017; 45:700-711. [PMID: 27973747 DOI: 10.1111/ejn.13499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Glutamate and nicotinamide adenine dinucleotide (NAD+ ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD+ . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD+ , independently of NMDA receptors.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Caroline M Forrest
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | | | - Robert A Smith
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Cea M, Cagnetta A, Acharya C, Acharya P, Tai YT, Yang G, Lovera D, Soncini D, Miglino M, Fraternali-Orcioni G, Mastracci L, Nencioni A, Montecucco F, Ballestrero A, Hideshima T, Chauhan D, Gobbi M, Lemoli RM, Munshi N, Treon SP, Anderson KC. Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clin Cancer Res 2016; 22:6099-6109. [PMID: 27287071 PMCID: PMC5771267 DOI: 10.1158/1078-0432.ccr-16-0630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Nicotinamide phosphoribosyltransferase (Nampt) regulates intracellular NAD+ pool and is highly expressed in a number of malignancies. FK866, a selective inhibitor of Nampt, depletes intracellular NAD+ levels, thereby blocking cellular metabolism and triggering sensitization to other drugs and cell death. Here we characterized the antitumor effects of Nampt inhibition in Waldenström macroglobulinemia. EXPERIMENTAL DESIGN We investigated Nampt role in MW cells using both mRNA and protein expression analyses. We have also used loss-of-function approaches to investigate the growth and survival effects of Nampt on MW cells and further tested the anti-MW activity of dual Nampt and BTK inhibition in vitro and in vivo RESULTS: We found that Waldenström macroglobulinemia cells exhibit high levels of Nampt compared with normal B cells. Loss of function studies suggested a potential oncogenic role of Nampt in Waldenström macroglobulinemia cells, and BTK-inhibitor ibrutinib and FK866 resulted in a significant and synergistic anti-Waldenström macroglobulinemia cell death, regardless of MYD88 and CXCR4 mutational status. Cell death was associated with: (i) activation of caspase-3, PARP and downregulation of Mcl-1, (ii) enhanced intracellular ATP and NAD+ depletion, (iii) inhibition of NF-κB signaling, and (iv) inhibition of multiple prosurvival signaling pathways. In a murine xenograft Waldenström macroglobulinemia model, low-dose combination FK866 and ibrutinib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. CONCLUSIONS Our results show intracellular NAD+ level as crucial for proliferation and survival of Waldenström macroglobulinemia cells, and provides the mechanistic preclinical rationale for targeting Nampt, either alone or with Ibrutinib, to overcome drug resistance and improve patient outcome in Waldenström macroglobulinemia. Clin Cancer Res; 22(24); 6099-109. ©2016 AACR.
Collapse
Affiliation(s)
- Michele Cea
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Antonia Cagnetta
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Chirag Acharya
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Prakrati Acharya
- Mount Auburn Hospital, Harvard Medical School, Cambrige, MA 02138, USA
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Guang Yang
- Bing Center for Waldenstrom's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Davide Lovera
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Debora Soncini
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | | | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), Pathology Unit, University of Genoa and IRCCS AUO S. Martino-IST, Genoa, Italy
| | - Alessio Nencioni
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Fabrizio Montecucco
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Alberto Ballestrero
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Teru Hideshima
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dharminder Chauhan
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Marco Gobbi
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Roberto M. Lemoli
- Chair of Hematology, Department of Medicine (DiMI), University of Genoa, AOU, I.R.C.C.S. San Martino -IST. Genova, Italy
| | - Nikhil Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Treon
- Bing Center for Waldenstrom's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth C. Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
13
|
Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PWK, Gujar SA. NAD + salvage pathway in cancer metabolism and therapy. Pharmacol Res 2016; 114:274-283. [PMID: 27816507 DOI: 10.1016/j.phrs.2016.10.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Tanveer Sharif
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emma Martell
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cathleen Dai
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W K Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Shashi A Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, NS, Canada.
| |
Collapse
|
14
|
Caprioglio D, Torretta S, Ferrari M, Travelli C, Grolla AA, Condorelli F, Genazzani AA, Minassi A. Triazole-curcuminoids: A new class of derivatives for 'tuning' curcumin bioactivities? Bioorg Med Chem 2015; 24:140-52. [PMID: 26705144 DOI: 10.1016/j.bmc.2015.11.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 11/17/2022]
Abstract
Curcumin is a unique blend of pharmacophores responsible for the pleiotropy of this natural pigment. In the present study we have replaced the 1,3-dicarbonyl moiety with a 1,2,3-triazole ring to furnish a new class of triazole-curcuminoids as a possible strategy to generate new compounds with different potency and selectivity compared to curcumin. We obtained a proof-of-principle library of 28 compounds tested for their cytotoxicity (SY-SY5Y and HeLa cells) and for their ability to inhibit NF-κB. Furthermore, we also generated 1,3-dicarbonyl curcuminoids of selected click compounds. Triazole-curcuminoids lost their ability to be Michael's acceptors, yet maintained some of the features of the parent compounds and disclosed new ones. In particular, we found that some compounds were able to inhibit NF-κB without showing cytotoxicity, while others, unlike curcumin, activated NF-κB signalling. This validates the hypothesis that click libraries can be used to investigate the biological activities of curcumin as well as generate analogs with selected features.
Collapse
Affiliation(s)
- Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Simone Torretta
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Maila Ferrari
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Cristina Travelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Ambra A Grolla
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Fabrizio Condorelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy
| | - Armando A Genazzani
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy.
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, Novara 28100, Italy.
| |
Collapse
|
15
|
NAD⁺-Metabolizing Ectoenzymes in Remodeling Tumor-Host Interactions: The Human Myeloma Model. Cells 2015; 4:520-37. [PMID: 26393653 PMCID: PMC4588049 DOI: 10.3390/cells4030520] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD⁺) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD⁺ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD⁺, belongs to the ectoenzymatic network generating intracellular Ca(2+)-active metabolites. Within this general framework, the extracellular conversion of NAD⁺ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo.
Collapse
|
16
|
Pulla VK, Sriram DS, Soni V, Viswanadha S, Sriram D, Yogeeswari P. Targeting NAMPT for Therapeutic Intervention in Cancer and Inflammation: Structure-Based Drug Design and Biological Screening. Chem Biol Drug Des 2015; 86:881-94. [PMID: 25850461 DOI: 10.1111/cbdd.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate limiting enzyme that plays an important role in the synthesis of nicotinamide adenine dinucleotide (NAD) via a salvage pathway. Along with a role in bioenergetics, NAMPT regulates the activity of proteins such as SIRT-1 that utilize NAD as a cofactor. As NAD metabolism is usually high in diseased conditions, it has been hypothesized and proven that NAMPT is over expressed in various cancers and inflammatory disorders. Inhibitors targeting NAMPT could therefore be useful in treating disorders arising from aberrant NAMPT signalling. In this study, inhibitors against NAMPT were designed using an energy-based pharmacophore strategy and evaluated for efficacy in cellular assays. Besides reducing cellular pools of NAD and NMN, NAMPT inhibitors decreased concentrations of reactive oxygen species as well as mRNA levels of TNFα and IL6, thereby implicating their potential in alleviating the inflammatory process. In addition, reduced NAD levels corroborated with an induction of apoptosis in prostate cancer cell lines.
Collapse
Affiliation(s)
- Venkat K Pulla
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| | - Dinavahi S Sriram
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India.,Incozen Therapeutics Private Limited, 450, Alexandria Knowledge park, Phase-I, Shameerpet, Hyderabad, AP, 500078, India
| | - Vijay Soni
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| | - Srikant Viswanadha
- Incozen Therapeutics Private Limited, 450, Alexandria Knowledge park, Phase-I, Shameerpet, Hyderabad, AP, 500078, India
| | - Dharmarajan Sriram
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| | - Perumal Yogeeswari
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| |
Collapse
|
17
|
Chakrabarti G, Gerber DE, Boothman DA. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways. Clin Pharmacol 2015; 7:57-68. [PMID: 25870517 PMCID: PMC4381889 DOI: 10.2147/cpaa.s79760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) biogenesis is an essential mechanism by which both normal and cancer cells maintain redox balance. While antitumor approaches to treat cancers through elevated reactive oxygen species (ROS) are not new ideas, depleting specific NADPH-biogenesis pathways that control recovery and repair pathways are novel, viable approaches to enhance cancer therapy. However, to elicit efficacious therapies exploiting NADPH-biogenic pathways, it is crucial to understand and specifically define the roles of NADPH-biogenesis pathways used by cancer cells for survival or recovery from cell stress. It is equally important to select NADPH-biogenic pathways that are expendable or not utilized in normal tissue to avoid unwanted toxicity. Here, we address recent literature that demonstrates specific tumor-selective NADPH-biogenesis pathways that can be exploited using agents that target specific cancer cell pathways normally not utilized in normal cells. Defining NADPH-biogenesis profiles of specific cancer-types should enable novel strategies to exploit these therapeutic windows for increased efficacy against recalcitrant neoplastic disease, such as pancreatic cancers. Accomplishing the goal of using ROS as a weapon against cancer cells will also require agents, such as NQO1 bioactivatable drugs, that selectively induce elevated ROS levels in cancer cells, while normal cells are protected.
Collapse
Affiliation(s)
- Gaurab Chakrabarti
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA ; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA ; Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Division of Hematology and Oncology, UT Southwestern Medical Center, Dallas, TX, USA ; Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - David A Boothman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA ; Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA ; Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
18
|
Zhang FX, Wang BB, Wu CF, Zheng XF, Ma Q. Targeting autophagy for therapy of gastric cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:51-57. [DOI: 10.11569/wcjd.v23.i1.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignant neoplasms. Surgery represents the main approach for this disease. Notwithstanding the advances in surgical techniques, there has been still a minimal improvement in overall survival with a significant increase in relapse rates. Although the development of new drugs has significantly improved the effectiveness of chemotherapy, the prognosis of patients with unresectable or metastatic gastric carcinoma remains poor. Therefore, it is necessary to find some new ways against gastric carcinogenesis. It has been shown that autophagy plays a dual role in the transformation and progression of gastric cancer; activation and induction of autophagy can lead to gastric carcinogenesis. Recently, several agents targeting autophagy molecules in gastric carcinogenesis have been investigated. This article reviews the regulation of autophagy with inhibitors or inducers to treat gastric cancer, and discusses how they regulate autophagy as a targeted therapy for gastric cancer.
Collapse
|
19
|
Gehrke I, Bouchard ED, Beiggi S, Poeppl AG, Johnston JB, Gibson SB, Banerji V. On-Target Effect of FK866, a Nicotinamide Phosphoribosyl Transferase Inhibitor, by Apoptosis-Mediated Death in Chronic Lymphocytic Leukemia Cells. Clin Cancer Res 2014; 20:4861-72. [DOI: 10.1158/1078-0432.ccr-14-0624] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Chan M, Gravel M, Bramoullé A, Bridon G, Avizonis D, Shore GC, Roulston A. Synergy between the NAMPT inhibitor GMX1777(8) and pemetrexed in non-small cell lung cancer cells is mediated by PARP activation and enhanced NAD consumption. Cancer Res 2014; 74:5948-54. [PMID: 25145669 DOI: 10.1158/0008-5472.can-14-0809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GMX1778 and its prodrug GMX1777 represent a new class of cancer drugs that targets nicotinamide phosphoribosyltransferase (NAMPT) as a new strategy to interfere with biosynthesis of the key enzymatic cofactor NAD, which is critical for a number of cell functions, including DNA repair. Using a genome-wide synthetic lethal siRNA screen, we identified the folate pathway-related genes, deoxyuridine triphosphatase and dihydrofolate reductase, the silencing of which sensitized non-small cell lung carcinoma (NSCLC) cells to the cytotoxic effects of GMX. Pemetrexed is an inhibitor of dihydrofolate reductase currently used to treat patients with nonsquamous NSCLC. We found that combining pemetrexed with GMX1777 produced a synergistic therapeutic benefit in A549 and H1299 NSCLC cells in vitro and in a mouse A549 xenograft model of lung cancer. Pemetrexed is known to activate PARPs, thereby accelerating NAD consumption. Genetic or pharmacologic blockade of PARP activity inhibited this effect, impairing cell death by pemetrexed either alone or in combination with GMX1777. Conversely, inhibiting the base excision repair pathway accentuated NAD decline in response to GMX and the cytotoxicity of both agents either alone or in combination. These findings provide a mechanistic rationale for combining GMX1777 with pemetrexed as an effective new therapeutic strategy to treat nonsquamous NSCLC.
Collapse
Affiliation(s)
- Manuel Chan
- Laboratory for Therapeutic Development, McGill University, Montreal, Québec, Canada
| | - Michel Gravel
- Laboratory for Therapeutic Development, McGill University, Montreal, Québec, Canada
| | - Alexandre Bramoullé
- Laboratory for Therapeutic Development, McGill University, Montreal, Québec, Canada
| | - Gaëlle Bridon
- Metabolomics Core Facility, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada. Department of Biochemistry, McGill University, Montreal, Québec Canada
| | - Daina Avizonis
- Metabolomics Core Facility, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Québec, Canada. Department of Biochemistry, McGill University, Montreal, Québec Canada
| | - Gordon C Shore
- Laboratory for Therapeutic Development, McGill University, Montreal, Québec, Canada
| | - Anne Roulston
- Laboratory for Therapeutic Development, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
21
|
Nagelkerke A, Bussink J, Geurts-Moespot A, Sweep FCGJ, Span PN. Therapeutic targeting of autophagy in cancer. Part II: pharmacological modulation of treatment-induced autophagy. Semin Cancer Biol 2014; 31:99-105. [PMID: 24933034 DOI: 10.1016/j.semcancer.2014.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autophagy, the catabolic pathway in which cells recycle organelles and other parts of their own cytoplasm, is increasingly recognised as an important cytoprotective mechanism in cancer cells. Several cancer treatments stimulate the autophagic process and when autophagy is inhibited, cancer cells show an enhanced response to multiple treatments. These findings have nourished the theory that autophagy provides cancer cells with a survival advantage during stressful conditions, including exposure to therapeutics. Therefore, interference with the autophagic response can potentially enhance the efficacy of cancer therapy. In this review we examine two approaches to modulate autophagy as complementary cancer treatment: inhibition and induction. Inhibition of autophagy during cancer treatment eliminates its cytoprotective effects. Conversely, induction of autophagy combined with conventional cancer therapy exerts severe cytoplasmic degradation that can ultimately lead to cell death. We will discuss how autophagy can be therapeutically manipulated in cancer cells and how interactions between the conventional cancer therapies and autophagy modulation influence treatment outcome.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Department of Radiation Oncology, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Johan Bussink
- Department of Radiation Oncology, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Anneke Geurts-Moespot
- Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Paul N Span
- Department of Radiation Oncology, Radboud university medical center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Raj R, Sharma V, Hopper MJ, Patel N, Hall D, Wrischnik LA, Land KM, Kumar V. Synthesis and preliminary in vitro activity of mono- and bis-1 H-1,2,3-triazole-tethered β-lactam-isatin conjugates against the human protozoal pathogen Trichomonas vaginalis. Med Chem Res 2014; 23:3671-3680. [PMID: 32214766 PMCID: PMC7080013 DOI: 10.1007/s00044-014-0956-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/12/2014] [Indexed: 02/03/2023]
Abstract
In this study, we describe the synthesis of mono- and bis-1H-1,2,3-triazole-tethered β-lactam-isatin conjugates using copper-catalysed azide-alkyne cycloaddition reaction between mono- and di-propargylated azetidin-2-ones and N-alkylazido isatins. The synthesized conjugates were evaluated for their preliminary in vitro analysis against Trichomonas vaginalis at 50 μM. The efficacy of synthesized hybrids was observed to depend on the substituent at N-1 position of β-lactam ring, as well as the presence of single/double 1H-1,2,3-triazole linker. Among the synthesized conjugates, the presence of a p-tolyl substituent at N-1 of β-lactam ring was preferred for good activity profiles while the increase in spacer length did not influence the efficacy of the compounds. Compounds with high levels of potency were further analysed to determine their IC50 values, as well as cytotoxicity profiles against mammalian cells. The most active compound in the synthesized conjugates displayed an IC50 value of 10.49 μM against cultured G3 strain of T. vaginalis and was non-toxic to cultured mammalian HeLa cells at the same concentration.
Collapse
Affiliation(s)
- Raghu Raj
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Vaishali Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Melissa J. Hopper
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211 USA
| | - Neal Patel
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211 USA
| | - Dominique Hall
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211 USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211 USA
| | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211 USA
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
23
|
Nahimana A, Aubry D, Breton CS, Majjigapu SR, Sordat B, Vogel P, Duchosal MA. The anti-lymphoma activity of APO866, an inhibitor of nicotinamide adenine dinucleotide biosynthesis, is potentialized when used in combination with anti-CD20 antibody. Leuk Lymphoma 2014; 55:2141-50. [PMID: 24283753 DOI: 10.3109/10428194.2013.869325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.
Collapse
Affiliation(s)
- Aimable Nahimana
- Service and Central Laboratory of Hematology, University Hospital of Lausanne , Lausanne , Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Ginet V, Puyal J, Rummel C, Aubry D, Breton C, Cloux AJ, Majjigapu SR, Sordat B, Vogel P, Bruzzone S, Nencioni A, Duchosal MA, Nahimana A. A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis. Autophagy 2014; 10:603-17. [PMID: 24487122 DOI: 10.4161/auto.27722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
APO866, an inhibitor of NAD biosynthesis, exhibits potent antitumor properties in various malignancies. Recently, it has been shown that APO866 induces apoptosis and autophagy in human hematological cancer cells, but the role of autophagy in APO866-induced cell death remains unclear. Here, we report studies on the molecular mechanisms underlying APO866-induced cell death with emphasis on autophagy. Treatment of leukemia and lymphoma cells with APO866 induced both autophagy, as evidenced by an increase in autophagosome formation and in SQSTM1/p62 degradation, but also increased caspase activation as revealed by CASP3/caspase 3 cleavage. As an underlying mechanism, APO866-mediated autophagy was found to deplete CAT/catalase, a reactive oxygen species (ROS) scavenger, thus promoting ROS production and cell death. Inhibition of autophagy by ATG5 or ATG7 silencing prevented CAT degradation, ROS production, caspase activation, and APO866-induced cell death. Finally, supplementation with exogenous CAT also abolished APO866 cytotoxic activity. Altogether, our results indicated that autophagy is essential for APO866 cytotoxic activity on cells from hematological malignancies and also indicate an autophagy-dependent CAT degradation, a novel mechanism for APO866-mediated cell killing. Autophagy-modulating approaches could be a new way to enhance the antitumor activity of APO866 and related agents.
Collapse
Affiliation(s)
- Vanessa Ginet
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Coralie Rummel
- Department of Fundamental Neurosciences; Faculty of Biology and Medicine; University of Lausanne; Lausanne, Switzerland
| | - Dominique Aubry
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Caroline Breton
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Anne-Julie Cloux
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Somi R Majjigapu
- Laboratory of Glycochemistry and Asymmetric Synthesis; Swiss Federal Institute of Technology (EPFL); Batochime, Lausanne, Switzerland
| | - Bernard Sordat
- Laboratory of Glycochemistry and Asymmetric Synthesis; Swiss Federal Institute of Technology (EPFL); Batochime, Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis; Swiss Federal Institute of Technology (EPFL); Batochime, Lausanne, Switzerland
| | - Santina Bruzzone
- Department of Experimental Medicine; Section of Biochemistry; University of Genoa; Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine; University of Genoa; Genoa, Italy
| | - Michel A Duchosal
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| | - Aimable Nahimana
- Service and Central Laboratory of Hematology; University Hospital of Lausanne; Lausanne, Switzerland
| |
Collapse
|
25
|
Abstract
We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.
Collapse
|
26
|
Venkateshaiah SU, Khan S, Ling W, Bam R, Li X, van Rhee F, Usmani S, Barlogie B, Epstein J, Yaccoby S. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity. Exp Hematol 2013; 41:547-557.e2. [PMID: 23435312 PMCID: PMC4648259 DOI: 10.1016/j.exphem.2013.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/08/2013] [Accepted: 02/14/2013] [Indexed: 01/07/2023]
Abstract
Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD(+)) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD(+) biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients' plasma cells than in healthy donors' counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD(+). APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD(+) content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD(+) or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD(+) depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM.
Collapse
|
27
|
Galli U, Travelli C, Massarotti A, Fakhfouri G, Rahimian R, Tron GC, Genazzani AA. Medicinal chemistry of nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. J Med Chem 2013; 56:6279-96. [PMID: 23679915 DOI: 10.1021/jm4001049] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide phoshophoribosyltransferase (NAMPT) plays a key role in the replenishment of the NAD pool in cells. This in turn makes this enzyme an important player in bioenergetics and in the regulation of NAD-using enzymes, such as PARPs and sirtuins. Furthermore, there is now ample evidence that NAMPT is secreted and has a role as a cytokine. An important role of either the intracellular or extracellular form of NAMPT has been shown in cancer, inflammation, and metabolic diseases. The first NAMPT inhibitors (FK866 and CHS828) have already entered clinical trials, and a surge in interest in the synthesis of novel molecules has occurred. The present review summarizes the recent progress in this field.
Collapse
Affiliation(s)
- Ubaldina Galli
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Kobos R, Nagai M, Tsuda M, Merl MY, Saito T, Laé M, Mo Q, Olshen A, Lianoglou S, Leslie C, Ostrovnaya I, Antczak C, Djaballah H, Ladanyi M. Combining integrated genomics and functional genomics to dissect the biology of a cancer-associated, aberrant transcription factor, the ASPSCR1-TFE3 fusion oncoprotein. J Pathol 2013; 229:743-754. [PMID: 23288701 DOI: 10.1002/path.4158] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 12/30/2022]
Abstract
Oncogenic rearrangements of the TFE3 transcription factor gene are found in two distinct human cancers. These include ASPSCR1-TFE3 in all cases of alveolar soft part sarcoma (ASPS) and ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3 and others in a subset of paediatric and adult RCCs. Here we examined the functional properties of the ASPSCR1-TFE3 fusion oncoprotein, defined its target promoters on a genome-wide basis and performed a high-throughput RNA interference screen to identify which of its transcriptional targets contribute to cancer cell proliferation. We first confirmed that ASPSCR1-TFE3 has a predominantly nuclear localization and functions as a stronger transactivator than native TFE3. Genome-wide location analysis performed on the FU-UR-1 cell line, which expresses endogenous ASPSCR1-TFE3, identified 2193 genes bound by ASPSCR1-TFE3. Integration of these data with expression profiles of ASPS tumour samples and inducible cell lines expressing ASPSCR1-TFE3 defined a subset of 332 genes as putative up-regulated direct targets of ASPSCR1-TFE3, including MET (a previously known target gene) and 64 genes as down-regulated targets of ASPSCR1-TFE3. As validation of this approach to identify genuine ASPSCR1-TFE3 target genes, two up-regulated genes bound by ASPSCR1-TFE3, CYP17A1 and UPP1, were shown by multiple lines of evidence to be direct, endogenous targets of transactivation by ASPSCR1-TFE3. As the results indicated that ASPSCR1-TFE3 functions predominantly as a strong transcriptional activator, we hypothesized that a subset of its up-regulated direct targets mediate its oncogenic properties. We therefore chose 130 of these up-regulated direct target genes to study in high-throughput RNAi screens, using FU-UR-1 cells. In addition to MET, we provide evidence that 11 other ASPSCR1-TFE3 target genes contribute to the growth of ASPSCR1-TFE3-positive cells. Our data suggest new therapeutic possibilities for cancers driven by TFE3 fusions. More generally, this work establishes a combined integrated genomics/functional genomics strategy to dissect the biology of oncogenic, chimeric transcription factors.
Collapse
Affiliation(s)
- Rachel Kobos
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Makoto Nagai
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Masumi Tsuda
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Man Yee Merl
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Tsuyoshi Saito
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Marick Laé
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Qianxing Mo
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Adam Olshen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Steven Lianoglou
- Computational Biology Program, Sloan-Kettering Institute, New York, USA
| | - Christina Leslie
- Computational Biology Program, Sloan-Kettering Institute, New York, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Christophe Antczak
- High-throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Hakim Djaballah
- High-throughput Screening Core Facility, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Marc Ladanyi
- Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| |
Collapse
|
29
|
Zhavoronkov A, Smit-McBride Z, Guinan KJ, Litovchenko M, Moskalev A. Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases. J Mol Med (Berl) 2012; 90:1361-89. [PMID: 23090008 PMCID: PMC3506837 DOI: 10.1007/s00109-012-0962-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/08/2012] [Accepted: 09/25/2012] [Indexed: 01/28/2023]
Abstract
Scientific understanding of the genetic components of aging has increased in recent years, with several genes being identified as playing roles in the aging process and, potentially, longevity. In particular, genes encoding components of the nuclear lamina in eukaryotes have been increasingly well characterized, owing in part to their clinical significance in age-related diseases. This review focuses on one such gene, which encodes lamin A, a key component of the nuclear lamina. Genetic variation in this gene can give rise to lethal, early-onset diseases known as laminopathies. Here, we analyze the literature and conduct computational analyses of lamin A signaling and intracellular interactions in order to examine potential mechanisms for altering or slowing down aberrant Lamin A expression and/or for restoring the ratio of normal to aberrant lamin A. The ultimate goal of such studies is to ameliorate or combat laminopathies and related diseases of aging, and we provide a discussion of current approaches in this review.
Collapse
Affiliation(s)
- Alex Zhavoronkov
- Bioinformatics and Medical Information Technology Laboratory, Center for Pediatric Hematology, Oncology and Immunology, Moscow, 119296 Russia
- The Biogerontology Research Foundation, Reading, UK
| | - Zeljka Smit-McBride
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Davis, CA 95616 USA
| | - Kieran J. Guinan
- The Biogerontology Research Foundation, Reading, UK
- BioAtlantis Ltd., Kerry Technology Park, Tralee, County Kerry Ireland
| | - Maria Litovchenko
- Bioinformatics and Medical Information Technology Laboratory, Center for Pediatric Hematology, Oncology and Immunology, Moscow, 119296 Russia
| | - Alexey Moskalev
- The Biogerontology Research Foundation, Reading, UK
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences, Syktyvkar, 167982 Russia
| |
Collapse
|
30
|
Maldi E, Travelli C, Caldarelli A, Agazzone N, Cintura S, Galli U, Scatolini M, Ostano P, Miglino B, Chiorino G, Boldorini R, Genazzani AA. Nicotinamide phosphoribosyltransferase (NAMPT) is over-expressed in melanoma lesions. Pigment Cell Melanoma Res 2012; 26:144-6. [DOI: 10.1111/pcmr.12037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elena Maldi
- Department of Medical Sciences; Universitaá del Piemonte Orientale; Novara; Italy
| | - Cristina Travelli
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| | - Antonio Caldarelli
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| | - Nicolò Agazzone
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| | - Sara Cintura
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| | - Ubaldina Galli
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| | - Maria Scatolini
- Laboratory of Cancer genomics, Fondo Edo Tempia; Biella; Italy
| | - Paola Ostano
- Laboratory of Cancer genomics, Fondo Edo Tempia; Biella; Italy
| | - Benedetta Miglino
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| | | | - Renzo Boldorini
- Department of Medical Sciences; Universitaá del Piemonte Orientale; Novara; Italy
| | - Armando A. Genazzani
- Dipartimento di Scienze del Farmaco; Universitaá del Piemonte Orientale; Novara; Italy
| |
Collapse
|
31
|
Abstract
NAD is a vital molecule in all organisms. It is a key component of both energy and signal transduction--processes that undergo crucial changes in cancer cells. NAD(+)-dependent signalling pathways are many and varied, and they regulate fundamental events such as transcription, DNA repair, cell cycle progression, apoptosis and metabolism. Many of these processes have been linked to cancer development. Given that NAD(+)-dependent signalling reactions involve the degradation of the molecule, permanent nucleotide resynthesis through different biosynthetic pathways is crucial for incessant cancer cell proliferation. This necessity supports the targeting of NAD metabolism as a new therapeutic concept for cancer treatment.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Firenze, 50139, Italy
| | | | | | | |
Collapse
|
32
|
Esposito E, Impellizzeri D, Mazzon E, Fakhfouri G, Rahimian R, Travelli C, Tron GC, Genazzani AA, Cuzzocrea S. The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. J Neuroinflammation 2012; 9:66. [PMID: 22490786 PMCID: PMC3353188 DOI: 10.1186/1742-2094-9-66] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/10/2012] [Indexed: 01/24/2023] Open
Abstract
Background Emerging data implicate nicotinamide phosphoribosyl transferase (NAMPT) in the pathogenesis of cancer and inflammation. NAMPT inhibitors have proven beneficial in inflammatory animal models of arthritis and endotoxic shock as well as in autoimmune encephalitis. Given the role of inflammatory responses in spinal cord injury (SCI), the effect of NAMPT inhibitors was examined in this setting. Methods We investigated the effects of the NAMPT inhibitor FK866 in an experimental compression model of SCI. Results Twenty-four hr following induction of SCI, a significant functional deficit accompanied widespread edema, demyelination, neuron loss and a substantial increase in TNF-α, IL-1β, PAR, NAMPT, Bax, MPO activity, NF-κB activation, astrogliosis and microglial activation was observed. Meanwhile, the expression of neurotrophins BDNF, GDNF, NT3 and anti-apoptotic Bcl-2 decreased significantly. Treatment with FK866 (10 mg/kg), the best known and characterized NAMPT inhibitor, at 1 h and 6 h after SCI rescued motor function, preserved perilesional gray and white matter, restored anti-apoptotic and neurotrophic factors, prevented the activation of neutrophils, microglia and astrocytes and inhibited the elevation of NAMPT, PAR, TNF-α, IL-1β, Bax expression and NF-κB activity. We show for the first time that FK866, a specific inhibitor of NAMPT, administered after SCI, is capable of reducing the secondary inflammatory injury and partly reduce permanent damage. We also show that NAMPT protein levels are increased upon SCI in the perilesional area which can be corrected by administration of FK866. Conclusions Our findings suggest that the inflammatory component associated to SCI is the primary target of these inhibitors.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica-Policlinico Universitario Via C, Valeria Gazzi, 98100 Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|