1
|
Alshammari A, Pillai B, Kamat P, Jones TW, Bosomtwi A, Khan MB, Hess DC, Li W, Somanath PR, Sayed MA, Ergul A, Fagan SC. Angiotensin II Type 2 Receptor Agonism Alleviates Progressive Post-stroke Cognitive Impairment in Aged Spontaneously Hypertensive Rats. Transl Stroke Res 2025; 16:584-599. [PMID: 38302738 DOI: 10.1007/s12975-024-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.
Collapse
Affiliation(s)
- Abdulkarim Alshammari
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Pradip Kamat
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Timothy W Jones
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Asamoah Bosomtwi
- Georgia Cancer Center and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Weiguo Li
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA
| | - Payaningal R Somanath
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| | | | - Adviye Ergul
- Ralph H. Johnson Veterans Affairs Health Care System and Department of Pathology & Lab. Medicine, Medical University of South Carolina, 171 Ashley Ave. MSC 908, Charleston, SC, 29492, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Health Care System and College of Pharmacy, University of Georgia, Augusta, GA, USA
| |
Collapse
|
2
|
Kumar K, Aggarwal S, Kandpal A, Kaur R, Jaggi AS, Yadav HN, Singh D, Chopra D, Singh N. Unraveling the role of brain renin angiotensin system in vascular dementia: mechanisms and therapeutic perspectives. Exp Brain Res 2025; 243:130. [PMID: 40285869 DOI: 10.1007/s00221-025-07072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Dementia is a heterogeneous syndrome characterized by the progressive deterioration of various brain functions, severely impacting cognitive, emotional, and social abilities. According to a World Health Organization (WHO) report, dementia represents a pressing global health concern, with the number of affected individuals projected to triple by 2050. Among its various subtypes, vascular dementia (VD) stands as the second most common form, following Alzheimer's disease (AD). Despite ongoing efforts in drug development, no pharmaceutical entity has yet received approval from the U.S. Food and Drug Administration (FDA) for the treatment of VD. Emerging evidence underscores the critical involvement of the brain's Renin-Angiotensin System (RAS) in the pathogenesis of multiple neurodegenerative disorders, including VD. The intricate roles of RAS components include regulating vascular tone, neuronal growth and survival, regulating cerebral blood flow and endothelial dysfunction, increasing neuroinflammation (by increasing release of IL-1, IL-6, TNF-α, microglial activation), oxidative stress and destruction of BBB integrity, mainly through Angiotensin II type 1 (AT1) and type 2 (AT2) receptors, are of significant interest in the pathophysiology of VD. However, disruptions in these signaling pathways are believed to contribute substantially to the progression of VD. This review addresses the limitations of current therapeutic approaches for VD while emphasizing the untapped potential of RAS-targeted interventions. We systematically explore the neurophysiological mechanisms of brain RAS, their role in promoting neuronal health, and the factors that compromise these pathways, ultimately leading to cognitive decline. By elucidating these mechanisms and challenges, the review offers novel insights into designing innovative RAS-based therapeutic strategies, paving the way for effective clinical management of VD. This work aspires to stimulate further research and development in this underexplored yet promising domain.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Sonal Aggarwal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ayush Kandpal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar S Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
3
|
Turek M, Różycka-Sokołowska E, Owsianik K, Bałczewski P. New Perspectives for Antihypertensive Sartans as Components of Co-crystals and Co-amorphous Solids with Improved Properties and Multipurpose Activity. Mol Pharm 2024; 21:18-37. [PMID: 38108281 DOI: 10.1021/acs.molpharmaceut.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sartans (angiotensin II receptor blockers, ARBs), drugs used in the treatment of hypertension, play a principal role in addressing the global health challenge of hypertension. In the past three years, their potential use has expanded to include the possibility of their application in the treatment of COVID-19 and neurodegenerative diseases (80 clinical studies worldwide). However, their therapeutic efficacy is limited by their poor solubility and bioavailability, prompting the need for innovative approaches to improve their pharmaceutical properties. This review discusses methods of co-crystallization and co-amorphization of sartans with nonpolymeric, low molecular, and stabilizing co-formers, as a promising strategy to synthesize new multipurpose drugs with enhanced pharmaceutical properties. The solid-state forms have demonstrated the potential to address the poor solubility limitations of conventional sartan formulations and offer new opportunities to develop dual-active drugs with broader therapeutic applications. The review includes an in-depth analysis of the co-crystal and co-amorphous forms of sartans, including their properties, possible applications, and the impact of synthetic methods on their pharmacokinetic properties. By shedding light on the solid forms of sartans, this article provides valuable insights into their potential as improved drug formulations. Moreover, this review may serve as a valuable resource for designing similar solid forms of sartans and other drugs, fostering further advances in pharmaceutical research and drug development.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
4
|
Deng Y, Ding W, Peng Q, Wang W, Duan R, Zhang Y. Advancement in Beneficial Effects of AVE 0991: A Brief Review. Mini Rev Med Chem 2024; 24:139-158. [PMID: 36998128 DOI: 10.2174/1389557523666230328134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 04/01/2023]
Abstract
AVE 0991, a non-peptide analogue of Angiotensin-(1-7) [Ang-(1-7)], is orally active and physiologically well tolerated. Several studies have demonstrated that AVE 0991 improves glucose and lipid metabolism, and contains anti-inflammatory, anti-apoptotic, anti-fibrosis, and anti-oxidant effects. Numerous preclinical studies have also reported that AVE 0991 appears to have beneficial effects on a variety of systemic diseases, including cardiovascular, liver, kidney, cancer, diabetes, and nervous system diseases. This study searched multiple literature databases, including PubMed, Web of Science, EMBASE, Google Scholar, Cochrane Library, and the ClinicalTrials.gov website from the establishment to October 2022, using AVE 0991 as a keyword. This literature search revealed that AVE 0991 could play different roles via various signaling pathways. However, the potential mechanisms of these effects need further elucidation. This review summarizes the benefits of AVE 0991 in several medical problems, including the COVID-19 pandemic. The paper also describes the underlying mechanisms of AVE 0991, giving in-depth insights and perspectives on the pharmaceutical value of AVE 0991 in drug discovery and development.
Collapse
Affiliation(s)
- Yang Deng
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangli Ding
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Wei Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
5
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
6
|
Alshammari A, Han Y, Jones TW, Pillai B, Zhang D, Ergul A, Somanath PR, Fagan SC. Stimulation of Angiotensin II Type 2 Receptor Modulates Pro-Inflammatory Response in Microglia and Macrophages: Therapeutic Implications for the Treatment of Stroke. Life (Basel) 2023; 13:1274. [PMID: 37374057 DOI: 10.3390/life13061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sustained microglial activation contributes to the development of post-stroke cognitive impairment (PSCI). Compound 21 (C21), an angiotensin II type 2 receptor agonist, has shown some neurovascular protection after stroke. This study aimed to investigate the direct anti-inflammatory effects of C21 on macrophages, as well as brain innate immune cells. METHODS Murine microglial cell line (C8-B4) and RAW 264.7 macrophages were exposed to lipopolysaccharide (LPS) and co-treated with C21. Pro-inflammatory mediators were assessed via RT-qPCR and ELISA. Cellular reactive oxygen species (ROS) were evaluated via CellROXGreen staining, and nitrate production was assessed using Griess assay. RESULTS C21 suppressed LPS-induced inflammation and ROS generation in both cells. In microglia, C21 blunted LPS-induced mRNA expression of IL-1β, IL-12b, COX-1, iNOS, and IL-6. A similar pattern was observed in macrophages, where C21 suppressed LPS-induced IL-1β, TNF-α, and CXCL1 expression. These anti-inflammatory effects in microglia and macrophages were associated with increased neuroprotective gene expression, including GDNF and BDNF, in a dose-dependent manner. CONCLUSIONS Our findings suggest a protective effect of C21 against the inflammatory response, in both macrophages and microglia, via suppression of the release of pro-inflammatory cytokines/chemokines and the generation of ROS while stimulating the production of neurotrophic factors.
Collapse
Affiliation(s)
- Abdulkarim Alshammari
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 76313, Saudi Arabia
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Timothy W Jones
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Bindu Pillai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Health Care System, Charleston, SC 29401, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Susan C Fagan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30602, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
7
|
Neuper L, Kummer D, Forstner D, Guettler J, Ghaffari-Tabrizi-Wizsy N, Fischer C, Juch H, Nonn O, Gauster M. Candesartan Does Not Activate PPARγ and Its Target Genes in Early Gestation Trophoblasts. Int J Mol Sci 2022; 23:ijms232012326. [PMID: 36293183 PMCID: PMC9603971 DOI: 10.3390/ijms232012326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Angiotensin II receptor 1 blockers are commonly used to treat hypertension in women of childbearing age. While the fetotoxic effects of these drugs in the second and third trimesters of pregnancy are well documented, their possible impacts on placenta development in early gestation are unknown. Candesartan, a member of this group, also acts as a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, a key regulator shown to be important for placental development. We have previously shown that trophoblasts do not express the candesartan target-receptor angiotensin II type 1 receptor AGTR1. This study investigated the possible role of candesartan on trophoblastic PPARγ and its hallmark target genes in early gestation. Candesartan did not affect the PPARγ protein expression or nuclear translocation of PPARγ. To mimic extravillous trophoblasts (EVTs) and cytotrophoblast/syncytiotrophoblast (CTB/SCT) responses to candesartan, we used trophoblast cell models BeWo (for CTB/SCT) and SGHPL-4 (EVT) cells as well as placental explants. In vitro, the RT-qPCR analysis showed no effect of candesartan treatment on PPARγ target genes in BeWo or SGHPL-4 cells. Treatment with positive control rosiglitazone, another PPARγ agonist, led to decreased expressions of LEP and PPARG1 in BeWo cells and an increased expression of PPARG1 in SGHPL-4 cells. Our previous data showed early gestation-placental AGTR1 expression in fetal myofibroblasts only. In a CAM assay, AGTR1 was stimulated with angiotensin II and showed increased on-plant vessel outgrowth. These results suggest candesartan does not negatively affect PPARγ or its target genes in human trophoblasts. More likely, candesartan from maternal serum may first act on fetal-placental AGTR1 and influence angiogenesis in the placenta, warranting further research.
Collapse
Affiliation(s)
- Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Daniel Kummer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Nassim Ghaffari-Tabrizi-Wizsy
- Division of Immunology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010 Graz, Austria
| | - Cornelius Fischer
- Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Herbert Juch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Diagnostic and Research Institute for Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
- Experimental and Clinical Research Center, a Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité—Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Correspondence:
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
8
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
9
|
Fouda AY, Ahmed HA, Pillai B, Kozak A, Hardigan T, Ergul A, Fagan SC, Ishrat T. Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochem Int 2022; 158:105375. [PMID: 35688299 PMCID: PMC9719365 DOI: 10.1016/j.neuint.2022.105375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
We and others have previously shown that angiotensin II receptor type 2 receptor (AT2R) is upregulated in the contralesional hemisphere after stroke in normoglycemic Wistar rats. In this study, we examined the expression of AT2R in type 2 diabetic Goto-Kakizaki (GK) rats and control Wistars after stroke. We also tested the contribution of the contralesional AT2R in recovery after stroke through a specific knockdown of the AT2R in this hemisphere only. Two experiments were conducted. In the first experiment, GK rats were subjected to middle cerebral artery occlusion (MCAO) and treated with the angiotensin II receptor type 1 receptor (AT1R) blocker candesartan or saline at reperfusion. Stroke outcomes, as well as AT2R expression, were examined and compared to control Wistars at 24 h. In the second experiment, localized AT2R knockdown was achieved through intrastriatal injection of short hairpin RNA (shRNA) lentiviral particles or non-targeting control into the left-brain hemisphere of Wistar rats. After 14 days, rats were subjected to right MCAO and treated with the AT2R agonist, Compound 21 (C21), or saline for 7 days. Behavioral outcomes were assessed for up to 10 days. In the first experiment, stroke reduced the expression of AT2R in GK rats. Candesartan treatment failed to improve the neurobehavioral outcomes, preserve vascular integrity or reduce oxidative/nitrative stress or apoptotic markers at 24 h post stroke in these animals. In the second experiment, contralesional AT2R knockdown reduced the C21-mediated functional recovery after stroke. In conclusion, contralesional AT2R upregulation after stroke is blunted in diabetic rats which show reduced sensitivity to post-stroke candesartan treatment. Contralesional AT2R could be involved in C21-mediated functional recovery after stroke.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- University of Arkansas for Medical Sciences, Little Rock, AR, USA,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Corresponding author. University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, USA. (A.Y. Fouda)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Anna Kozak
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Trevor Hardigan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Jackson VA Medical Center, Charleston, SC, USA
| | - Susan C. Fagan
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Corresponding author. University of Tennessee Health Science Center, College of Medicine, Department of Anatomy and Neurobiology, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. (T. Ishrat)
| |
Collapse
|
10
|
Chang YS, Lin CL, Lee CW, Lin HC, Wu YT, Shih YH. Exercise Normalized the Hippocampal Renin-Angiotensin System and Restored Spatial Memory Function, Neurogenesis, and Blood-Brain Barrier Permeability in the 2K1C-Hypertensive Mouse. Int J Mol Sci 2022; 23:ijms23105531. [PMID: 35628344 PMCID: PMC9146761 DOI: 10.3390/ijms23105531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Hypertension is associated with blood-brain barrier alteration and brain function decline. Previously, we established the 2-kidney,1-clip (2K1C) hypertensive mice model by renin-angiotensin system (RAS) stimulating. We found that 2K1C-induced hypertension would impair hippocampus-related memory function and decrease adult hippocampal neurogenesis. Even though large studies have investigated the mechanism of hypertension affecting brain function, there remains a lack of efficient ways to halt this vicious effect. The previous study indicated that running exercise ameliorates neurogenesis and spatial memory function in aging mice. Moreover, studies showed that exercise could normalize RAS activity, which might be associated with neurogenesis impairment. Thus, we hypothesize that running exercise could ameliorate neurogenesis and spatial memory function impairment in the 2K1C-hypertension mice. In this study, we performed 2K1C surgery on eight-weeks-old C57BL/6 mice and put them on treadmill exercise one month after the surgery. The results indicate that running exercise improves the spatial memory and neurogenesis impairment of the 2K1C-mice. Moreover, running exercise normalized the activated RAS and blood-brain barrier leakage of the hippocampus, although the blood pressure was not decreased. In conclusion, running exercise could halt hypertension-induced brain impairment through RAS normalization.
Collapse
Affiliation(s)
- Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan;
- Department of Neurosurgery, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan 70043, Taiwan;
| | - Han-Chen Lin
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
| | - Yi-Ting Wu
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung County 92641, Taiwan;
| | - Yao-Hsiang Shih
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan; (Y.-S.C.); (H.-C.L.)
- Department of Medical Research, Kaohsiung Medical University Hospital, 100, Tzyou 1st Road, Sanmin District, Kaohsiung 80756, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2144)
| |
Collapse
|
11
|
Gouveia F, Camins A, Ettcheto M, Bicker J, Falcão A, Cruz MT, Fortuna A. Targeting brain Renin-Angiotensin System for the prevention and treatment of Alzheimer's disease: Past, present and future. Ageing Res Rev 2022; 77:101612. [PMID: 35346852 DOI: 10.1016/j.arr.2022.101612] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a well-known neurodegenerative disease characterized by the presence of two main hallmarks - Tau hyperphosphorylation and Aβ deposits. Notwithstanding, in the last few years the scientific evidence about the drivers of AD have been changing and nowadays age-related vascular alterations and several cardiovascular risk factors have been shown to trigger the development of AD. In this context, drugs targeting the Renin Angiotensin System (RAS), commonly used for the treatment of hypertension, are evidencing a high potential to delay AD development due to their action on brain RAS. Indeed, the ACE 1/Ang II/AT1R axis is believed to be upregulated in AD and to be responsible for deleterious effects such as increased oxidative stress, neuroinflammation, blood-brain barrier (BBB) hyperpermeability, astrocytes dysfunction and a decrease in cerebral blood flow. In contrast, the alternative axis - ACE 1/Ang II/AT2R; ACE 2/Ang (1-7)/MasR; Ang IV/ AT4R(IRAP) - seems to counterbalance the deleterious effects of the principal axis and to exert beneficial effects on memory and cognition. Accordingly, retrospective studies demonstrate a reduced risk of developing AD among people taking RAS medication as well as several in vitro and in vivo pre-clinical studies as it is herein critically reviewed. In this review, we first revise, at a glance, the pathophysiology of AD focused on its classic hallmarks. Secondly, an overview about the impact of the RAS on the pathophysiology of AD is also provided, focused on their four essential axes ACE 1/Ang II/AT2R; ACE 2/Ang (1-7)/MasR; Ang IV/ AT4R(IRAP) and ACE 1/Ang II/AT1R. Finally, the therapeutic potential of available drugs targeting RAS on AD, namely angiotensin II receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs), is highlighted and data supporting this hope will be presented, from in vitro and in vivo pre-clinical to clinical studies.
Collapse
|
12
|
Liu K, Li L, Liu Z, Li G, Wu Y, Jiang X, Wang M, Chang Y, Jiang T, Luo J, Zhu J, Li H, Wang Y. Acute Administration of Metformin Protects Against Neuronal Apoptosis Induced by Cerebral Ischemia-Reperfusion Injury via Regulation of the AMPK/CREB/BDNF Pathway. Front Pharmacol 2022; 13:832611. [PMID: 35431946 PMCID: PMC9010658 DOI: 10.3389/fphar.2022.832611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Metformin is a first-line anti-diabetic agent with a powerful hypoglycemic effect. Several studies have reported that metformin can improve the prognosis of stroke patients and that this effect is independent of its hypoglycemic effect; however, the specific mechanism remains unclear. In this research, we explored the effect and specific mechanism of metformin in cerebral ischemia-reperfusion (I/R) injury by constructing a transient middle cerebral artery occlusion model in vivo and a glucose and oxygen deprivation/reoxygenation (OGD/R) model in vitro. The results of the in vivo experiments showed that acute treatment with low-dose metformin (10 mg/kg) ameliorated cerebral edema, reduced the cerebral infarction volume, improved the neurological deficit score, and ameliorated neuronal apoptosis in the ischemic penumbra. Moreover, metformin up-regulated the brain-derived neurotrophic factor (BDNF) expression and increased phosphorylation levels of AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB) in the ischemia penumbra. Nevertheless, the above-mentioned effects of metformin were reversed by Compound C. The results of the in vitro experiments showed that low metformin concentrations (20 μM) could reduce apoptosis of human umbilical vein endothelial cells (HUVECs) under OGD/R conditions and promote cell proliferation. Moreover, metformin could further promote BDNF expression and release in HUVECs under OGD/R conditions via the AMPK/CREB pathway. The Transwell chamber assay showed that HUVECs treated with metformin could reduce apoptosis of SH-SY5Y cells under OGD/R conditions and this effect could be partially reversed by transfection of BDNF siRNA in HUVECs. In summary, our results suggest that metformin upregulates the level of BDNF in the cerebral ischemic penumbra via the AMPK/CREB pathway, thereby playing a protective effect in cerebral I/R injury.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Li
- Department of Neurology, People’s Hospital of Zhengzhou, People’s Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhijun Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdie Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianheng Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongge Li, ; Yong Wang,
| |
Collapse
|
13
|
Neuroprotection in Stroke-Focus on the Renin-Angiotensin System: A Systematic Review. Int J Mol Sci 2022; 23:ijms23073876. [PMID: 35409237 PMCID: PMC8998496 DOI: 10.3390/ijms23073876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is the primary cause of disability in the adult population. Hypertension represents the leading risk factor being present in almost half the patients. The renin-angiotensin system is involved in the physiopathology of stroke and has an essential impact on hypertension as a risk factor. This article targeted the role of the renin-angiotensin system in stroke neuroprotection by reviewing the current literature available. The mechanism of action of the renin-angiotensin system was observed through the effects on AT1, AT2, and Mas receptors. The neuroprotective properties ascertained by angiotensin in stroke seem to be independent of the blood pressure reduction mechanism, and include neuroregeneration, angiogenesis, and increased neuronal resistance to hypoxia. The future relationship of stroke and the renin-angiotensin system is full of possibilities, as new agonist molecules emerge as potential candidates to restrict the impairment caused by stroke.
Collapse
|
14
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
15
|
Jackson-Cowan L, Eldahshan W, Dumanli S, Dong G, Jamil S, Abdul Y, Althomali W, Baban B, Fagan SC, Ergul A. Delayed Administration of Angiotensin Receptor (AT2R) Agonist C21 Improves Survival and Preserves Sensorimotor Outcomes in Female Diabetic Rats Post-Stroke through Modulation of Microglial Activation. Int J Mol Sci 2021; 22:ijms22031356. [PMID: 33572986 PMCID: PMC7866408 DOI: 10.3390/ijms22031356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
About 70% of stroke victims present with comorbid diseases such as diabetes and hypertension. The integration of comorbidities in pre-clinical experimental design is important in understanding the mechanisms involved in the development of stroke injury and recovery. We recently showed that administration of compound C21, an angiotensin II type 2 receptor agonist, at day 3 post-stroke improved sensorimotor outcomes by lowering neuroinflammation in diabetic male animals. In the current study, we hypothesized that a delayed administration of C21 would also lower chronic inflammation post-stroke in diabetic female animals. Young female diabetic rats were subjected to 1 h of middle cerebral artery occlusion (MCAO). Three days post-stroke, rats were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 4 weeks. The impact of C21 on microglial polarization was analyzed by flow cytometry in vivo and in vitro. Compound 21 treatment improved fine motor skills after MCAO through modulation of the microglia/macrophage inflammatory properties. In addition, C21 increased M2 polarization and reduced the M1:M2 ratio in vitro. In conclusion, delayed administration of C21 downregulates post-stroke inflammation in female diabetic animals. C21 may be a useful therapeutic option to lower neuro-inflammation and improve the post-stroke recovery in diabetes.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cell Line
- Cognition/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Female
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/physiopathology
- Mice
- Microglia/drug effects
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Stroke/complications
- Stroke/drug therapy
- Stroke/physiopathology
Collapse
Affiliation(s)
- LaDonya Jackson-Cowan
- Department of Medicine, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Selin Dumanli
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Guangkuo Dong
- Department Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sarah Jamil
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Yasir Abdul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Waleed Althomali
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| |
Collapse
|
16
|
Cosarderelioglu C, Nidadavolu LS, George CJ, Oh ES, Bennett DA, Walston JD, Abadir PM. Brain Renin-Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front Neurosci 2020; 14:586314. [PMID: 33117127 PMCID: PMC7561440 DOI: 10.3389/fnins.2020.586314] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
The renin–angiotensin system (RAS) was initially considered to be part of the endocrine system regulating water and electrolyte balance, systemic vascular resistance, blood pressure, and cardiovascular homeostasis. It was later discovered that intracrine and local forms of RAS exist in the brain apart from the endocrine RAS. This brain-specific RAS plays essential roles in brain homeostasis by acting mainly through four angiotensin receptor subtypes; AT1R, AT2R, MasR, and AT4R. These receptors have opposing effects; AT1R promotes vasoconstriction, proliferation, inflammation, and oxidative stress while AT2R and MasR counteract the effects of AT1R. AT4R is critical for dopamine and acetylcholine release and mediates learning and memory consolidation. Consequently, aging-associated dysregulation of the angiotensin receptor subtypes may lead to adverse clinical outcomes such as Alzheimer’s disease and frailty via excessive oxidative stress, neuroinflammation, endothelial dysfunction, microglial polarization, and alterations in neurotransmitter secretion. In this article, we review the brain RAS from this standpoint. After discussing the functions of individual brain RAS components and their intracellular and intracranial locations, we focus on the relationships among brain RAS, aging, frailty, and specific neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and vascular cognitive impairment, through oxidative stress, neuroinflammation, and vascular dysfunction. Finally, we discuss the effects of RAS-modulating drugs on the brain RAS and their use in novel treatment approaches.
Collapse
Affiliation(s)
- Caglar Cosarderelioglu
- Division of Geriatrics, Department of Internal Medicine, Ankara University School of Medicine, Ankara, Turkey.,Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lolita S Nidadavolu
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Claudene J George
- Division of Geriatrics, Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Esther S Oh
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Jeremy D Walston
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter M Abadir
- Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
18
|
Effects of the synthetic cannabinoid XLR-11 on the viability and migration rates of human brain microvascular endothelial cells in a clinically-relevant model. Pharmacol Rep 2020; 72:1717-1724. [PMID: 32632915 DOI: 10.1007/s43440-020-00123-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are a group of newly-developed drugs that bind and activate endocannabinoid system receptors. Angiogenesis is a biological process in which new blood vessels are formed from preexistent blood vessels. It plays a vital role in tissue growth, wound healing, and embryogenesis. This study aims to investigate the effects of the synthetic cannabinoid XLR-11 on specific cellular functions such as viability and angiogenesis in vitro. METHODS Human brain microvascular endothelial cells (HBMECs) were cultured in DMEM/F12 medium supplemented with an endothelial cell growth kit. The MTT assay was used to investigate the viability of endothelial cells. An endothelial cell migration assay was used to investigate migration ability, while a tube formation assay was used to investigate the angiogenic capacity of the endothelial cells. RESULTS XLR-11 was found to enhance the viability of HBMECs. Moreover, the migration rate and angiogenic capacity significantly increased in the presence of various concentrations of XLR-11 compared to the control. CONCLUSION The current study shows that XLR-11 increases the viability of human brain microvascular endothelial cells and enhances angiogenesis in the brain in vitro, suggesting that XLR-11 could potentially be used as a therapeutic angiogenic drug in human brain injury treatment.
Collapse
|
19
|
The Role of Sartans in the Treatment of Stroke and Subarachnoid Hemorrhage: A Narrative Review of Preclinical and Clinical Studies. Brain Sci 2020; 10:brainsci10030153. [PMID: 32156050 PMCID: PMC7139942 DOI: 10.3390/brainsci10030153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Delayed cerebral vasospasm (DCVS) due to aneurysmal subarachnoid hemorrhage (aSAH) and its sequela, delayed cerebral ischemia (DCI), are associated with poor functional outcome. Endothelin-1 (ET-1) is known to play a major role in mediating cerebral vasoconstriction. Angiotensin-II-type-1-receptor antagonists such as Sartans may have a beneficial effect after aSAH by reducing DCVS due to crosstalk with the endothelin system. In this review, we discuss the role of Sartans in the treatment of stroke and their potential impact in aSAH. Methods: We conducted a literature research of the MEDLINE PubMed database in accordance with PRISMA criteria on articles published between 1980 to 2019 reviewing: "Sartans AND ischemic stroke". Of 227 studies, 64 preclinical and 19 clinical trials fulfilled the eligibility criteria. Results: There was a positive effect of Sartans on ischemic stroke in both preclinical and clinical settings (attenuating ischemic brain damage, reducing cerebral inflammation and infarct size, increasing cerebral blood flow). In addition, Sartans reduced DCVS after aSAH in animal models by diminishing the effect of ET-1 mediated vasoconstriction (including cerebral inflammation and cerebral epileptogenic activity reduction, cerebral blood flow autoregulation restoration as well as pressure-dependent cerebral vasoconstriction). Conclusion: Thus, Sartans might play a key role in the treatment of patients with aSAH.
Collapse
|
20
|
Vanherle L, Matuskova H, Don-Doncow N, Uhl FE, Meissner A. Improving Cerebrovascular Function to Increase Neuronal Recovery in Neurodegeneration Associated to Cardiovascular Disease. Front Cell Dev Biol 2020; 8:53. [PMID: 32117979 PMCID: PMC7020256 DOI: 10.3389/fcell.2020.00053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mounting evidence indicates that the presence of cardiovascular disease (CVD) and risk factors elevates the incidence of cognitive impairment (CI) and dementia. CVD and associated decline in cardiovascular function can impair cerebral blood flow (CBF) regulation, leading to the disruption of oxygen and nutrient supply in the brain where limited intracellular energy storage capacity critically depends on CBF to sustain proper neuronal functioning. During hypertension and acute as well as chronic CVD, cerebral hypoperfusion and impaired cerebrovascular function are often associated with neurodegeneration and can lead to CI and dementia. Currently, all forms of neurodegeneration associated to CVD lack effective treatments, which highlights the need to better understand specific mechanisms linking cerebrovascular dysfunction and CBF deficits to neurodegeneration. In this review, we discuss vascular targets that have already shown attenuation of neurodegeneration or CI associated to hypertension, heart failure (HF) and stroke by improving cerebrovascular function or CBF deficits.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Hana Matuskova
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Department of Neurology, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicholas Don-Doncow
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
21
|
Robillard S, Mercier C, Breton V, Paquin-Veillette J, Guay A, Lizotte F, Geraldes P. Ablation of angiotensin type 2 receptor prevents endothelial nitric oxide synthase glutathionylation and nitration in ischaemic abductor muscle of diabetic mice. Diab Vasc Dis Res 2020; 17:1479164119883978. [PMID: 31726870 PMCID: PMC7510371 DOI: 10.1177/1479164119883978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peripheral artery disease is a severe complication of diabetes. We have reported that the deletion of angiotensin type 2 receptor in diabetic mice promoted vascular angiogenesis in the ischaemic muscle 4 weeks following ischaemia. However, the angiotensin type 2 receptor deletion beneficial effects occurred 2 weeks post surgery suggesting that angiotensin type 2 receptor may regulate other pro-angiogenic signalling pathways during the early phases of ischaemia. Nondiabetic and diabetic angiotensin type 2 receptor-deficient mice (Agtr2-/Y) underwent femoral artery ligation after 2 months of diabetes. Blood perfusion was measured every week up to 2 weeks post surgery. Expression of vascular endothelial growth factor, vascular endothelial growth factor receptor and endothelial nitric oxide synthase expression and activity were evaluated. Blood flow reperfusion in the ischaemic muscle of diabetic Agtr2+/Y mice was recovered at 35% as compared to a 68% recovery in diabetic Agtr2-/Y mice. The expression of vascular endothelial growth factor and its receptors was diminished in diabetic Agtr2+/Y mice, an observation not seen in diabetic Agtr2-/Y mice. Interestingly, Agtr2-/Y mice were protected from diabetes-induced glutathionylation, nitration and decreased endothelial nitric oxide synthase expression, which correlated with reduced endothelial cell death and enhanced vascular density in diabetic ischaemic muscle. In conclusion, our results suggest that the deletion of angiotensin type 2 receptor promotes blood flow reperfusion in diabetes by favouring endothelial cell survival and function.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blood Flow Velocity
- Cattle
- Cells, Cultured
- Diabetes Mellitus/enzymology
- Diabetes Mellitus/genetics
- Disease Models, Animal
- Endothelial Cells/enzymology
- Endothelial Cells/pathology
- Glutathione/metabolism
- Hindlimb
- Ischemia/enzymology
- Ischemia/genetics
- Ischemia/physiopathology
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/blood supply
- Neovascularization, Physiologic
- Nitrates/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Peripheral Arterial Disease/enzymology
- Peripheral Arterial Disease/genetics
- Peripheral Arterial Disease/physiopathology
- Protein Processing, Post-Translational
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Recovery of Function
- Regional Blood Flow
Collapse
Affiliation(s)
- Stéphanie Robillard
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Clément Mercier
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Valérie Breton
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | | | - Andréanne Guay
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Farah Lizotte
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
| | - Pedro Geraldes
- Research Center of the Centre
Hospitalier Universitaire de Sherbrooke, Québec, Canada
- Division of Endocrinology, Department of
Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Pedro Geraldes, Division of Endocrinology,
Department of Medicine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke,
QC J1H 5N4, Canada.
| |
Collapse
|
22
|
Tsuchimoto A, Masutani K, Ueki K, Nakagawa K, Matsukuma Y, Tanaka S, Unagami K, Kakuta Y, Okumi M, Noguchi H, Kaku K, Okabe Y, Nakano T, Kitazono T, Nakamura M, Ishida H, Tanabe K. Effect of renin–angiotensin system blockade on graft survival and cardiovascular disease in kidney transplant recipients: retrospective multicenter study in Japan. Clin Exp Nephrol 2019; 24:369-378. [DOI: 10.1007/s10157-019-01827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/25/2019] [Indexed: 01/13/2023]
|
23
|
Sun R, He T, Pan Y, Katusic ZS. Effects of senescence and angiotensin II on expression and processing of amyloid precursor protein in human cerebral microvascular endothelial cells. Aging (Albany NY) 2019; 10:100-114. [PMID: 29348391 PMCID: PMC5811245 DOI: 10.18632/aging.101362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
The present study was designed to determine the effects of senescence and angiotensin II (Ang II) on expression and processing of amyloid precursor protein (APP) in human brain microvascular endothelial cells (BMECs). Senescence caused a decrease in APP expression thereby resulting in reduced secretion of soluble APPα (sAPPα). In contrast, β-site APP cleaving enzyme (BACE1) expression and production of amyloid β (Aβ)40 were increased in senescent endothelium. Importantly, in senescent human BMECs, treatment with BACE1 inhibitor IV inhibited Aβ generation and increased sAPPα production by enhancing a disintegrin and metalloprotease (ADAM)10 expression. Furthermore, Ang II impaired expression of ADAM10 and significantly reduced generation of sAPPα in senescent human BMECs. This inhibitory effect of Ang II was prevented by treatment with BACE1 inhibitor IV. Our results suggest that impairment of α-processing and shift to amyloidogenic pathway of APP contribute to endothelial dysfunction induced by senescence. Loss of sAPPα in senescent cells treated with Ang II exacerbates detrimental effects of senescence on APP processing. Notably, inhibition of BACE1 has beneficial effects on senescence induced endothelial dysfunction. Reported findings may help to explain contributions of senescent cerebral microvascular endothelium to development of cerebral amyloid angiopathy and Alzheimer’s disease (AD) pathology.
Collapse
Affiliation(s)
- Ruohan Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.,Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tongrong He
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yujun Pan
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Ward R, Li W, Abdul Y, Jackson L, Dong G, Jamil S, Filosa J, Fagan SC, Ergul A. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res 2019; 142:237-250. [PMID: 30818045 PMCID: PMC6486792 DOI: 10.1016/j.phrs.2019.01.035] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Diabetes increases the risk and worsens the progression of cognitive impairment via the greater occurrence of small vessel disease and stroke. Yet, the underlying mechanisms are not fully understood. It is now accepted that cardiovascular health is critical for brain health and any neurorestorative approaches to prevent/delay cognitive deficits should target the conceptual neurovascular unit (NVU) rather than neurons alone. We have recently shown that there is augmented hippocampal NVU remodeling after a remote ischemic injury in diabetes. NLRP3 inflammasome signaling has been implicated in the development of diabetes and neurodegenerative diseases, but little is known about the impact of NLRP3 activation on functional and structural interaction within the NVU of hippocampus, a critical part of the brain that is involved in forming, organizing, and storing memories. Endothelial cells are at the center of the NVU and produce trophic factors such as brain derived neurotrophic factor (BDNF) contributing to neuronal survival, known as vasotrophic coupling. Therefore, the aims of this study focused on two hypotheses: 1) diabetes negatively impacts hippocampal NVU remodeling and worsens cognitive outcome after stroke, and 2) NLRP3 inhibition with MCC950 will improve NVU remodeling and cognitive outcome following stroke via vasotrophic (un)coupling between endothelial cells and hippocampal neurons. Stroke was induced through a 90-min transient middle cerebral artery occlusion (MCAO) in control and high-fat diet/streptozotocin-induced (HFD/STZ) diabetic male Wistar rats. Saline or MCC950 (3 mg/kg), an inhibitor of NLRP3, was injected at 1 and 3 h after reperfusion. Cognition was assessed over time and neuronal density, blood-brain barrier (BBB) permeability as well as NVU remodeling (aquaporin-4 [AQP4] polarity) was measured on day 14 after stroke. BDNF was measured in endothelial and hippocampal neuronal cultures under hypoxic and diabetes-mimicking condition with and without NLRP3 inhibition. Diabetes increased neuronal degeneration and BBB permeability, disrupted AQP4 polarity, impaired cognitive function and amplified NLRP3 activation after ischemia. Inhibition with MCC950 improved cognitive function and vascular integrity after stroke in diabetic animals and prevented hypoxia-mediated decrease in BDNF secretion. These results are the first to provide essential data showing MCC950 has the potential to become a therapeutic to prevent neurovascular remodeling and worsened cognitive decline in diabetic patients following stroke.
Collapse
Affiliation(s)
- Rebecca Ward
- Departments of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Weiguo Li
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Yasir Abdul
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - LaDonya Jackson
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Guangkuo Dong
- Physiology, Augusta University, Augusta, GA, United States
| | - Sarah Jamil
- Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jessica Filosa
- Physiology, Augusta University, Augusta, GA, United States
| | - Susan C Fagan
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, United States
| | - Adviye Ergul
- Physiology, Augusta University, Augusta, GA, United States; Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
25
|
Fouda AY, Fagan SC, Ergul A. Brain Vasculature and Cognition. Arterioscler Thromb Vasc Biol 2019; 39:593-602. [PMID: 30816798 PMCID: PMC6540805 DOI: 10.1161/atvbaha.118.311906] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of cerebrovascular function and integrity has a central role in this sophisticated communication within the brain, and any derangements can have deleterious acute and chronic consequences. In almost all forms of cognitive impairment, from mild to Alzheimer disease, there are changes in cerebrovascular function and structure leading to decreased cerebral blood flow, which may initiate or worsen cognitive impairment. In this focused review, we discuss the contribution of 2 major vasoactive pathways to cerebrovascular dysfunction and cognitive impairment in an effort to identify early intervention strategies.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- Vascular Biology Center, Augusta University, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Adviye Ergul
- Ralph Johnson Veterans Administration Medical Center, Medical University of South Carolina, Charleston, SC
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
26
|
Ishrat T, Soliman S, Eldahshan W, Pillai B, Ergul A, Fagan SC. Silencing VEGF-B Diminishes the Neuroprotective Effect of Candesartan Treatment After Experimental Focal Cerebral Ischemia. Neurochem Res 2018; 43:1869-1878. [PMID: 30088238 DOI: 10.1007/s11064-018-2604-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022]
Abstract
The pro-survival effect of VEGF-B has been documented in different in vivo and in vitro models. We have previously shown an enhanced VEGF-B expression in response to candesartan treatment after focal cerebral ischemia. In this study, we aimed to silence VEGF-B expression to assess its contribution to candesartan's benefit on stroke outcome. Silencing VEGF-B expression was achieved by bilateral intracerebroventricular injections of lentiviral particles containing short hairpin RNA (shRNA) against VEGF-B. Two weeks after lentiviral injections, rats were subjected to either 90 min or 3 h of middle cerebral artery occlusion (MCAO) and randomized to intravenous candesartan (1 mg/kg) or saline at reperfusion. Animals were sacrificed at 24 or 72 h and brains were collected and analyzed for hemoglobin (Hb) excess and infarct size, respectively. Functional outcome at 24, 48 and 72 h was assessed blindly. Candesartan treatment improved neurobehavioral and motor function, and decreased infarct size and Hb. While silencing VEGF-B expression diminished candesartan's neuroprotective effect, candesartan-mediated vascular protection was maintained even in the absence of VEGF-B suggesting that this growth factor is not the mediator of candesartan's vascular protective effects. However, VEGF-B is a mediator of neuroprotection achieved by candesartan and represents a potential drug target to improve stroke outcome. Further studies are needed to elucidate the underlying molecular mechanisms of VEGF-B in neuroprotection and recovery after ischemic stroke.
Collapse
Affiliation(s)
- Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 855 Monroe Ave, Rm 231-Wittenborg bldg., Memphis, TN, 38163, USA.
| | - Sahar Soliman
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Wael Eldahshan
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, and Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA.,Department of Neurology, Augusta University, Augusta, GA, USA
| |
Collapse
|
27
|
Diniz CR, Casarotto PC, Fred SM, Biojone C, Castrén E, Joca SR. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN. Neuropharmacology 2018; 135:163-171. [DOI: 10.1016/j.neuropharm.2018.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/06/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
|
28
|
Neuroprotection via AT2 receptor agonists in ischemic stroke. Clin Sci (Lond) 2018; 132:1055-1067. [DOI: 10.1042/cs20171549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Stroke is a devastating disease that afflicts millions of people each year worldwide. Ischemic stroke, which accounts for ~88% of cases, occurs when blood supply to the brain is decreased, often because of thromboembolism or atherosclerotic occlusion. This deprives the brain of oxygen and nutrients, causing immediate, irreversible necrosis within the core of the ischemic area, but more delayed and potentially reversible neuronal damage in the surrounding brain tissue, the penumbra. The only currently approved therapies for ischemic stroke, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) and the endovascular clot retrieval/destruction processes, are aimed at restoring blood flow to the infarcted area, but are only available for a minority of patients and are not able in most cases to completely restore neurological deficits. Consequently, there remains a need for agents that will protect neurones against death following ischemic stroke. Here, we evaluate angiotensin II (Ang II) type 2 (AT2) receptor agonists as a possible therapeutic target for this disease. We first provide an overview of stroke epidemiology, pathophysiology, and currently approved therapies. We next review the large amount of preclinical evidence, accumulated over the past decade and a half, which indicates that AT2 receptor agonists exert significant neuroprotective effects in various animal models, and discuss the potential mechanisms involved. Finally, after discussing the challenges of delivering blood–brain barrier (BBB) impermeable AT2 receptor agonists to the infarcted areas of the brain, we summarize the evidence for and against the development of these agents as a promising therapeutic strategy for ischemic stroke.
Collapse
|
29
|
Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the Brain: The Renin Angiotensin System. Int J Mol Sci 2018; 19:E876. [PMID: 29543776 PMCID: PMC5877737 DOI: 10.3390/ijms19030876] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
Abstract
For many years, modulators of the renin angiotensin system (RAS) have been trusted by clinicians for the control of essential hypertension. It was recently demonstrated that these modulators have other pleiotropic properties independent of their hypotensive effects, such as enhancement of cognition. Within the brain, different components of the RAS have been extensively studied in the context of neuroprotection and cognition. Interestingly, a crosstalk between the RAS and other systems such as cholinergic, dopaminergic and adrenergic systems have been demonstrated. In this review, the preclinical and clinical evidence for the impact of RAS modulators on cognitive impairment of multiple etiologies will be discussed. In addition, the expression and function of different receptor subtypes within the RAS such as: Angiotensin II type I receptor (AT1R), Angiotensin II type II receptor (AT2R), Angiotensin IV receptor (AT4R), Mas receptor (MasR), and Mas-related-G protein-coupled receptor (MrgD), on different cell types within the brain will be presented. We aim to direct the attention of the scientific community to the plethora of evidence on the importance of the RAS on cognition and to the different disease conditions in which these agents can be beneficial.
Collapse
Affiliation(s)
- LaDonya Jackson
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
30
|
Role of angiotensin system modulation on progression of cognitive impairment and brain MRI changes in aged hypertensive animals - A randomized double- blind pre-clinical study. Behav Brain Res 2017; 346:29-40. [PMID: 29229547 DOI: 10.1016/j.bbr.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/10/2023]
Abstract
Growing evidence suggests that renin angiotensin system (RAS) modulators support cognitive function in various animal models. However, little is known about their long-term effects on the brain structure in aged hypertensive animals with chronic cerebral hypoperfusion as well as which specific domains of cognition are most affected. Therefore, in the current study we examined the effects of Candesartan and Compound 21 (C21) (RAS modulators) on aspects of cognition known to diminish with advanced age and accelerate with hypertension and vascular disease. Outcome measures for sensorimotor and cognitive function were performed using a sequence of tests, all blindly conducted and assessed at baseline and after 4 and 8 weeks of chronic hypoxic hypoperfusion and treatment. Magnetic resonance imaging (MRI) was performed at the end of the 8 week study period followed by animal sacrifice and tissue collection. Both Candesartan and C21 effectively preserved cognitive function and prevented progression of vascular cognitive impairment (VCI) but only candesartan prevented loss of brain volume in aged hypertensive animals. Collectively, our findings demonstrate that delayed administration of RAS modulators effectively preserve cognitive function and prevent the development / progression of VCI in aged hypertensive animals with chronic cerebral hypoperfusion.
Collapse
|
31
|
Wang Y, Zhang R, Xing X, Guo J, Xie F, Zhang G, Qin X. Repulsive guidance molecule a suppresses angiogenesis after ischemia/reperfusion injury of middle cerebral artery occlusion in rats. Neurosci Lett 2017; 662:318-323. [PMID: 29061393 DOI: 10.1016/j.neulet.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Repulsive guidance molecule a (RGMa) has now emerged as a molecule with pleiotropic roles, including repulsion, adhesion, migration and differentiation in the nervous system. In this study, adult male Sprague-Dawley (SD) rats received 90-min middle cerebral artery occlusion (MCAO) to observe RGMa/neogenin expression sites after ischemia/reperfusion injury and changes in angiogenesis after treatment with RNA interference using RGMa-specific recombinant adenovirus rAd5-shRNA-RGMa (rAd-shRGMa). To clarify how RGMa mediates angiogenesis, the RGMa function-blocking peptide six fibronectin type III (6FNIII) was also administered, and corresponding changes in vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang2), angiopoietin-1 (Ang1), and brain derived neurotrophic factor (BDNF) were determined by western blotting. Both RGMa and its receptor neogenin were expressed in neurons and vessel endothelial cells after ischemia/reperfusion injury, and angiogenesis, coupled with functional recovery, was enhanced after RNA interference against RGMa compared with the vehicle groups. VEGF, Ang2, Ang1 and BDNF expression levels were significantly increased after intervention with rAd-shRGMa or 6FNIII. Thus, RGMa might suppress angiogenesis via VEGF, Ang2, Ang1 and BDNF after cerebral ischemia/reperfusion injury, which has therapeutic potential by reducing these endogenous detrimental mechanisms.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangfeng Xing
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fei Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Gang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
32
|
Shaaban CE, Aizenstein HJ, Jorgensen DR, MacCloud RL, Meckes NA, Erickson KI, Glynn NW, Mettenburg J, Guralnik J, Newman AB, Ibrahim TS, Laurienti PJ, Vallejo AN, Rosano C. In Vivo Imaging of Venous Side Cerebral Small-Vessel Disease in Older Adults: An MRI Method at 7T. AJNR Am J Neuroradiol 2017; 38:1923-1928. [PMID: 28775055 DOI: 10.3174/ajnr.a5327] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/28/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND PURPOSE Traditional neuroimaging markers of small-vessel disease focus on late-stage changes. We aimed to adapt a method of venular assessment at 7T for use in older adults. We hypothesized that poorer venular morphologic characteristics would be related to other small-vessel disease neuroimaging markers and a higher prevalence of small-vessel disease-Alzheimer disease risk factors. MATERIALS AND METHODS Venules were identified in periventricular ROIs on SWI and defined as tortuous or straight. The tortuosity ratio was defined as total tortuous venular length divided by total straight venular length. White matter hyperintensity burden (visually rated from 0 to 3) and the number of microbleeds (0, 1, >1) were determined. Differences in tortuous and straight venular lengths were evaluated. Relationships with demographic variables, allele producing the e4 type of apolipoprotein E (APOE4), growth factors, pulse pressure, physical activity, and Modified Mini-Mental State Examination were assessed via Spearman correlations. RESULTS Participants had 42% more tortuous venular tissue than straight (median, 1.42; 95% CI, 1.13-1.62). APOE4 presence was associated with a greater tortuosity ratio (ρ = 0.454, P = .001), and these results were robust to adjustment for confounders and multiple comparisons. Associations of the tortuosity ratio with sex and vascular endothelial growth factor did not survive adjustment. Associations of the tortuosity ratio with other variables of interest were not significant. CONCLUSIONS Morphologic measures of venules at 7T could be useful biomarkers of the early stages of small-vessel disease and Alzheimer disease. Longitudinal studies should examine the impact of apolipoprotein E and vascular endothelial growth factor on the risk of venular damage.
Collapse
Affiliation(s)
- C E Shaaban
- From the Graduate School of Public Health, Department of Epidemiology (C.E.S., D.R.J., N.W.G., A.B.N., C.R.).,Center for the Neural Basis of Cognition (C.E.S., H.J.A., D.R.J., K.I.E., C.R.)
| | - H J Aizenstein
- Center for the Neural Basis of Cognition (C.E.S., H.J.A., D.R.J., K.I.E., C.R.).,Departments of Psychiatry (H.J.A., R.L.M.)
| | - D R Jorgensen
- From the Graduate School of Public Health, Department of Epidemiology (C.E.S., D.R.J., N.W.G., A.B.N., C.R.).,Center for the Neural Basis of Cognition (C.E.S., H.J.A., D.R.J., K.I.E., C.R.)
| | - R L MacCloud
- From the Graduate School of Public Health, Department of Epidemiology (C.E.S., D.R.J., N.W.G., A.B.N., C.R.).,Departments of Psychiatry (H.J.A., R.L.M.)
| | | | - K I Erickson
- Center for the Neural Basis of Cognition (C.E.S., H.J.A., D.R.J., K.I.E., C.R.).,Psychology (K.I.E.)
| | - N W Glynn
- From the Graduate School of Public Health, Department of Epidemiology (C.E.S., D.R.J., N.W.G., A.B.N., C.R.)
| | | | - J Guralnik
- Department of Epidemiology and Public Health (J.G.), University of Maryland School of Medicine, Baltimore, Maryland
| | - A B Newman
- From the Graduate School of Public Health, Department of Epidemiology (C.E.S., D.R.J., N.W.G., A.B.N., C.R.)
| | - T S Ibrahim
- Radiology (J.M., T.S.I.).,Bioengineering (T.S.I.)
| | - P J Laurienti
- Laboratory for Complex Brain Networks (P.J.L.).,Department of Radiology (P.J.L.), Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - A N Vallejo
- Immunology (A.N.V.). University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatrics (A.N.V.), Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - C Rosano
- From the Graduate School of Public Health, Department of Epidemiology (C.E.S., D.R.J., N.W.G., A.B.N., C.R.) .,Center for the Neural Basis of Cognition (C.E.S., H.J.A., D.R.J., K.I.E., C.R.)
| | | |
Collapse
|
33
|
Alhusban A, Kozak A, Pillai B, Ahmed H, Sayed MA, Johnson MH, Ishrat T, Ergul A, Fagan SC. Mechanisms of acute neurovascular protection with AT1 blockade after stroke: Effect of prestroke hypertension. PLoS One 2017; 12:e0178867. [PMID: 28640888 PMCID: PMC5480858 DOI: 10.1371/journal.pone.0178867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Stroke is a leading cause of adult disability worldwide. Improving stroke outcome requires an orchestrated interplay that involves up regulation of pro-survival pathways and a concomitant suppression of pro-apoptotic mediators. In this investigation, we assessed the involvement of eNOS in the AT1 blocker-mediated protective and pro-recovery effects in animals with hypertension. We also evaluated the effect of acute eNOS inhibition in hypertensive animals. To achieve these goals, spontaneously hypertensive rats (SHR) were implanted with blood pressure transmitters, and randomized to receive either an eNOS inhibitor (L-NIO) or saline one hour before cerebral ischemia induction. After 3 hours of ischemia, animals were further randomized to receive either candesartan or saline at the time of reperfusion and sacrificed either 24 hours or 7 days later. Candesartan induced an early protective effect that was independent of eNOS inhibition (50% improvement in motor function). However, the protective effect of candesartan was associated with about five fold up regulation of BDNF expression and about three fold reduction in ER stress markers, in an eNOS dependent manner. The early benefit of a single dose of candesartan, present at 24 hours after stroke, was diminished at 7 days, perhaps due to a failure to induce an angiogenic response in these hypertensive animals. In conclusion, our findings demonstrate an early prorecovery effect of candesartan at both functional and molecular levels. Candesartan induced prorecovery signaling was mediated through eNOS. This effect was not maintained at 7 days after experimental ischemia.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Anna Kozak
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Heba Ahmed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Mohammed A. Sayed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Maribeth H. Johnson
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
| | - Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Susan C. Fagan
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
34
|
Alhusban A, Alkhazaleh E, El-Elimat T. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3 β Inhibition-Induced Reduction of VEGF Release. J Diabetes Res 2017; 2017:2537216. [PMID: 29209632 PMCID: PMC5676450 DOI: 10.1155/2017/2537216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/24/2017] [Indexed: 02/03/2023] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin) has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i) were treated with 50 μg/mL advanced glycation end (AGE) products in the presence or absence of silymarin (50, 100 μM). The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p = 0.0001). Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p = 0.001). This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Enaam Alkhazaleh
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamam El-Elimat
- Medicinal Chemistry & Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
35
|
Wang XL, Iwanami J, Min LJ, Tsukuda K, Nakaoka H, Bai HY, Shan BS, Kan-No H, Kukida M, Chisaka T, Yamauchi T, Higaki A, Mogi M, Horiuchi M. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis 2016; 2:16024. [PMID: 28721275 PMCID: PMC5515001 DOI: 10.1038/npjamd.2016.24] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
The classical renin–angiotensin system (RAS), known as the angiotensin (Ang)-converting enzyme (ACE)/Ang II/Ang II type 1 (AT1) receptor axis, induces various organ damages including cognitive decline. On the other hand, the ACE2/Ang-(1–7)/Mas receptor axis has been highlighted as exerting antagonistic actions against the classical RAS axis in the cardiovascular system. However, the roles of the ACE2/Ang-(1–7)/Mas axis in cognitive function largely remain to be elucidated, and we therefore examined possible roles of ACE2 in cognitive function. Male, 10-week-old C57BL6 (wild type, WT) mice and ACE2 knockout (KO) mice were subjected to the Morris water maze task and Y maze test to evaluate cognitive function. ACE2KO mice exhibited significant impairment of cognitive function, compared with that in WT mice. Superoxide anion production increased in ACE2KO mice, with increased mRNA levels of NADPH oxidase subunit, p22phox, p40phox, p67phox, and gp91phox in the hippocampus of ACE2KO mice compared with WT mice. The protein level of SOD3 decreased in ACE2KO mice compared with WT mice. The AT1 receptor mRNA level in the hippocampus was higher in ACE2KO mice compared with WT mice. In contrast, the AT2 receptor mRNA level in the hippocampus did not differ between the two strains. Mas receptor mRNA was highly expressed in the hippocampus compared with the cortex. Brain-derived neurotrophic factor (BDNF) mRNA and protein levels were lower in the hippocampus in ACE2KO mice compared with WT mice. Taken together, ACE2 deficiency resulted in impaired cognitive function, probably at least in part because of enhanced oxidative stress and a decrease in BDNF.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Kana Tsukuda
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Hirotomo Nakaoka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Hui-Yu Bai
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masayoshi Kukida
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Toshiyuki Chisaka
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
36
|
Arroja MMC, Reid E, McCabe C. Therapeutic potential of the renin angiotensin system in ischaemic stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2016; 8:8. [PMID: 27761230 PMCID: PMC5054604 DOI: 10.1186/s13231-016-0022-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) consists of the systemic hormone system, critically involved in regulation and homeostasis of normal physiological functions [i.e. blood pressure (BP), blood volume regulation], and an independent brain RAS, which is involved in the regulation of many functions such as memory, central control of BP and metabolic functions. In general terms, the RAS consists of two opposing axes; the ‘classical axis’ mediated primarily by Angiotensin II (Ang II), and the ‘alternative axis’ mediated mainly by Angiotensin-(1–7) (Ang-(1–7)). An imbalance of these two opposing axes is thought to exist between genders and is thought to contribute to the pathology of cardiovascular conditions such as hypertension, a stroke co-morbidity. Ischaemic stroke pathophysiology has been shown to be influenced by components of the RAS with specific RAS receptor antagonists and agonists improving outcome in experimental models of stroke. Manipulation of the two opposing axes following acute ischaemic stroke may provide an opportunity for protection of the neurovascular unit, particularly in the presence of pre-existing co-morbidities where the balance may be shifted. In the present review we will give an overview of the experimental stroke studies that have investigated pharmacological interventions of the RAS.
Collapse
Affiliation(s)
- Mariana Moreira Coutinho Arroja
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| | - Emma Reid
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| | - Christopher McCabe
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH UK
| |
Collapse
|
37
|
Alhusban A, Fouda AY, Fagan SC. ARBs improve stroke outcome through an AT2-dependent, BDNF-induced proangiogenic and prorecovery response. Neural Regen Res 2016; 11:912-3. [PMID: 27482214 PMCID: PMC4962583 DOI: 10.4103/1673-5374.184484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ahmed Alhusban
- Jordan University of Science and Technology, College of Pharmacy, Irbid, Jordan
| | - Abdelrahman Y Fouda
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA, USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
38
|
Wincewicz D, Juchniewicz A, Waszkiewicz N, Braszko JJ. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression. Pharmacol Biochem Behav 2016; 148:108-18. [PMID: 27375198 DOI: 10.1016/j.pbb.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade.
Collapse
Affiliation(s)
- D Wincewicz
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland; Department of Psychiatry, Medical University of Bialystok, Poland.
| | - A Juchniewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Poland
| | - N Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Poland
| | - J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland
| |
Collapse
|
39
|
Renin-angiotensin system as a potential therapeutic target in stroke and retinopathy: experimental and clinical evidence. Clin Sci (Lond) 2016; 130:221-38. [PMID: 26769658 DOI: 10.1042/cs20150350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As our knowledge expands, it is now clear that the renin-angiotensin (Ang) system (RAS) mediates functions other than regulating blood pressure (BP). The RAS plays a central role in the pathophysiology of different neurovascular unit disorders including stroke and retinopathy. Moreover, the beneficial actions of RAS modulation in brain and retina have been documented in experimental research, but not yet exploited clinically. The RAS is a complex system with distinct yet interconnected components. Understanding the different RAS components and their functions under brain and retinal pathological conditions is crucial to reap their benefits. The aim of the present review is to provide an experimental and clinical update on the role of RAS in the pathophysiology and treatment of stroke and retinopathy. Combining the evidence from both these disorders allows a unique opportunity to move both fields forward.
Collapse
|
40
|
Alhusban A, Kozak A, Eldashan W, Ergul A, Fagan SC. Artery reopening is required for the neurorestorative effects of angiotensin modulation after experimental stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2016; 8:4. [PMID: 27127602 PMCID: PMC4848811 DOI: 10.1186/s13231-016-0018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/19/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Blood flow restoration with fibrinolysis and thrombectomy is recommended to limit injury in stroke patients with proximal artery occlusion. Angiotensin receptor blockers have been shown to be neuroprotective in models of permanent and temporary occlusion, but the benefits on expression of trophic factors have been seen only when the artery is reopened. It is possible that early artery opening with endovascular intervention may increase the likelihood of identifying an effective combination therapy for patients. METHODS Normotensive male Wistar rats were subjected to mechanical middle cerebral artery occlusion (either temporary or permanent), followed by randomization to receive candesartan (0.3 mg/kg IV) or saline. Functional outcome, infarct size, and biochemical changes were assessed 24 h after ischemia induction. RESULTS Lack of reperfusion blunted candesartan induced neuroprotection (p < 0.05) and reduced the improvement of functional outcome (p < 0.05). With reperfusion, candesartan increased mature BDNF expression in the contralateral hemisphere (p < 0.05) and activated prosurvival (Akt-GSK3-β) signaling (p < 0.05). Without reperfusion, candesartan significantly reduced VEGF expression and MMP activation and increased NOGO A expression, creating an environment hostile to recovery. CONCLUSION Candesartan induced pro-recovery effects are dependent on the presence of reperfusion.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110 Jordan
| | - Anna Kozak
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| | - Wael Eldashan
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center, and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Augusta, GA USA
| |
Collapse
|
41
|
Compound 21 is pro-angiogenic in the brain and results in sustained recovery after ischemic stroke. J Hypertens 2016; 33:170-80. [PMID: 25304472 DOI: 10.1097/hjh.0000000000000364] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Angiotensin II type 2 receptor (AT2R) stimulation is neuroprotective after experimental stroke. However, the therapeutic utility of AT2R stimulation has been hampered by the lack of a specific agonist with favourable bioavailability. Compound 21 (C21) - the first non-peptide AT2R agonist - offers a potential option to enhance stroke recovery. This study aimed to investigate the effect of C21 administration on early and late stroke outcomes, and the molecular mediators involved. METHODS Rats were subjected to 3 h or 90 min of middle cerebral artery occlusion (MCAO) and randomized to intraperitoneal C21 (0.03 mg/kg) or saline at reperfusion. Animals were sacrificed at 24 h or 7 days and brains were collected for molecular analysis and immunostaining, respectively. Functional outcome at days 1, 4 and 7 was assessed blindly. C21 angiogenic potential was assessed in vitro. RESULTS After 3 h of MCAO, C21 treatment reduced infarct size and improved behavioural outcome at 24 h without affecting blood pressure. Co-administration of the AT2R antagonist (PD123319) blocked these effects. On the molecular level, C21 decreased brain haemoglobin content, down-regulated apoptotic and oxidative markers, and increased pro-survival molecules in the brain. After 90 min of MCAO, C21 treatment resulted in sustained functional improvement at 7 days, together with increased vascular density in the ischemic penumbra. In vitro, C21 showed a pro-angiogenic effect that was blocked with brain-derived neurotrophic factor neutralization. CONCLUSION These findings demonstrate that a single dose of C21 is neurovascular-protective and improves stroke outcome possibly through increasing neurotrophin activity, mitigating brain inflammation, and promoting antioxidant and pro-angiogenic effects.
Collapse
|
42
|
Shih YH, Tsai SF, Huang SH, Chiang YT, Hughes MW, Wu SY, Lee CW, Yang TT, Kuo YM. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory. Neuroscience 2016; 322:346-57. [PMID: 26921651 DOI: 10.1016/j.neuroscience.2016.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is associated with neurodegenerative diseases and cognitive impairment. Several studies using spontaneous hypertensive rats to study the effect of hypertension on memory performance and adult hippocampal neurogenesis have reached inconsistent conclusions. The contradictory findings may be related to the genetic variability of spontaneous hypertensive rats due to the conventional breeding practices. The objective of this study is to examine the effect of hypertension on hippocampal structure and function in isogenic mice. Hypertension was induced by the '2 kidneys, 1 clip' method (2K1C) which constricted one of the two renal arteries. The blood pressures of 2K1C mice were higher than the sham group on post-operation day 7 and remained high up to day 28. Mice with 2K1C-induced hypertension had impaired long-term, but not short-term, memory. Dendritic complexity of CA1 neurons and hippocampal neurogenesis were reduced by 2K1C-induced hypertension on post-operation day 28. Furthermore, 2K1C decreased the levels of hippocampal brain-derived neurotrophic factor, while blood vessel density and activation status of astrocytes and microglia were not affected. In conclusion, hypertension impairs hippocampus-associated long-term memory, dendritic arborization and neurogenesis, which may be caused by down-regulation of brain-derived neurotrophic factor signaling pathways.
Collapse
Affiliation(s)
- Y-H Shih
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - S-F Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - S-H Huang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Y-T Chiang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - M W Hughes
- International Research Center of Wound Repair & Regeneration, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - S-Y Wu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - C-W Lee
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - T-T Yang
- Department of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Y-M Kuo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
43
|
Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Mol Neurobiol 2016; 54:661-670. [PMID: 26758277 DOI: 10.1007/s12035-015-9675-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/18/2015] [Indexed: 01/02/2023]
Abstract
Angiotensin type 1 receptor blockers (ARBs) have been shown to be neuroprotective and neurorestorative in experimental stroke. The mechanisms proposed include anti-inflammatory, antiapoptotic effects, as well as stimulation of endogenous trophic factors leading to angiogenesis and neuroplasticity. We aimed to investigate the involvement of the neurotrophin, brain-derived neurotrophic factor (BDNF), in ARB-mediated functional recovery after stroke. To achieve this aim, Wistar rats received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles or nontargeting control (NTC) vector, to knock down BDNF in both hemispheres. After 14 days, rats were subjected to 90-min middle cerebral artery occlusion (MCAO) and received the ARB, candesartan, 1 mg/kg, or saline IV at reperfusion (one dose), then followed for another 14 days using a battery of behavioral tests. BDNF protein expression was successfully reduced by about 70 % in both hemispheres at 14 days after bilateral shRNA lentiviral particle injection. The NTC group that received candesartan showed better functional outcome as well as increased vascular density and synaptogenesis as compared to saline treatment. BDNF knockdown abrogated the beneficial effects of candesartan on neurobehavioral outcome, vascular density, and synaptogenesis. In conclusion, BDNF is directly involved in candesartan-mediated functional recovery, angiogenesis, and synaptogenesis.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Ahmed Alhusban
- Jordan University of Science and Technology, College of Pharmacy, Irbid, Jordan
| | - Tauheed Ishrat
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Wael Eldahshan
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA
| | | | - Adviye Ergul
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA.,Department of Physiology, Augusta University, Augusta, GA, USA
| | - Susan C Fagan
- Charlie Norwood VA Medical Center and Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA. .,Department of Neurology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
44
|
Ergul A, Valenzuela JP, Fouda AY, Fagan SC. Cellular connections, microenvironment and brain angiogenesis in diabetes: Lost communication signals in the post-stroke period. Brain Res 2015; 1623:81-96. [PMID: 25749094 PMCID: PMC4743654 DOI: 10.1016/j.brainres.2015.02.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Diabetes not only increases the risk but also worsens the motor and cognitive recovery after stroke, which is the leading cause of disability worldwide. Repair after stroke requires coordinated communication among various cell types in the central nervous system as well as circulating cells. Vascular restoration is critical for the enhancement of neurogenesis and neuroplasticity. Given that vascular disease is a major component of all complications associated with diabetes including stroke, this review will focus on cellular communications that are important for vascular restoration in the context of diabetes. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Adviye Ergul
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - John Paul Valenzuela
- Department of Physiology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, CA 2094, Augusta, GA 30912, USA
| | - Abdelrahman Y Fouda
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Susan C Fagan
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
45
|
Villapol S, Balarezo MG, Affram K, Saavedra JM, Symes AJ. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain 2015; 138:3299-315. [PMID: 26115674 DOI: 10.1093/brain/awv172] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury.
Collapse
Affiliation(s)
- Sonia Villapol
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA *Present address: Georgetown University Medical Centre, Department of Neuroscience, Washington, DC, USA
| | - María G Balarezo
- 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kwame Affram
- 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Juan M Saavedra
- 3 Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, USA
| | - Aviva J Symes
- 1 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA 2 Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
46
|
Xiao X, Zhang C, Ma X, Miao H, Wang J, Liu L, Chen S, Zeng R, Chen Y, Bihl JC. Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways. Exp Cell Res 2015; 336:58-65. [PMID: 26101159 DOI: 10.1016/j.yexcr.2015.06.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022]
Abstract
Angiotensin (Ang) II, the main effector of the renin-angiotensin system, has been implicated in the pathogenesis of vascular diseases. Ang-(1-7) binds to the G protein-coupled Mas receptor (MasR) and can exert vasoprotective effects. We investigated the effects and underlying mechanisms of Ang-(1-7) on Ang II-induced dysfunction and oxidative stress in human brain microvascular endothelial cells (HbmECs). The pro-apoptotic activity, reactive oxygen species (ROS) and nitric oxide (NO) productions in HbmECs were measured. The protein expressions of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2), serine/threonine kinase (Akt), endothelial nitric oxide synthase (eNOS) and their phosphorylated forms (p-Akt and p-eNOS) were examined by western blot. MasR antagonist and phosphatidylinositol-3-kinase (PI3K) inhibitor were used for receptor/pathway verification. We found that Ang-(1-7) suppressed Ang II-induced pro-apoptotic activity, ROS over-production and NO reduction in HbmECs, which were abolished by MasR antagonist. In addition, Ang-(1-7) down-regulated the expression of Nox2, and up-regulated the ratios of p-Akt/Akt and its downstream p-eNOS/eNOS in HbmECs. Exposure to PI3K inhibitor partially abrogated Ang-(1-7)-mediated protective effects in HbmECs. Our data suggests that Ang-(1-7)/MasR axis protects HbmECs from Ang II-induced dysfunction and oxidative stress via inhibition of Nox2/ROS and activation of PI3K/NO pathways.
Collapse
Affiliation(s)
- Xiang Xiao
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Cheng Zhang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Xiaotang Ma
- Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Huilai Miao
- Department of Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Langni Liu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Rong Zeng
- Department of Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | - Ji C Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; Institute of Neurology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, China.
| |
Collapse
|
47
|
Soliman S, Ishrat T, Fouda AY, Patel A, Pillai B, Fagan SC. Sequential Therapy with Minocycline and Candesartan Improves Long-Term Recovery After Experimental Stroke. Transl Stroke Res 2015; 6:309-22. [PMID: 26004281 DOI: 10.1007/s12975-015-0408-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/07/2023]
Abstract
Minocycline and candesartan have both shown promise as candidate therapeutics in ischemic stroke, with multiple, and somewhat contrasting, molecular mechanisms. Minocycline is an anti-inflammatory, antioxidant, and anti-apoptotic agent and a known inhibitor of matrix metalloproteinases (MMPs). Yet, minocycline exerts antiangiogenic effects both in vivo and in vitro. Candesartan promotes angiogenesis and activates MMPs. Aligning these therapies with the dynamic processes of injury and repair after ischemia is likely to improve success of treatment. In this study, we hypothesize that opposing actions of minocycline and candesartan on angiogenesis, when administered simultaneously, will reduce the benefit of candesartan treatment. Therefore, we propose a sequential combination treatment regimen to yield a better outcome and preserve the proangiogenic potential of candesartan. In vitro angiogenesis was assessed using human brain endothelial cells. In vivo, Wistar rats subjected to 90-min middle cerebral artery occlusion (MCAO) were randomized into four groups: saline, candesartan, minocycline, and sequential combination of minocycline and candesartan. Neurobehavioral tests were performed 1, 3, 7, and 14 days after stroke. Brain tissue was collected on day 14 for assessment of infarct size and vascular density. Minocycline, when added simultaneously, decreased the proangiogenic effect of candesartan treatment in vitro. Sequential treatment, however, preserved the proangiogenic potential of candesartan both in vivo and in vitro, improved neurobehavioral outcome, and reduced infarct size. Sequential combination therapy with minocycline and candesartan improves long-term recovery and maintains candesartan's proangiogenic potential.
Collapse
|
48
|
Guo Q, Zhong M, Xu H, Mao X, Zhang Y, Lin N. A Systems Biology Perspective on the Molecular Mechanisms Underlying the Therapeutic Effects of Buyang Huanwu Decoction on Ischemic Stroke. Rejuvenation Res 2015; 18:313-25. [PMID: 25687091 DOI: 10.1089/rej.2014.1635] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ischemic stroke is the leading cause of adult disability worldwide. The outcome is worse in older patients, especially in terms of disability. Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine formula, has been used extensively in the treatment of ischemic stroke for centuries. However, its pharmacological mechanisms have not been fully elucidated. In this study, 82 putative targets for 411 composite compounds contained in BHD were predicted on the basis of our previously developed target prediction system. On the basis of large-scale molecular docking, more than 80% compound-putative target pairs had medium to strong binding efficiency. The pharmacological networks of BHD were built according to relationships among herbs, putative targets, and known therapeutic targets for ischemic stroke, and 121 major nodes were identified by calculating three topological features-degree, node betweenness, and closeness. Importantly, the pathway enrichment analysis identified several signaling pathways involved with major putative targets of BHD, such as the calcium signaling pathway, vascular smooth muscle contraction, and nucleotide-binding oligomerization domain (NOD)-like receptor signaling pathway, which have not hitherto been reported. These data are expected to help find new therapeutic effects of BHD and optimize clinical use of this formula. Collectively, our study developed a comprehensive systems approach integrating drug target prediction and network and functional analyses to reveal the relationships of the herbs in BHD with their putative targets, and for the first time with ischemic stroke-related pathway systems. This is a pilot study based on bioinformatics analysis; thus, further experimental studies are required to validate our findings.
Collapse
Affiliation(s)
- Qiuyan Guo
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Micun Zhong
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyu Xu
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Mao
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica , China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Artham S, Fouda AY, El-Remessy AB, Fagan SC. Vascular protective effects of Angiotensin Receptor Blockers: Beyond Blood pressure. ACTA ACUST UNITED AC 2015; 2. [PMID: 26317114 DOI: 10.14800/rci.774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sandeep Artham
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Abdelrahman Y Fouda
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Azza B El-Remessy
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, and Georgia Regents University, Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
50
|
Gutiérrez-Fernández M, Fuentes B, Rodríguez-Frutos B, Ramos-Cejudo J, Otero-Ortega L, Díez-Tejedor E. Different protective and reparative effects of olmesartan in stroke according to time of administration and withdrawal. J Neurosci Res 2014; 93:806-14. [PMID: 25524827 DOI: 10.1002/jnr.23532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023]
Abstract
Angiotensin type 1 receptor blockers (ARBs) have induced improved functional recovery and reduced infarct volume in experimental animal models of stroke. Clinical data have indicated a positive correlation between prestroke treatment with ARBs and reduced stroke severity and better outcomes; however, the mechanisms of these beneficial effects are not yet well understood. This study compares the protective and possible reparative effects of continuous oral treatment with olmesartan (OLM) with OLM pretreatment and withdrawal after permanent middle cerebral artery occlusion (pMCAO) in rats. Fifty-two Sprague-Dawley rats were randomly assigned to five groups: MCAO(-/OLM) (OLM 10 mg/kg/day for 14 days after infarct), MCAO(OLM/OLM) (OLM 10 mg/kg/day for 7 days before and 14 days after infarct), MCAO(OLM/-) (OLM 10 mg/kg/day for 7 days before infarct), sham, and control. We analyzed functional recovery; lesion size; cell death; expression of the pro-oxidant enzyme NADPH oxidase 4 (NOX-4); isolectin-B4; and repair markers such as glial fibrillary acidic protein, vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF). All of the OLM-treated groups showed significantly better functional scores and reduced infarct sizes and cell death compared with the control group 14 days after pMCAO. Levels of NOX-4, VEGF, and BDNF were significantly lower in the brains of the MCAO(OLM/OLM) and sham groups compared with the other groups. OLM treatment improved functional recovery and reduced lesion size and cell death after cerebral ischemia. Only the continuous administration of OLM before and after stroke reduced oxidative stress levels, with better tissue preservation, without triggering brain repair marker activation.
Collapse
Affiliation(s)
- María Gutiérrez-Fernández
- Department of Neurology and Stroke Centre, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ (Health Research Institute), Autónoma University of Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|