1
|
Hu DG, Marri S, Hulin JA, Ansaar R, Mackenzie PI, McKinnon RA, Meech R. Activation of Cryptic Donor Splice Sites within the UDP-Glucuronosyltransferase (UGT)1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins with Truncated Aglycone-Binding Domains. Drug Metab Dispos 2024; 52:526-538. [PMID: 38565302 DOI: 10.1124/dmd.123.001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts, and 34 circular RNAs. In this study, our analysis of published UGT-RNA capture sequencing (CaptureSeq) datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA sequencing (RNA-Seq) datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally coexpressed with their canonical counterparts with a higher relative abundance in tumor than in normal tissues. Variants showed tissue-specific expression with high interindividual variability but overall low abundance. However, 1A8_n2 showed high abundance in normal and cancerous colorectal tissues, with levels that approached or surpassed canonical 1A8 mRNA levels in many samples. We cloned 1A8_n2 and showed expression of the predicted protein (1A8_i3) in human embryonic kidney (HEK)293T cells. Glucuronidation assays with 4-methylumbelliferone (4MU) showed that 1A8_i3 had no activity and was unable to inhibit the activity of 1A8_i1 protein. In summary, the activation of cryptic donor splice sites within the UGT1A first-exon region expands the UGT1A transcriptome and proteome. The 1A8_n2 cryptic donor splice site is highly active in colorectal tissues, representing an important cis-regulatory element that negatively regulates the function of the UGT1A8 gene through pre-mRNA splicing. SIGNIFICANT STATEMENT: The UGT1A locus generates nine canonical mRNAs, 65 alternately spliced transcripts, and 34 different circular RNAs. The present study reports a series of novel UDP-glucuronosyltransferase (UGT)1A variants resulting from use of cryptic donor splice sites in both normal and cancerous tissues, several of which are predicted to encode variant UGT1A proteins with truncated aglycone-binding domains. Of these, 1A8_n2 shows exceptionally high abundance in colorectal tissues, highlighting its potential role in the first-pass metabolism in gut through the glucuronidation pathway.
Collapse
Affiliation(s)
- Dong Gui Hu
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Radwan Ansaar
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Robyn Meech
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| |
Collapse
|
2
|
Khan AB, Patel R, McDonald MF, Goethe E, English C, Gadot R, Shetty A, Nouri SH, Harmanci AO, Harmanci AS, Klisch TJ, Patel AJ. Integrated clinical genomic analysis reveals xenobiotic metabolic genes are downregulated in meningiomas of current smokers. J Neurooncol 2023:10.1007/s11060-023-04359-7. [PMID: 37318677 DOI: 10.1007/s11060-023-04359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Meningiomas are the most common primary intracranial tumor. Recently, various genetic classification systems for meningioma have been described. We sought to identify clinical drivers of different molecular changes in meningioma. As such, clinical and genomic consequences of smoking in patients with meningiomas remain unexplored. METHODS 88 tumor samples were analyzed in this study. Whole exome sequencing (WES) was used to assess somatic mutation burden. RNA sequencing data was used to identify differentially expressed genes (DEG) and genes sets (GSEA). RESULTS Fifty-seven patients had no history of smoking, twenty-two were past smokers, and nine were current smokers. The clinical data showed no major differences in natural history across smoking status. WES revealed absence of AKT1 mutation rate in current or past smokers compared to non-smokers (p = 0.046). Current smokers had increased mutation rate in NOTCH2 compared to past and never smokers (p < 0.05). Mutational signature from current and past smokers showed disrupted DNA mismatch repair (cosine-similarity = 0.759 and 0.783). DEG analysis revealed the xenobiotic metabolic genes UGT2A1 and UGT2A2 were both significantly downregulated in current smokers compared to past (Log2FC = - 3.97, padj = 0.0347 and Log2FC = - 4.18, padj = 0.0304) and never smokers (Log2FC = - 3.86, padj = 0.0235 and Log2FC = - 4.20, padj = 0.0149). GSEA analysis of current smokers showed downregulation of xenobiotic metabolism and enrichment for G2M checkpoint, E2F targets, and mitotic spindle compared to past and never smokers (FDR < 25% each). CONCLUSION In this study, we conducted a comparative analysis of meningioma patients based on their smoking history, examining both their clinical trajectories and molecular changes. Meningiomas from current smokers were more likely to harbor NOTCH2 mutations, and AKT1 mutations were absent in current or past smokers. Moreover, both current and past smokers exhibited a mutational signature associated with DNA mismatch repair. Meningiomas from current smokers demonstrate downregulation of xenobiotic metabolic enzymes UGT2A1 and UGT2A2, which are downregulated in other smoking related cancers. Furthermore, current smokers exhibited downregulation xenobiotic metabolic gene sets, as well as enrichment in gene sets related to mitotic spindle, E2F targets, and G2M checkpoint, which are hallmark pathways involved in cell division and DNA replication control. In aggregate, our results demonstrate novel alterations in meningioma molecular biology in response to systemic carcinogens.
Collapse
Affiliation(s)
- A Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Rajan Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Malcolm F McDonald
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
| | - Eric Goethe
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Collin English
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Arya Shetty
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | | | - Arif O Harmanci
- School of Biomedical Informatics, University of Texas Health Science Center Houston, Houston, USA
| | - Akdes S Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
| | - Tiemo J Klisch
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
3
|
Bardhi K, Coates S, Watson CJ, Lazarus P. Cannabinoids and drug metabolizing enzymes: potential for drug-drug interactions and implications for drug safety and efficacy. Expert Rev Clin Pharmacol 2022; 15:1443-1460. [DOI: 10.1080/17512433.2022.2148655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Keti Bardhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Shelby Coates
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Christy J.W. Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Paszkiewicz-Kozik E, Kluska A, Piątkowska M, Bałabas A, Żeber-Lubecka N, Karczmarski J, Goryca K, Kulecka M, Wojciechowska-Lampka E, Osiadacz W, Romejko-Jarosińska J, Świerkowska M, Paziewska A, Ambrożkiewicz F, Walewski J, Mikula M, Ostrowski J. Genetic associations with lymphomas in Polish patients: A pooled-DNA genome-wide association analysis. Int J Immunogenet 2022; 49:353-363. [PMID: 36036752 DOI: 10.1111/iji.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Several single nucleotide polymorphisms (SNPs) associated with susceptibility to Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL) have been identified. The aim of this study was to identify susceptibility loci for HL and DLBCL in Polish patients. Altogether, DLBCL (n = 218 and HL patients (n = 224) and healthy individuals (n = 1181) were recruited. Lymphoma diagnosis was based on standard criteria. Genome-wide association study (GWAS) was performed using pooled-DNA samples on llumina Infinium Omni2.5 Exome-8 v1.3, and selected loci were replicated by TaqMan SNP genotyping of individuals. GWAS detected thirteen and seven SNPs associated with DLBCL and HL, respectively. In the replication study, six and seven SNPs reached significance after correction for multiple testing in the DLBCL and HL cohorts, respectively. One and four SNPs associated with DLBCL and HL, respectively, were localized within, and two SNPs-near the major histocompatibility complex (MHC) region. In conclusion, the majority of loci associated with HL and DLBCL aetiology in previous studies have potential roles in immune function. Our pooled-DNA GWAS enabled the identification of several susceptibility loci for DLBCL and HL in the Polish population; some of them were mapped within or adjacent to the MHC, and other associated SNPs were located outside the MHC.
Collapse
Affiliation(s)
- Ewa Paszkiewicz-Kozik
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Elżbieta Wojciechowska-Lampka
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Włodzimierz Osiadacz
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Romejko-Jarosińska
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Monika Świerkowska
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Filip Ambrożkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoproliferative Diseases, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
5
|
Hu DG, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. Regulation of human UDP-glycosyltransferase ( UGT) genes by miRNAs. Drug Metab Rev 2022; 54:120-140. [PMID: 35275773 DOI: 10.1080/03602532.2022.2048846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human UGT gene superfamily is divided into four subfamilies (UGT1, UGT2, UGT3 and UGT8) that encodes 22 functional enzymes. UGTs are critical for the metabolism and clearance of numerous endogenous and exogenous compounds, including steroid hormones, bile acids, bilirubin, fatty acids, carcinogens, and therapeutic drugs. Therefore, the expression and activities of UGTs are tightly regulated by multiple processes at the transcriptional, post-transcriptional and post-translational levels. During recent years, nearly twenty studies have investigated the post-transcriptional regulation of UGT genes by miRNAs using human cancer cell lines (predominantly liver cancer). Overall, 14 of the 22 UGT mRNAs (1A1, 1A3, 1A4, 1A6, 1A8, 1A9, 1A10, 2A1, 2B4, 2B7, 2B10, 2B15, 2B17, UGT8) have been shown to be regulated by various miRNAs through binding to their respective 3' untranslated regions (3'UTRs). Three 3'UTRs (UGT1A, UGT2B7 and UGT2B15) contain the largest number of functional miRNA target sites; in particular, the UGT1A 3'UTR contains binding sites for 12 miRNAs (548d-5p, 183-5p, 214-5p, 486-3p, 200a-3p, 491-3p, 141-3p, 298, 103b, 376b-3p, 21-3p, 1286). Although all nine UGT1A family members have the same 3'UTR, these miRNA target sites appear to be functional in an isoform-specific and cellular context-dependent manner. Collectively, these observations demonstrate that miRNAs represent important post-transcriptional regulators of the UGT gene superfamily. In this article, we present a comprehensive review of reported UGT/miRNA regulation studies, describe polymorphisms within functional miRNA target sites that may affect their functionalities, and discuss potential cooperative and competitive regulation of UGT mRNAs by miRNAs through adjacently located miRNA target sites.
Collapse
Affiliation(s)
- Dong Gui Hu
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
6
|
Nasrin S, Watson CJW, Bardhi K, Fort G, Chen G, Lazarus P. Inhibition of UDP-Glucuronosyltransferase Enzymes by Major Cannabinoids and Their Metabolites. Drug Metab Dispos 2021; 49:1081-1089. [PMID: 34493601 PMCID: PMC11022890 DOI: 10.1124/dmd.121.000530] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
The UDP-glucuronosyltransferase (UGT) family of enzymes play a central role in the metabolism and detoxification of a wide range of endogenous and exogenous compounds. UGTs exhibit a high degree of structural similarity and display overlapping substrate specificity, often making estimations of potential drug-drug interactions difficult to fully elucidate. One such interaction yet to be examined may be occurring between UGTs and cannabinoids, as the legalization of recreational and medicinal cannabis and subsequent co-usage of cannabis and therapeutic drugs increases in the United States and internationally. In the present study, the inhibition potential of the major cannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as their major metabolites, was determined in microsomes isolated from HEK293 cells overexpressing individual recombinant UGTs and in microsomes from human liver and kidney specimens. The highest inhibition was seen by CBD against the glucuronidation activity of UGTs 1A9, 2B4, 1A6, and 2B7, with binding-corrected IC50 values of 0.12 ± 0.020 µM, 0.22 ± 0.045 µM, 0.40 ± 0.10 µM, and 0.82 ± 0.15 µM, respectively. Strong inhibition of UGT1A9 was also demonstrated by THC and CBN, with binding-corrected IC50 values of 0.45 ± 0.12 μM and 0.51 ± 0.063 μM, respectively. Strong inhibition of UGT2B7 was also observed for THC and CBN; no or weak inhibition was observed with cannabinoid metabolites. This inhibition of UGT activity suggests that in addition to playing an important role in drug-drug interactions, cannabinoid exposure may have important implications in patients with impaired hepatic or kidney function. SIGNIFICANCE STATEMENT: Major cannabinoids found in the plasma of cannabis users inhibit several UDP-glucuronosyltransferase (UGT) enzymes, including UGT1A6, UGT1A9, UGT2B4, and UGT2B7. This study is the first to show the potential of cannabinoids and their metabolites to inhibit all the major kidney UGTs as well as the two most abundant UGTs present in liver. This study suggests that as all three major kidney UGTs are inhibited by cannabinoids, greater drug-drug interaction effects might be observed from co-use of cannabinods and therapeutics that are cleared renally.
Collapse
Affiliation(s)
- Shamema Nasrin
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Keti Bardhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gabriela Fort
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
7
|
Cid E, Yamamoto M, Yamamoto F. Mixed-Up Sugars: Glycosyltransferase Cross-Reactivity in Cancerous Tissues and Their Therapeutic Targeting. Chembiochem 2021; 23:e202100460. [PMID: 34726327 DOI: 10.1002/cbic.202100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Indexed: 11/11/2022]
Abstract
The main categories of glycan changes in cancer are: (1) decreased expression of histo-blood group A and/or B antigens and increased Lewis-related antigens, (2) appearance of cryptic antigens, such as Tn and T, (3) emergence of genetically incompatible glycans, such as A antigen expressed in tumors of individuals of group B or O and heterophilic expression of Forssman antigen (FORS1), and (4) appearance of neoglycans. This review focuses on the expression of genetically incompatible A/B/FORS1 antigens in cancer. Several possible molecular mechanisms are exemplified, including missense mutations that alter the sugar specificity of A and B glycosyltransferases (AT and BT, respectively), restoration of the correct codon reading frame of O alleles, and modification of acceptor specificity of AT to synthesize the FORS1 antigen by missense mutations and/or altered splicing. Taking advantage of pre-existing natural immunity, the potential uses of these glycans for immunotherapeutic targeting will also be discussed.
Collapse
Affiliation(s)
- Emili Cid
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Miyako Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| | - Fumiichiro Yamamoto
- Immunohematology and Glycobiology, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Cami de les Escoles s/n, Badalona, 08916, Spain
| |
Collapse
|
8
|
Hu DG, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. Circular RNAs of UDP-Glycosyltransferase ( UGT) Genes Expand the Complexity and Diversity of the UGT Transcriptome. Mol Pharmacol 2021; 99:488-503. [PMID: 33824186 DOI: 10.1124/molpharm.120.000225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
The human UDP-glycosyltransferase (UGT) gene superfamily generates 22 canonical transcripts coding for functional enzymes and also produces nearly 150 variant UGT transcripts through alternative splicing and intergenic splicing. In the present study, our analysis of circRNA databases identified backsplicing events that predicted 85 circRNAs from UGT genes, with 33, 11, and 19 circRNAs from UGT1A, UGT2B4, UGT8, respectively. Most of these UGT circRNAs were reported by one database and had low abundance in cell- or tissue-specific contexts. Using reverse-transcriptase polymerase chain reaction with divergent primers and cDNA samples from human tissues and cell lines, we found 13 circRNAs from four UGT genes: UGT1A (three), UGT2B7 (one), UGT2B10 (one), and UGT8 (eight). Notably, all eight UGT8 circRNAs contain open reading frames that include the canonical start AUG codon and encode variant proteins that all have the common 274-amino acidN-terminal region of wild-type UGT8 protein. We further showed that one UGT8 circRNA (circ_UGT8-1) was broadly expressed in human tissues and cell lines, resistant to RNase R digestion, and predominately present in the cytoplasm. We cloned five UGT8 circRNAs into the Zinc finger with KRAB and SCAN domains 1 vector and transfected them into HEK293T cells. All these vectors produced both circRNAsand linear transcripts with varying circular/linear ratios (0.17-1.14).Western blotting and mass spectrometry assays revealed that only linear transcripts and not circRNAs were translated. In conclusion, our findings of nearly 100 circRNAs greatly expand the complexity and diversity of the UGT transcriptome; however, UGT circRNAs are expressed at a very low level in specific cellular contexts, and their biologic functions remain to be determined. SIGNIFICANCE STATEMENT: The human UGT gene transcriptome comprises 22 canonical transcripts coding for functional enzymes and approximately 150 alternatively spliced and chimeric variant transcripts. The present study identified nearly 100 circRNAs from UGT genes, thus greatly expanding the complexity and diversity of the UGT transcriptome. UGT circRNAs were expressed broadly in human tissues and cell lines; however, most showed very low abundance in tissue- and cell-specific contexts, and therefore their biological functions remain to be investigated.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Neiers F, Jarriault D, Menetrier F, Faure P, Briand L, Heydel JM. The odorant metabolizing enzyme UGT2A1: Immunolocalization and impact of the modulation of its activity on the olfactory response. PLoS One 2021; 16:e0249029. [PMID: 33765098 PMCID: PMC7993815 DOI: 10.1371/journal.pone.0249029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Odorant metabolizing enzymes (OMEs) are expressed in the olfactory epithelium (OE) where they play a significant role in the peripheral olfactory process by catalyzing the fast biotransformation of odorants leading either to their elimination or to the synthesis of new odorant stimuli. The large family of OMEs gathers different classes which interact with a myriad of odorants alike and complementary to olfactory receptors. Thus, it is necessary to increase our knowledge on OMEs to better understand their function in the physiological process of olfaction. This study focused on a major olfactory UDP-glucuronosyltransferase (UGT): UGT2A1. Immunohistochemistry and immunogold electronic microscopy allowed to localize its expression in the apical part of the sustentacular cells and originally at the plasma membrane of the olfactory cilia of the olfactory sensory neurons, both locations in close vicinity with olfactory receptors. Moreover, using electroolfactogram, we showed that a treatment of the OE with beta-glucuronidase, an enzyme which counterbalance the UGTs activity, increased the response to eugenol which is a strong odorant UGT substrate. Altogether, the results supported the function of the olfactory UGTs in the vertebrate olfactory perireceptor process.
Collapse
Affiliation(s)
- Fabrice Neiers
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - David Jarriault
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Franck Menetrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Philippe Faure
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Wang J, Wang C, Li L, Yang L, Wang S, Ning X, Gao S, Ren L, Chaulagain A, Tang J, Wang T. Alternative splicing: An important regulatory mechanism in colorectal carcinoma. Mol Carcinog 2021; 60:279-293. [PMID: 33629774 DOI: 10.1002/mc.23291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/17/2022]
Abstract
Alternative splicing (AS) is a process that produces various mRNA splicing isoforms via different splicing patterns of mRNA precursors (pre-mRNAs). AS is the primary mechanism for increasing the types and quantities of proteins to improve biodiversity and influence multiple biological processes, including chromatin modification, signal transduction, and protein expression. It has been reported that AS is involved in the tumorigenesis and development of colorectal carcinoma (CRC). In this review, we delineate the concept, types, regulatory processes, and technical advances of AS and focus on the role of AS in CRC initiation, progression, treatment, and prognosis. This summary of the current knowledge about AS will contribute to our understanding of CRC initiation and development. This study will help in the discovery of novel biomarkers and therapeutic targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Jianyi Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lirui Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuoshuo Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xuelian Ning
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Shuangshu Gao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Lili Ren
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Anita Chaulagain
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jing Tang
- Department of Pathology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Hu DG, Hulin JUA, Nair PC, Haines AZ, McKinnon RA, Mackenzie PI, Meech R. The UGTome: The expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol Ther 2019; 204:107414. [PMID: 31647974 DOI: 10.1016/j.pharmthera.2019.107414] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
The UDP glycosyltransferase (UGT) superfamily of enzymes is responsible for the metabolism and clearance of thousands of lipophilic chemicals including drugs, toxins and endogenous signaling molecules. They provide a protective interface between the organism and its chemical-rich environment, as well as controlling critical signaling pathways to maintain healthy tissue function. UGTs are associated with drug responses and interactions, as well as a wide range of diseases including cancer. The human genome contains 22 UGT genes; however as befitting their exceptionally diverse substrate ranges and biological activities, the output of these UGT genes is functionally diversified by multiple processes including alternative splicing, post-translational modification, homo- and hetero-oligomerization, and interactions with other proteins. All UGT genes are subject to extensive alternative splicing generating variant/truncated UGT proteins with altered functions including the capacity to dominantly modulate/inhibit cognate full-length forms. Heterotypic oligomerization of different UGTs can alter kinetic properties relative to monotypic complexes, and potentially produce novel substrate specificities. Moreover, the recently profiled interactions of UGTs with non-UGT proteins may facilitate coordination between different metabolic processes, as well as providing opportunities for UGTs to engage in novel 'moonlighting' functions. Herein we provide a detailed and comprehensive review of all known modes of UGT functional diversification and propose a UGTome model to describe the resulting expansion of metabolic capacity and its potential to modulate drug/xenobiotic responses and cell behaviours in normal and disease contexts.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - J Ulie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C Nair
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Cancer Centre, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| |
Collapse
|
12
|
Sutliff AK, Watson CJW, Chen G, Lazarus P. Regulation of UGT2A1 by miR-196a-5p and miR-196b-5p. J Pharmacol Exp Ther 2019; 369:234-243. [PMID: 30850392 PMCID: PMC6439457 DOI: 10.1124/jpet.118.255935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
UDP-glucuronosyltransferase (UGT) 2A1 is an important enzyme in the detoxification of polycyclic aromatic hydrocarbons found in cigarette smoke. This enzyme is expressed in aerodigestive tract tissues including lung as both its wild-type and exon 4-deleted splice variant isoforms, with the latter acting as a negative regulator of wild-type UGT2A1 activity. UGT2A1 regulation may also be mediated by microRNA (miRNA). To identify miRNA important in the regulation of UGT2A1, expression analysis in tandem with in silico analysis suggested miR-196a-5p and miR-196b-5p as potential top candidates. Significant reductions in firefly luciferase activity were observed in human embryonic kidney cell line 293 cells cotransfected with the wild-type UGT2A1 3'-untranslated region (UTR)-containing luciferase plasmid and either miR-196a-5p (62%, P = 0.00080) or miR-196b-5p (60%, P = 0.00030) mimics. In pull-down assays, there was a 3.4- and 5.2-fold increase in miR-196a-5p (P = 0.054) and miR-196b-5p (P = 0.035), respectively, using the UGT2A1 3'-UTR biotinylated mRNA probe as compared with the β-actin coding region control mRNA probe. UGT2A1 mRNA was reduced by 25% (P = 0.058) and 35% (P = 0.023) in H146 and H1944 cells, respectively, after overexpression of the miR196a-5p mimic. A similar 32% (P = 0.030) and 41% (P = 0.016) reduction was observed after over-expression of the miR-196b-5p mimic. In H146 cells transfected with miRNA mimic together with a small interfering RNA (siRNA) specific for the UGT2A1 splice variant, a significant reduction in 3-hydroxy-benzo[a]pyrene-glucuronide formation was observed. The miR-196a-5p- and miR-196b-55p-treated cells exhibited reductions of 35% (P = 0.047) and 44% (P = 0.0063), respectively. These data suggest that miR-196a-5p and miR-196b-5p play an important role in UGT2A1 regulation within the lung and potentially other aerodigestive tract tissues.
Collapse
Affiliation(s)
- Aimee K Sutliff
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
13
|
Grant DJ, Manichaikul A, Alberg AJ, Bandera EV, Barnholtz‐Sloan J, Bondy M, Cote ML, Funkhouser E, Moorman PG, Peres LC, Peters ES, Schwartz AG, Terry PD, Wang X, Keku TO, Hoyo C, Berchuck A, Sandler DP, Taylor JA, O’Brien KM, Velez Edwards DR, Edwards TL, Beeghly‐Fadiel A, Wentzensen N, Pearce CL, Wu AH, Whittemore AS, McGuire V, Sieh W, Rothstein JH, Modugno F, Ness R, Moysich K, Rossing MA, Doherty JA, Sellers TA, Permuth‐Way JB, Monteiro AN, Levine DA, Setiawan VW, Haiman CA, LeMarchand L, Wilkens LR, Karlan BY, Menon U, Ramus S, Gayther S, Gentry‐Maharaj A, Terry KL, Cramer DW, Goode EL, Larson MC, Kaufmann SH, Cannioto R, Odunsi K, Etter JL, Huang R, Bernardini MQ, Tone AA, May T, Goodman MT, Thompson PJ, Carney ME, Tworoger SS, Poole EM, Lambrechts D, Vergote I, Vanderstichele A, Van Nieuwenhuysen E, Anton‐Culver H, Ziogas A, Brenton JD, Bjorge L, Salvensen HB, Kiemeney LA, Massuger LFAG, Pejovic T, Bruegl A, Moffitt M, Cook L, Le ND, Brooks‐Wilson A, Kelemen LE, Pharoah PD, Song H, Campbell I, Eccles D, DeFazio A, Kennedy CJ, Schildkraut JM. Evaluation of vitamin D biosynthesis and pathway target genes reveals UGT2A1/2 and EGFR polymorphisms associated with epithelial ovarian cancer in African American Women. Cancer Med 2019; 8:2503-2513. [PMID: 31001917 PMCID: PMC6536963 DOI: 10.1002/cam4.1996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
An association between genetic variants in the vitamin D receptor (VDR) gene and epithelial ovarian cancer (EOC) was previously reported in women of African ancestry (AA). We sought to examine associations between genetic variants in VDR and additional genes from vitamin D biosynthesis and pathway targets (EGFR, UGT1A, UGT2A1/2, UGT2B, CYP3A4/5, CYP2R1, CYP27B1, CYP24A1, CYP11A1, and GC). Genotyping was performed using the custom-designed 533,631 SNP Illumina OncoArray with imputation to the 1,000 Genomes Phase 3 v5 reference set in 755 EOC cases, including 537 high-grade serous (HGSOC), and 1,235 controls. All subjects are of African ancestry (AA). Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (CI). We further evaluated statistical significance of selected SNPs using the Bayesian False Discovery Probability (BFDP). A significant association with EOC was identified in the UGT2A1/2 region for the SNP rs10017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 1.2 × 10-6 , BFDP = 0.02); and an association with HGSOC was identified in the EGFR region for the SNP rs114972508 (per allele OR = 2.3, 95% CI = 1.6-3.4, P = 1.6 × 10-5 , BFDP = 0.29) and in the UGT2A1/2 region again for rs1017134 (per allele OR = 1.4, 95% CI = 1.2-1.7, P = 2.3 × 10-5 , BFDP = 0.23). Genetic variants in the EGFR and UGT2A1/2 may increase susceptibility of EOC in AA women. Future studies to validate these findings are warranted. Alterations in EGFR and UGT2A1/2 could perturb enzyme efficacy, proliferation in ovaries, impact and mark susceptibility to EOC.
Collapse
Affiliation(s)
- Delores J. Grant
- Department of Biological and Biomedical Sciences, Cancer Research ProgramJLC‐Biomedical/Biotechnology Research Institute, North Carolina Central UniversityDurhamNorth Carolina
| | - Ani Manichaikul
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginia
| | - Anthony J. Alberg
- Department of Epidemiology and Biostatistics, Arnold School of Public HealthUniversity of South CarolinaColumbiaSouth Carolina
| | - Elisa V. Bandera
- Department of Population ScienceRutgers Cancer Institute of New JerseyNew BrunswickNew Jersey
| | - Jill Barnholtz‐Sloan
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhio
| | - Melissa Bondy
- Cancer Prevention and Population Sciences ProgramBaylor College of MedicineHoustonTexas
| | - Michele L. Cote
- Department of Oncology and the Karmanos Cancer Institute Population Studies and Disparities Research ProgramWayne State University School of MedicineDetroitMichigan
| | - Ellen Funkhouser
- Division of Preventive MedicineUniversity of Alabama at BirminghamBirminghamAlabama
| | - Patricia G. Moorman
- Department of Community and Family MedicineDuke University Medical CenterDurhamNorth Carolina
| | - Lauren C. Peres
- Center for Public Health GenomicsUniversity of VirginiaCharlottesvilleVirginia
| | - Edward S. Peters
- Epidemiology ProgramLouisiana State University Health Sciences Center School of Public HealthNew OrleansLouisisana
| | - Ann G. Schwartz
- Department of Oncology and the Karmanos Cancer Institute Population Studies and Disparities Research ProgramWayne State University School of MedicineDetroitMichigan
| | - Paul D. Terry
- Department of MedicineUniversity of Tennessee Medical Center – KnoxvilleKnoxvilleTennessee
| | - Xin‐Qun Wang
- Department of Public Health SciencesUniversity of VirginiaCharlottesvilleVirginia
| | - Temitope O. Keku
- Departments of Medicine and Nutrition, Division of Gastroenterology and HepatologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Cathrine Hoyo
- Department of Biological SciencesNorth Carolina State UniversityRaleighNorth Carolina
| | - Andrew Berchuck
- Department of Obstetrics and GynecologyDuke University Medical CenterDurhamNorth Carolina
| | - Dale P. Sandler
- Epidemiology Branch, Division of Intramural ResearchNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Jack A. Taylor
- Epidemiology Branch, Division of Intramural ResearchNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, Division of Intramural ResearchNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkNorth Carolina
| | - Digna R. Velez Edwards
- Vanderbilt Epidemiology Center, Center for Human Genetics Research, Department of Obstetrics and GynecologyVanderbilt University Medical CenterNashvilleTennessee
| | - Todd L. Edwards
- Division of Epidemiology, Center for Human Genetics Research, Department of MedicineVanderbilt University Medical CenterNashvilleTennessee
| | - Alicia Beeghly‐Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology CenterInstitute for Medicine and Public Health, Vanderbilt University Medical CenterNashvilleTennessee
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMaryland
| | - Celeste Leigh Pearce
- Department of EpidemiologyUniversity of Michigan School of Public HealthAnn ArborMichigan
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCalifornia
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of MedicineUniversity of Southern California Norris Comprehensive Cancer CenterLos AngelesCalifornia
| | - Alice S. Whittemore
- Department of Health Research and PolicyStanford University School of MedicineStanfordCalifornia
- Department of Biomedical Data ScienceStanford University School of MedicineStanfordCalifornia
| | - Valerie McGuire
- Department of Health Research and PolicyStanford University School of MedicineStanfordCalifornia
| | - Weiva Sieh
- Department of Population Health Science and PolicyIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Joseph H. Rothstein
- Department of Population Health Science and PolicyIcahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew York
| | - Francesmary Modugno
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
- Department of EpidemiologyUniversity of Pittsburgh Graduate School of Public HealthPittsburghPennsylvania
- Ovarian Cancer Center of Excellence, Womens Cancer Research ProgramMagee‐Womens Research Institute and University of Pittsburgh Cancer InstitutePittsburghPennsylvania
| | - Roberta Ness
- The University of Texas School of Public HealthHoustonTexas
| | - Kirsten Moysich
- Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloNew York
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWashington
- Department of EpidemiologyUniversity of WashingtonSeattleWashington
| | - Jennifer A. Doherty
- Department of Population Health SciencesHuntsman Cancer Institute, University of UtahSalt Lake City, Utah
| | | | | | | | - Douglas A. Levine
- Gynecology Service, Department of SurgeryMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Gynecologic Oncology, Laura and Isaac Pearlmutter Cancer CenterNew York University Langone Medical CenterNew YorkNew York
| | | | - Christopher A. Haiman
- University of Southern California Norris Comprehensive Cancer CenterLos AngelesCalifornia
| | | | - Lynne R. Wilkens
- Cancer Epidemiology ProgramUniversity of Hawaii Cancer CenterHawaii
| | - Beth Y. Karlan
- Women's Cancer ProgramSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Usha Menon
- MRC CTU at UCL, Institute of Clinical Trials and MethodologyUniversity College LondonLondonUK
| | - Susan Ramus
- School of Women's and Children's HealthUniversity of New South WalesNew South WalesAustralia
- The Kinghorn Cancer CentreGarvan Institute of Medical ResearchDarlinghurstNew South WalesAustralia
| | - Simon Gayther
- Center for Cancer Prevention and Translational GenomicsSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCalifornia
| | | | - Kathryn L. Terry
- Obstetrics and Gynecology Epidemiology CenterBrigham and Women's HospitalBostonMassachusetts
- Harvard T. H. Chan School of Public HealthBostonMassauchusetts
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology CenterBrigham and Women's HospitalBostonMassachusetts
- Harvard T. H. Chan School of Public HealthBostonMassauchusetts
| | - Ellen L. Goode
- Department of Health Science Research, Division of EpidemiologyMayo ClinicRochesterMinnesota
| | - Melissa C. Larson
- Department of Health Science Research, Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Scott H. Kaufmann
- Departments of Medicine and PharmacologyMayo ClinicRochesterMinnesota
| | - Rikki Cannioto
- Cancer Pathology & Prevention, Division of Cancer Prevention and Population SciencesRoswell Park Cancer InstituteBuffaloNew York
| | - Kunle Odunsi
- Department of Gynecological OncologyRoswell Park Cancer InstituteBuffaloNew York
| | - John L. Etter
- Department of Cancer Prevention and ControlRoswell Park Cancer InstituteBuffaloNew York
| | - Ruea‐Yea Huang
- Center For ImmunotherapyRoswell Park Cancer InstituteBuffaloNew York
| | - Marcus Q. Bernardini
- Division of Gynecologic OncologyPrincess Margaret Hospital, University Health NetworkTorontoOntarioCanada
| | - Alicia A. Tone
- Division of Gynecologic OncologyPrincess Margaret Hospital, University Health NetworkTorontoOntarioCanada
| | - Taymaa May
- Division of Gynecologic OncologyPrincess Margaret Hospital, University Health NetworkTorontoOntarioCanada
| | - Marc T. Goodman
- Cancer Prevention and ControlSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
- Department of Biomedical SciencesCommunity and Population Health Research Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Pamela J. Thompson
- Cancer Prevention and ControlSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCalifornia
| | - Michael E. Carney
- Department of Obstetrics and GynecologyJohn A. Burns School of Medicine, University of HawaiiHonoluluHawaii
| | - Shelley S. Tworoger
- Channing Division of Network MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | | | - Diether Lambrechts
- Vesalius Research Center, VIBLeuvenBelgium
- Laboratory for Translational Genetics, Department of OncologyUniversity of LeuvenBelgium
| | - Ignace Vergote
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
| | - Adriaan Vanderstichele
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
| | - Els Van Nieuwenhuysen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynaecology and Leuven Cancer InstituteUniversity Hospitals LeuvenLeuvenBelgium
| | - Hoda Anton‐Culver
- Department of Epidemiology, Director of Genetic Epidemiology Research Institute, Center for Cancer Genetics Research & Prevention, School of MedicineUniversity of California IrvineIrvineCalifornia
| | - Argyrios Ziogas
- Department of EpidemiologyUniversity of California IrvineIrvineCalifornia
| | - James D. Brenton
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Line Bjorge
- Department of Gynecology and ObstetricsHaukeland University HospitalBergenNorway
- Centre for Cancer Biomarkers, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Helga B. Salvensen
- Department of Gynecology and ObstetricsHaukeland University HospitalBergenNorway
- Centre for Cancer Biomarkers, Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Lambertus A. Kiemeney
- Radboud University Medical CenterRadboud Institute for Health SciencesNijmegenNetherlands
| | - Leon F. A. G. Massuger
- Department of Gynaecology, Radboud University Medical CenterRadboud Institute for Molecular Life sciencesNijmegenThe Netherlands
| | - Tanja Pejovic
- Department of Obstetrics & GynecologyOregon Health & Science UniversityPortlandOregon
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandOregon
| | - Amanda Bruegl
- Department of Obstetrics & GynecologyOregon Health & Science UniversityPortlandOregon
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandOregon
| | - Melissa Moffitt
- Department of Obstetrics & GynecologyOregon Health & Science UniversityPortlandOregon
- Knight Cancer Institute, Oregon Health & Science UniversityPortlandOregon
| | - Linda Cook
- Division of Epidemiology and Biostatistics, Department of Internal MedicineUniversity of New MexicoAlbuquerqueNew Mexico
| | - Nhu D. Le
- Cancer Control Research, British Columbia Cancer AgencyVancouverBritish ColumbiaCanada
| | - Angela Brooks‐Wilson
- Canada's Michael Smith Genome Sciences CentreBritish Columbia Cancer AgencyVancouverBritish ColumbiaCanada
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Linda E. Kelemen
- Hollings Cancer Center and Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth Carolina
| | - Paul D.P. Pharoah
- Strangeways Research laboratory, Department of Oncology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Honglin Song
- Strangeways Research Laboratory, Department of OncologyUniversity of CambridgeCambridgeUK
| | - Ian Campbell
- Cancer Genetics Laboratory, Research DivisionPeter MacCallum Cancer CentreVictoriaAustralia
- Department of PathologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Diana Eccles
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Anna DeFazio
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
| | - Catherine J. Kennedy
- Centre for Cancer ResearchThe Westmead Institute for Medical Research, The University of SydneySydneyNew South WalesAustralia
- Department of Gynaecological OncologyWestmead HospitalSydneyNew South WalesAustralia
| | | |
Collapse
|
14
|
Uno Y, Takahira R, Murayama N, Onozeki S, Kawamura S, Uehara S, Ikenaka Y, Ishizuka M, Ikushiro S, Yamazaki H. Functional and molecular characterization of UDP-glucuronosyltransferase 2 family in cynomolgus macaques. Biochem Pharmacol 2019; 163:335-344. [PMID: 30836059 DOI: 10.1016/j.bcp.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 11/17/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are essential enzymes metabolizing endogenous and exogenous chemicals. However, characteristics of UGTs have not been fully investigated in molecular levels of cynomolgus macaques, one of non-human primates widely used in preclinical drug metabolism studies. In this study, three UGT2A cDNAs (UGT2A1, 2A2, and 2A3) were isolated and characterized along with seven UGT2Bs previously identified in cynomolgus macaques. Several transcript variants were found in cynomolgus UGT2A1 and UGT2A2, like human orthologs. Cynomolgus UGT2A and UGT2B amino acid sequences were highly identical (87-96%) to their human counterparts. By phylogenetic analysis, all these cynomolgus UGT2s were more closely clustered with their human homologs than with dog, rat, or mouse UGT2s. Especially, UGT2As showed orthologous relationships between humans and cynomolgus macaques. All the cynomolgus UGT2 mRNAs were expressed in livers, jejunum, and/or kidneys abundantly, except that UGT2A1 and UGT2A2 mRNAs were predominantly expressed in nasal mucosa, like human UGT2s. UGT2A and UGT2B genes together form a gene cluster in the cynomolgus and human genome. Among the seven cynomolgus UGT2Bs heterologously expressed in yeast, UGT2B9 and UGT2B30 showed activities in estradiol 17-O-glucuronidation and morphine 3-O-glucuronidation but did not show activities in estradiol 3-O-glucuronidation, similar to human UGT2Bs. In liver microsomes, cynomolgus macaques showed higher estradiol 17-O-glucuronidase and morphine 3-O-glucuronidase activities than humans, suggesting functional activities of the responsible UGT2B enzymes in cynomolgus macaques. Therefore, cynomolgus UGT2s had overall molecular similarities to human UGT2s, but also showed some differences in UGT2B enzyme properties.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama 642-0017, Japan.
| | - Rika Takahira
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shunsuke Onozeki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shu Kawamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Shinichi Ikushiro
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
15
|
Hu DG, Hulin JA, Wijayakumara DD, McKinnon RA, Mackenzie PI, Meech R. Intergenic Splicing between Four Adjacent UGT Genes ( 2B15, 2B29P2, 2B17, 2B29P1) Gives Rise to Variant UGT Proteins That Inhibit Glucuronidation via Protein-Protein Interactions. Mol Pharmacol 2018; 94:938-952. [PMID: 29959221 DOI: 10.1124/mol.118.111773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/08/2018] [Indexed: 02/14/2025] Open
Abstract
Recent studies have investigated alternative splicing profiles of UDP-glucuronosyltransferase (UGT) genes and identified over 130 different alternatively spliced UGT transcripts. Although UGT genes are highly clustered, the formation of chimeric transcripts by intergenic splicing between two or more UGT genes has not yet been reported. This study identified 12 chimeric transcripts (chimeras A-L) containing exons from two or three genes of the four neighboring UGT genes (UGT2B15, UGT2B29P2, UGT2B17, and UGT2B29P1) in human liver and prostate cancer cells. These chimeras typically contain the first five exons of UGT2B15 or UGT2B17 (exons 1-5) spliced to a terminal exon (exon 6) from a downstream UGT gene. Hence they encode truncated UGTs with novel C-terminal peptides. Functional assays of representative chimeric UGT proteins (termed chimeric UGT2B15 and chimeric UGT2B17) showed that they are inactive and can repress the activity of wild-type UGTs. Coimmunoprecipitation assays demonstrated heterotypic interactions between chimeric UGT2B15 (or chimeric UGT2B17) and the UGT2B7 protein. Thus oligomerization of the chimeric UGTs with wild-type UGTs may explain their inhibitory activity. Studies in breast and prostate cancer cells showed that both wild-type and chimeric UGT2B15 and UGT2B17 transcripts are regulated in a similar way at the transcriptional level by sex hormones through their canonical promoters but are differentially regulated at the post-transcriptional level by micro-RNA 376c via their unique 3'-untranslated regions. In conclusion, the formation of chimeric transcripts by intergenic splicing among UGT genes represents a novel mechanism contributing to the diversity of the human UGT transcriptome and proteome. The differential post-transcriptional regulation of wild-type and variant transcripts by micro-RNAs may contribute to their deregulated expression in cancer.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Dhilushi D Wijayakumara
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| |
Collapse
|
16
|
Labriet A, Allain EP, Rouleau M, Audet-Delage Y, Villeneuve L, Guillemette C. Post-transcriptional Regulation of UGT2B10 Hepatic Expression and Activity by Alternative Splicing. Drug Metab Dispos 2018; 46:514-524. [PMID: 29438977 PMCID: PMC5894810 DOI: 10.1124/dmd.117.079921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
The detoxification enzyme UDP-glucuronosyltransferase UGT2B10 is specialized in the N-linked glucuronidation of many drugs and xenobiotics. Preferred substrates possess tertiary aliphatic amines and heterocyclic amines, such as tobacco carcinogens and several antidepressants and antipsychotics. We hypothesized that alternative splicing (AS) constitutes a means to regulate steady-state levels of UGT2B10 and enzyme activity. We established the transcriptome of UGT2B10 in normal and tumoral tissues of multiple individuals. The highest expression was in the liver, where 10 AS transcripts represented 50% of the UGT2B10 transcriptome in 50 normal livers and 44 hepatocellular carcinomas. One abundant class of transcripts involves a novel exonic sequence and leads to two alternative (alt.) variants with novel in-frame C termini of 10 or 65 amino acids. Their hepatic expression was highly variable among individuals, correlated with canonical transcript levels, and was 3.5-fold higher in tumors. Evidence for their translation in liver tissues was acquired by mass spectrometry. In cell models, they colocalized with the enzyme and influenced the conjugation of amitriptyline and levomedetomidine by repressing or activating the enzyme (40%-70%; P < 0.01) in a cell context-specific manner. A high turnover rate for the alt. proteins, regulated by the proteasome, was observed in contrast to the more stable UGT2B10 enzyme. Moreover, a drug-induced remodeling of UGT2B10 splicing was demonstrated in the HepaRG hepatic cell model, which favored alt. variants expression over the canonical transcript. Our findings support a significant contribution of AS in the regulation of UGT2B10 expression in the liver with an impact on enzyme activity.
Collapse
Affiliation(s)
- Adrien Labriet
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Eric P Allain
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Michèle Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Yannick Audet-Delage
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Lyne Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire de Québec Research Center and Faculty of Pharmacy, Québec, Canada Research Chair in Pharmacogenomics, Université Laval, Québec, Canada
| |
Collapse
|
17
|
Quantitative profiling of the UGT transcriptome in human drug-metabolizing tissues. THE PHARMACOGENOMICS JOURNAL 2017; 18:251-261. [PMID: 28440341 DOI: 10.1038/tpj.2017.5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Alternative splicing as a mean to control gene expression and diversify function is suspected to considerably influence drug response and clearance. We report the quantitative expression profiles of the human UGT genes including alternatively spliced variants not previously annotated established by deep RNA-sequencing in tissues of pharmacological importance. We reveal a comprehensive quantification of the alternative UGT transcriptome that differ across tissues and among individuals. Alternative transcripts that comprise novel in-frame sequences associated or not with truncations of the 5'- and/or 3'- termini, significantly contribute to the total expression levels of each UGT1 and UGT2 gene averaging 21% in normal tissues, with expression of UGT2 variants surpassing those of UGT1. Quantitative data expose preferential tissue expression patterns and remodeling in favor of alternative variants upon tumorigenesis. These complex alternative splicing programs have the strong potential to contribute to interindividual variability in drug metabolism in addition to diversify the UGT proteome.
Collapse
|
18
|
Rouleau M, Audet-Delage Y, Desjardins S, Rouleau M, Girard-Bock C, Guillemette C. Endogenous Protein Interactome of Human UDP-Glucuronosyltransferases Exposed by Untargeted Proteomics. Front Pharmacol 2017; 8:23. [PMID: 28217095 PMCID: PMC5290407 DOI: 10.3389/fphar.2017.00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/12/2017] [Indexed: 01/19/2023] Open
Abstract
The conjugative metabolism mediated by UDP-glucuronosyltransferase enzymes (UGTs) significantly influences the bioavailability and biological responses of endogenous molecule substrates and xenobiotics including drugs. UGTs participate in the regulation of cellular homeostasis by limiting stress induced by toxic molecules, and by controlling hormonal signaling networks. Glucuronidation is highly regulated at genomic, transcriptional, post-transcriptional and post-translational levels. However, the UGT protein interaction network, which is likely to influence glucuronidation, has received little attention. We investigated the endogenous protein interactome of human UGT1A enzymes in main drug metabolizing non-malignant tissues where UGT expression is most prevalent, using an unbiased proteomics approach. Mass spectrometry analysis of affinity-purified UGT1A enzymes and associated protein complexes in liver, kidney and intestine tissues revealed an intricate interactome linking UGT1A enzymes to multiple metabolic pathways. Several proteins of pharmacological importance such as transferases (including UGT2 enzymes), transporters and dehydrogenases were identified, upholding a potential coordinated cellular response to small lipophilic molecules and drugs. Furthermore, a significant cluster of functionally related enzymes involved in fatty acid β-oxidation, as well as in the glycolysis and glycogenolysis pathways were enriched in UGT1A enzymes complexes. Several partnerships were confirmed by co-immunoprecipitations and co-localization by confocal microscopy. An enhanced accumulation of lipid droplets in a kidney cell model overexpressing the UGT1A9 enzyme supported the presence of a functional interplay. Our work provides unprecedented evidence for a functional interaction between glucuronidation and bioenergetic metabolism.
Collapse
Affiliation(s)
- Michèle Rouleau
- Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University Québec, QC, Canada
| | - Yannick Audet-Delage
- Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University Québec, QC, Canada
| | - Sylvie Desjardins
- Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University Québec, QC, Canada
| | - Mélanie Rouleau
- Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University Québec, QC, Canada
| | - Camille Girard-Bock
- Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University Québec, QC, Canada
| | - Chantal Guillemette
- Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University Québec, QC, Canada
| |
Collapse
|
19
|
Giantin M, Baratto C, Marconato L, Vascellari M, Mutinelli F, Dacasto M, Granato A. Transcriptomic analysis identified up-regulation of a solute carrier transporter and UDP glucuronosyltransferases in dogs with aggressive cutaneous mast cell tumours. Vet J 2016; 212:36-43. [PMID: 27256023 DOI: 10.1016/j.tvjl.2016.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 03/10/2016] [Accepted: 03/27/2016] [Indexed: 11/17/2022]
Abstract
Gene expression analyses have been recently used in cancer research to identify genes associated with tumorigenesis and potential prognostic markers or therapeutic targets. In the present study, the transcriptome of dogs that had died because of mast cell tumours (MCTs) was characterised to identify a fingerprint having significant influence on prognosis determination and treatment selection. A dataset (GSE50433) obtained using a commercial canine DNA microarray platform was used. The transcriptome of seven biopsies obtained from dogs with histologically confirmed, surgically removed MCTs, treated with chemotherapy, and dead for MCT-related causes, was compared with the transcriptional portrait of 40 samples obtained from dogs with histologically confirmed, surgically removed MCTs and that were still alive at the end of the follow-up period. Among the differentially expressed genes (DEGs), eight transcripts were validated by quantitative real time PCR and their mRNA levels were measured in a cohort of 22 additional MCTs. Statistical analysis identified 375 DEGs (fold change 2, false discovery rate 5%). The functional annotation analysis indicated that the DEGs were associated with drug metabolism and cell cycle pathways. Particularly, members of solute carrier transporter (SLC) and UDP glucuronosyltransferase (UGT) gene families were identified as dysregulated. Principal component analysis (PCA) of the 22 additional MCTs identified the separate cluster dogs dead for MCT-related causes. SLCs and UGTs have been recently recognised in human cancer as important key factors in tumour progression and chemo-resistance. An in-depth analysis of their roles in aggressive canine MCT is warranted in future studies.
Collapse
Affiliation(s)
- Mery Giantin
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy.
| | - Chiara Baratto
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| | - Laura Marconato
- Centro Oncologico Veterinario, Via San Lorenzo 1/4, I-40037 Sasso Marconi (Bologna), Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| | - Franco Mutinelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| | - Mauro Dacasto
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Agripolis Legnaro (Padova), Italy
| | - Anna Granato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, I-35020 Legnaro (Padova), Italy
| |
Collapse
|
20
|
Wu L, Liu J, Han W, Zhou X, Yu X, Wei Q, Liu S, Tang L. Time-Dependent Metabolism of Luteolin by Human UDP-Glucuronosyltransferases and Its Intestinal First-Pass Glucuronidation in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8722-8733. [PMID: 26377048 DOI: 10.1021/acs.jafc.5b02827] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Luteolin is a well-known flavonoid with various pharmacological properties but has low bioavailability due to glucuronidation. This study investigated the time-course of luteolin glucuronidation by 12 human UDP-glucuronosyltransferases (UGTs) and its intestinal first-pass metabolism in mice. Six metabolites, including two novel abundant diglucuronides [3',7-O-diglucuronide (diG) and 4',7-diG] and four known ones, were identified. UGT1A6 and UGT1A9 generated almost only monoglucuronides (G's). The production of 3',7-diG followed a sequential time-dependent process along with decrease of 3'-G mainly by UGT1A1, indicating that 3',7-diG was produced from 3'-G. Metabolism in mice intestine differed from that in humans. Probenecid, a nonspecific UGT inhibitor, did not affect absorption but significantly inhibited production of 7-, 4'-, and 3'-G, and enhanced the formation of another novel metabolite, 5-G, in mice. In conclusion, diglucuronide formation is time-dependent and isoform-specific. UGT1A1 preferentially generates diG, whereas UGT1A6 and UGT1A9 share a preference for G production.
Collapse
Affiliation(s)
- Lili Wu
- Guangdong Provincial Key Labortory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Junjin Liu
- Guangdong Provincial Key Labortory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Weichao Han
- Guangdong Provincial Key Labortory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Xuefeng Zhou
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301, China
| | - Xiaoming Yu
- Department of Urology, Nanfang Hospital, Southern Medical University , Guangzhou 510515, China
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University , Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Labortory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University , Guangzhou 510515, China
| | - Lan Tang
- Guangdong Provincial Key Labortory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University , Guangzhou 510515, China
| |
Collapse
|
21
|
Dluzen DF, Lazarus P. MicroRNA regulation of the major drug-metabolizing enzymes and related transcription factors. Drug Metab Rev 2015; 47:320-34. [PMID: 26300547 PMCID: PMC6309899 DOI: 10.3109/03602532.2015.1076438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identifying novel mechanisms contributing to patient variability of drug response is a major goal of personalized medicine. Epigenetic regulation of gene expression by microRNA (miRNA) impacts a broad range of cellular processes, but knowledge of its regulation of drug-metabolizing enzymes (DMEs) is more limited. This review provides an introduction to miRNA and their functionality and summarizes known miRNA regulation of DME families, including the cytochrome P450s, UDP-glucuronoslytransferases, glutathione-S-transferases, sulfotransferases and aldo-keto reductases, and the transcription factors known to be involved in DME regulation.
Collapse
Affiliation(s)
- Douglas F Dluzen
- a Laboratory of Epidemiology and Population Sciences , National Institutes of Health , Baltimore , MD , USA and
| | - Philip Lazarus
- b Department of Pharmaceutical Sciences , Washington State University , Spokane , WA , USA
| |
Collapse
|
22
|
Tourancheau A, Margaillan G, Rouleau M, Gilbert I, Villeneuve L, Lévesque E, Droit A, Guillemette C. Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing. THE PHARMACOGENOMICS JOURNAL 2015; 16:60-70. [PMID: 25869014 DOI: 10.1038/tpj.2015.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023]
Abstract
A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual's UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.
Collapse
Affiliation(s)
- A Tourancheau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - G Margaillan
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - M Rouleau
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - I Gilbert
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - L Villeneuve
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada
| | - E Lévesque
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Medicine, Laval University, Québec, QC, Canada
| | - A Droit
- Faculty of Medicine, Laval University, Québec, QC, Canada
| | - C Guillemette
- Pharmacogenomics Laboratory, Centre Hospitalier Universitaire (CHU) de Québec Research Center, Québec, QC, Canada.,Faculty of Pharmacy, Laval University, Québec, QC, Canada.,Canada Research Chair in Pharmacogenomics, Pharmacogenomics Laboratory, CHU de Quebec Research Center, Quebec, QC, Canada
| |
Collapse
|
23
|
Dluzen DF, Sun D, Salzberg AC, Jones N, Bushey RT, Robertson GP, Lazarus P. Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p. J Pharmacol Exp Ther 2014; 348:465-77. [PMID: 24399855 PMCID: PMC3935146 DOI: 10.1124/jpet.113.210658] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/03/2014] [Indexed: 01/06/2023] Open
Abstract
The UDP-glucuronosyltransferase (UGT) 1A enzymes are involved in the phase II metabolism of many important endogenous and exogenous compounds. The nine UGT1A isoforms exhibit high interindividual differences in expression, but their epigenetic regulation is not well understood. The purpose of the present study was to examine microRNA (miRNA) regulation of hepatic UGT1A enzymes and determine whether or not that regulation impacts enzymatic activity. In silico analysis identified miRNA 491-3p (miR-491-3p) as a potential regulator of the UGT1A gene family via binding to the shared UGT1A 3'-untranslated region common to all UGT1A enzymes. Transfection of miR-491-3p mimic into HuH-7 cells significantly repressed UGT1A1 (P < 0.001), UGT1A3 (P < 0.05), and UGT1A6 (P < 0.05) mRNA levels. For UGT1A1, this repression correlated with significantly reduced metabolism of raloxifene into raloxifene-6-glucuronide (ral-6-gluc; P < 0.01) and raloxifene-4'-glucuronide (ral-4'-gluc; P < 0.01). In HuH-7 cells with repressed miR-491-3p expression, there was a significant increase (~80%; P < 0.01) in UGT1A1 mRNA and a corresponding increase in glucuronidation of raloxifene into ral-6-gluc (50%; P < 0.05) and ral-4'-gluc (22%; P < 0.01). Knockdown of endogenous miR-491-3p in HepG2 cells did not significantly alter UGT1A1 mRNA levels but did increase the formation of ral-6-gluc (50%; P < 0.05) and ral-4'-gluc (34%; P < 0.001). A significant inverse correlation between miR-491-3p expression and both UGT1A3 (P < 0.05) and UGT1A6 (P < 0.01) mRNA levels was observed in a panel of normal human liver specimens, with a significant (P < 0.05) increase in UGT1A3 and UGT1A6 mRNA levels observed in miR-491-3p nonexpressing versus expressing liver specimens. These results suggest that miR-491-3p is an important factor in regulating the expression of UGT1A enzymes in vivo.
Collapse
Affiliation(s)
- Douglas F Dluzen
- Departments of Pharmacology (D.F.D., D.S., N.J., R.T.B., G.P.R., P.L.) and Public Health Sciences (A.C.S.), Penn State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (P.L.)
| | | | | | | | | | | | | |
Collapse
|
24
|
Expression of UGT2B7 is driven by two mutually exclusive promoters and alternative splicing in human tissues. Pharmacogenet Genomics 2013; 23:684-96. [DOI: 10.1097/fpc.0000000000000008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Ménard V, Collin P, Margaillan G, Guillemette C. Modulation of the UGT2B7 enzyme activity by C-terminally truncated proteins derived from alternative splicing. Drug Metab Dispos 2013; 41:2197-205. [PMID: 24088326 DOI: 10.1124/dmd.113.053876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The enzyme UGT2B7 is one of the most active UDP-glucuronosyltransferases (UGTs) involved in drug metabolism and in maintaining homeostasis of endogenous compounds. We recently reported the existence of 22 UGT2B7 mRNAs, two with a classic 5' region but alternative 3' ends namely UGT2B7_v5 (containing a novel terminal exon 6b) and _v7 (exon 5 excluded) that encode enzymatically inactive isoforms 2 and 4 (i2 and i4), respectively. The v1 mRNA encoding the UGT2B7 enzyme (renamed isoform 1 or i1) is coexpressed with the splice variants v5 and v7 in human liver, kidney, and small intestine and the hepatic cell lines HepG2 and C3A. The presence of alternate v5 and v7 transcripts in isolated polysomes from these hepatic cells further supports endogenous protein translation. Cellular fractionation of clonal HEK293 cell lines overexpressing UGT2B7 isoforms demonstrates that i1, i2, and i4 proteins colocalize in the microsomal/Golgi fraction, whereas i2 and i4 can also be found in the cytosol; a finding sustained by immunofluorescence experiments using tagged proteins. By modifying splice variant abundance in overexpression in HEK293 and HepG2 cells as well as RNA interference experiments in HepG2 and C3A cells, we observe drug glucuronidation phenotypes compatible with variant-mediated repression of UGT2B7 activity without consequent alteration of the apparent enzyme affinity (K(m)). Finally, coimmunoprecipitation experiments support a direct protein-protein interaction of i2 and i4 proteins with the functional UGT2B7 enzyme as a potential causative mechanism. These findings point toward a novel autoregulatory mechanism of the UGT2B7 glucuronidation pathway by naturally occurring alternative i2 and i4 proteins.
Collapse
Affiliation(s)
- Vincent Ménard
- Pharmacogenomics Laboratory, Centre Hospitalier de l'Université Laval de Québec (CHU de Québec) Research Center, Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | |
Collapse
|
26
|
Bushey RT, Dluzen DF, Lazarus P. Importance of UDP-glucuronosyltransferases 2A2 and 2A3 in tobacco carcinogen metabolism. Drug Metab Dispos 2013; 41:170-9. [PMID: 23086198 PMCID: PMC3533432 DOI: 10.1124/dmd.112.049171] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/18/2012] [Indexed: 01/29/2023] Open
Abstract
UDP-glucuronosyltransferase A1 (UGT2A1) is expressed in the lung and exhibits activity against polycyclic aromatic hydrocarbons (PAHs), suggesting UGT2A1 involvement in the local metabolism of PAH tobacco carcinogens. The goal of the present study was to investigate the importance of two additional UGT2A enzymes, UGT2A2 and UGT2A3, in tobacco carcinogen metabolism. Real-time polymerase chain reaction suggested that wild-type UGT2A2 had the highest expression in the breast, followed by trachea > larynx > kidney. A novel splice variant of UGT2A2 lacking exon 3 (termed UGT2A2Δexon3) was investigated, with UGT2A2Δexon3 expression determined to be 25-50% that of wild-type UGT2A2 in all tissues examined. UGT2A3 was determined to be well expressed in the liver and colon, followed by pancreas > kidney > lung > tonsil > trachea > larynx. Cell homogenates prepared from human embryonic kidney (HEK)293 cells overexpressing wild-type UGT2A2 (termed UGT2A2_i1) exhibited glucuronidation activity, as observed by reverse-phase ultra-pressure liquid chromatography, against 1-hydroxy-(OH)-pyrene, 1-naphthol, and hydroxylated benzo(a)pyrene metabolites, whereas homogenates prepared from HEK293 cells overexpressing UGT2A3 only showed activity against simple PAHs like 1-OH-pyrene and 1-naphthol. Activity assays showed the UGT2A2Δexon3 protein (termed UGT2A2_i2) exhibited no detectable glucuronidation activity against all substrates examined; however, coexpression studies suggested that UGT2A2_i2 negatively modulates UGT2A2_i1 activity. Both UGT2A2 and UGT2A3 exhibited no detectable activity against complex PAH proximate carcinogens, tobacco-specific nitrosamines, or heterocyclic amines. These data suggest that, although UGT2A1 is the only UGT2A enzyme active against PAH proximate carcinogens (including PAH diols), both UGTs 2A1 and 2A2 play an important role in the local detoxification of procarcinogenic monohydroxylated PAH metabolites.
Collapse
Affiliation(s)
- Ryan T Bushey
- Department of Pharmacology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | |
Collapse
|