1
|
Mohamed MAE, Rihan S, Elbakry MMM, Moselhy SS. Molecular docking targeting autophagy pathway mediate abrogation of NASH by specific functional foods: update review. Nat Prod Res 2025; 39:864-887. [PMID: 38362886 DOI: 10.1080/14786419.2024.2316328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Autophagy is a very well-conserved self-digestive mechanism that transports unwanted or disposable cytoplasmic debris to lysosomes for destruction, including misfolded proteins and damaged organelles. Advanced liver illnesses can develop from the prevalent clinical condition known as non-alcoholic steatohepatitis (NASH). There is no effective treatment, is still unclear. Therefore, in order to create novel therapeutics, it is necessary to comprehend the pathogenic pathways causing disease onset and progression. Natural components from medicinal plants are currently the subject of a larger number of studies since they provide fresh promise for NASH. This review provided an overview of the aetiology of NASH, in addition the role of natural products as alternative or complementary therapeutic agent for management of NASH via autophagy induction. It was concluded that, alternative and complementary supplement of natural functional food as Arabica coffee that rich with chlorogenic acid targeting autophagy mechanism mediate amelioration effect of NASH.
Collapse
Affiliation(s)
| | - Shaimaa Rihan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Cairo, Egypt
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Jin S, Li Y, Xia T, Liu Y, Zhang S, Hu H, Chang Q, Yan M. Mechanisms and therapeutic implications of selective autophagy in nonalcoholic fatty liver disease. J Adv Res 2025; 67:317-329. [PMID: 38295876 PMCID: PMC11725165 DOI: 10.1016/j.jare.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide, whereas there is no approved drug therapy due to its complexity. Studies are emerging to discuss the role of selective autophagy in the pathogenesis of NAFLD, because the specificity among the features of selective autophagy makes it a crucial process in mitigating hepatocyte damage caused by aberrant accumulation of dysfunctional organelles, for which no other pathway can compensate. AIM OF REVIEW This review aims to summarize the types, functions, and dynamics of selective autophagy that are of particular importance in the initiation and progression of NAFLD. And on this basis, the review outlines the therapeutic strategies against NAFLD, in particular the medications and potential natural products that can modulate selective autophagy in the pathogenesis of this disease. KEY SCIENTIFIC CONCEPTS OF REVIEW The critical roles of lipophagy and mitophagy in the pathogenesis of NAFLD are well established, while reticulophagy and pexophagy are still being identified in this disease due to the insufficient understanding of their molecular details. As gradual blockage of autophagic flux reveals the complexity of NAFLD, studies unraveling the underlying mechanisms have made it possible to successfully treat NAFLD with multiple pharmacological compounds that target associated pathways. Overall, it is convinced that the continued research into selective autophagy occurring in NAFLD will further enhance the understanding of the pathogenesis and uncover novel therapeutic targets.
Collapse
Affiliation(s)
- Suwei Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tianji Xia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Yongguang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shanshan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, China.
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Mingzhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
3
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Huang J, Liang X, Zhao M, Zhang Y, Chen Z. Metabolomics and network pharmacology reveal the mechanism of antithrombotic effect of Asperosaponin VI. Biomed Pharmacother 2024; 173:116355. [PMID: 38493592 DOI: 10.1016/j.biopha.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Dipsaci Radix may possess antithrombotic properties, and one of its primary active ingredients is Asperosaponin VI. However, the antithrombotic effects and pharmacological mechanisms of Asperosaponin VI remain unclear. An in vivo experimental study has demonstrated the antithrombotic activity of Asperosaponin VI. Asperosaponin VI also exhibits anticoagulant properties. Asperosaponin VI significantly hindered collagen adrenergic-induced acute pulmonary thrombosis in mice and enhanced their survival rate. This hinders the formation of acute pulmonary embolisms induced by adenosine diphosphate (ADP) and decreases recovery time. A comprehensive strategy that combines metabolomics, network pharmacology, molecular docking, and experimental validation has the potential to reveal the antithrombotic mechanisms of Asperosaponin VI. Metabolomic evidence suggests that Asperosaponin VI may influence platelet aggregation and the production of anti-inflammatory metabolites through the regulation of pathways such as phenylalanine and arachidonic acid metabolism, thereby inhibiting thrombosis. Network pharmacology identified the pharmacological targets of Asperosaponin VI and indicated that it treats thrombi by partially regulating the signaling pathways related to inflammation and platelet aggregation. Asperosaponin VI showed strong binding affinity for F2, PTPRC, JUN, STAT3, SRC, AKT1. The antiplatelet aggregation activity of Asperosaponin VI was validated based on the metabolomic and network pharmacology results. Asperosaponin VI inhibits platelet aggregation induced by ADP, AA, and collagen. Therefore, Asperosaponin VI exerts antithrombotic effects through antiplatelet aggregation. Therefore, Asperosaponin VI is a promising antithrombotic agent.
Collapse
Affiliation(s)
- Jin Huang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Xuewen Liang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Minrui Zhao
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China
| | - Yue Zhang
- Shenzhen Pingle Orthopedic Hospital (Shenzhen Pingshan Traditional Chinese Medicine Hospital), Shenzhen 518001, China.
| | - Ziyang Chen
- Huizhou first Maternal and Child Health Care Hospital, Huizhou 516000, China.
| |
Collapse
|
5
|
Raza S, Rajak S, Singh R, Zhou J, Sinha RA, Goel A. Cell-type specific role of autophagy in the liver and its implications in non-alcoholic fatty liver disease. World J Hepatol 2023; 15:1272-1283. [PMID: 38192406 PMCID: PMC7615497 DOI: 10.4254/wjh.v15.i12.1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023] Open
Abstract
Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.
Collapse
Affiliation(s)
- Sana Raza
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Rajani Singh
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Jin Zhou
- CVMD, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India
| | - Amit Goel
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, Lucknow 226014, India.
| |
Collapse
|
6
|
Zhang Y, Chen Q, Fu X, Zhu S, Huang Q, Li C. Current Advances in the Regulatory Effects of Bioactive Compounds from Dietary Resources on Nonalcoholic Fatty Liver Disease: Role of Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17554-17569. [PMID: 37955247 DOI: 10.1021/acs.jafc.3c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease characterized by lipid metabolic disorder primarily due to sedentary lifestyles and excessive food consumption. However, there are currently no approved and effective drugs available to treat NAFLD. In recent years, research has shown that dietary bioactive compounds, such as polysaccharides, polyphenols, flavones, and alkaloids, have the potential to improve NAFLD by regulating autophagy. However, there is no up-to-date review of research progress in this field. This review aims to systematically summarize and discuss the regulatory effects and molecular mechanisms of dietary bioactive compounds on NAFLD through the modulation of autophagy. The existing research has demonstrated that some dietary bioactive compounds can effectively improve various aspects of NAFLD progression, such as lipid metabolism, insulin resistance (IR), endoplasmic reticulum (ER) stress, oxidative stress, mitochondrial homeostasis, and inflammation. Molecular mechanism studies have revealed that they exert their beneficial effects on NAFLD through autophagy-mediated signaling pathways, predominantly involving transcription factor EB (TFEB), mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptors (PPARs), SIRT, and PTEN-induced kinase 1 (PINK1)/parkin. Furthermore, the challenges and prospects of current research in this field are highlighted. Overall, this review provides valuable insights into the potential treatment of NAFLD using dietary bioactive compounds that can modulate autophagy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qing Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- School of Food Science and Dietetics, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Siming Zhu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Sinha RA. Autophagy: A Cellular Guardian against Hepatic Lipotoxicity. Genes (Basel) 2023; 14:553. [PMID: 36874473 PMCID: PMC7614268 DOI: 10.3390/genes14030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Lipotoxicity is a phenomenon of lipid-induced cellular injury in nonadipose tissue. Excess of free saturated fatty acids (SFAs) contributes to hepatic injury in nonalcoholic fatty liver disease (NAFLD), which has been growing at an unprecedented rate in recent years. SFAs and their derivatives such as ceramides and membrane phospholipids have been shown to induce intrahepatic oxidative damage and ER stress. Autophagy represents a cellular housekeeping mechanism to counter the perturbation in organelle function and activation of stress signals within the cell. Several aspects of autophagy, including lipid droplet assembly, lipophagy, mitophagy, redox signaling and ER-phagy, play a critical role in mounting a strong defense against lipotoxic lipid species within the hepatic cells. This review provides a succinct overview of our current understanding of autophagy-lipotoxicity interaction and its pharmacological and nonpharmacological modulation in treating NAFLD.
Collapse
Affiliation(s)
- Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
8
|
Lonicera flos and Cnicus japonicus extracts improved egg quality partly by modulating antioxidant status, inflammatory-related cytokines and shell matrix protein expression of oviduct in laying hens. Poult Sci 2023; 102:102561. [PMID: 36867918 PMCID: PMC10011517 DOI: 10.1016/j.psj.2023.102561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
This study was conducted to investigate the effects of Lonicera flos and Cnicus japonicus extracts (LCE) on the laying performance, egg quality, morphology, antioxidant status, inflammatory-related cytokines, and shell matrix protein expression of oviduct in laying hens. A total of 1,728 Roman Pink laying hens aged 73-wk-old were randomly assigned into 4 groups (18 replicates/group, 24 layers/replicate) fed basal diets supplemented with 0, 300, 500, and 1,000 mg of LCE per kg of diet, respectively. The trial lasted for 11 wk, including 2-wk adjustment period and 9-wk testing period. The results indicated that laying hens fed diets supplemented with LCE linearly increased egg weight, yolk color and shell thickness at wk 78 and albumen height, Haugh unit and shell thickness at wk 83 (P < 0.05). At wk 78, LCE groups linearly affected the hydrogen peroxide content in magnum (P < 0.05) and 300 mg/kg LCE groups had the highest catalase activity in isthmus (P < 0.05). At wk 83, LCE groups linearly reduced (P < 0.05) hydrogen peroxide content in the magnum and isthmus and malondialdehyde content in the uterus whereas increased catalase activity in isthmus (P < 0.05). Furthermore, LCE levels quadratically affected glutathione peroxidase activity in isthmus at wk 83 (P < 0.05). At wk 78, the mRNA expressions of inducible nitric oxide synthase and interferon-γ in isthmus and ovalbumin and ovocleidin-116 in uterus had linear effects in response to LCE levels (P < 0.05) and 1,000 mg/kg LCE group had the lowest mRNA expression of interleukin-6 in magnum (P < 0.05). At wk 83, LCE supplementation linearly decreased the mRNA expression of interleukin-1β, interferon-γ and tumor necrosis factor-α in magnum and tumor necrosis factor-α and inducible nitric oxide synthase in uterus (P < 0.05). It is concluded that LCE improved egg quality partly by modulating antioxidant status, inflammatory-related cytokines and shell matrix protein expression of oviduct in laying hens.
Collapse
|
9
|
Hao DC, Xu LJ, Zheng YW, Lyu HY, Xiao PG. Mining Therapeutic Efficacy from Treasure Chest of Biodiversity and Chemodiversity: Pharmacophylogeny of Ranunculales Medicinal Plants. Chin J Integr Med 2022; 28:1111-1126. [PMID: 35809180 PMCID: PMC9282152 DOI: 10.1007/s11655-022-3576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/17/2022]
Abstract
Ranunculales, comprising of 7 families that are rich in medicinal species frequently utilized by traditional medicine and ethnomedicine, represents a treasure chest of biodiversity and chemodiversity. The phylogenetically related species often have similar chemical profile, which makes them often possess similar therapeutic spectrum. This has been validated by both ethnomedicinal experiences and pharmacological investigations. This paper summarizes molecular phylogeny, chemical constituents, and therapeutic applications of Ranunculales, i.e., a pharmacophylogeny study of this representative medicinal order. The phytochemistry/metabolome, ethnomedicine and bioactivity/pharmacology data are incorporated within the phylogenetic framework of Ranunculales. The most studied compounds of this order include benzylisoquinoline alkaloid, flavonoid, terpenoid, saponin and lignan, etc. Bisbenzylisoquinoline alkaloids are especially abundant in Berberidaceae and Menispermaceae. The most frequent ethnomedicinal uses are arthritis, heat-clearing and detoxification, carbuncle-abscess and sore-toxin. The most studied bioactivities are anticancer/cytotoxic, antimicrobial, and anti-inflammatory activities, etc. The pharmacophylogeny analysis, integrated with both traditional and modern medicinal uses, agrees with the molecular phylogeny based on chloroplast and nuclear DNA sequences, in which Ranunculales is divided into Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae, Papaveraceae, and Eupteleaceae families. Chemical constituents and therapeutic efficacy of each taxonomic group are reviewed and the underlying connection between phylogeny, chemodiversity and clinical uses is revealed, which facilitate the conservation and sustainable utilization of Ranunculales pharmaceutical resources, as well as developing novel plant-based pharmacotherapy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Li-Jia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yu-Wei Zheng
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Huai-Yu Lyu
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
10
|
Su Y, Kang Y, Yi J, Lin Q, Zhang C, Lin Z, Yan Z, Qu J, Liu J. Isoschaftoside Reverses Nonalcoholic Fatty Liver Disease via Activating Autophagy In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2122563. [PMID: 35795282 PMCID: PMC9252632 DOI: 10.1155/2022/2122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common metabolic liver disease globally, and the incidence of NAFLD has been increasing rapidly year by year. Currently, there is no effective pharmacotherapy for NAFLD. Therefore, studies are urgently needed to explore therapeutic drugs for NAFLD. In this study, we show that isoschaftoside (ISO) dramatically reduces lipid deposition in cells. Meanwhile, ISO treatment reverses the NAFLD and reduces hepatic steatosis in mice. Importantly, we reveal that ISO suppresses the expression of light-chain 3-II (LC3-II) and SQSTM1/p62 in palmitic acid (PA) induced autophagy inhibition in the cell model and the NAFLD mouse model, which suggests that ISO might reverse NAFLD through regulating autophagy flux. We propose that ISO might alleviate hepatic steatosis in NAFLD via regulating autophagy machinery. Consequently, our study suggests that ISO might be of potential clinical value in the field of NAFLD therapy. ISO might have the potential for future therapeutic application.
Collapse
Affiliation(s)
- Yanze Su
- Department of Clinical Medicine, Weifang Medical University, Weifang 261031, China
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixing Kang
- Department of Clinical Medicine, Weifang Medical University, Weifang 261031, China
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qirui Lin
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chaochuang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zewei Lin
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zilong Yan
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianhua Qu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jikui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
11
|
Chang ML, Lin YT, Kung HN, Hou YC, Liu JJ, Pan MH, Chen HL, Yu CH, Tsai PJ. A triterpenoid-enriched extract of bitter melon leaves alleviates hepatic fibrosis by inhibiting inflammatory responses in carbon tetrachloride-treated mice. Food Funct 2021; 12:7805-7815. [PMID: 34231603 DOI: 10.1039/d1fo00884f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a progression of chronic liver disease characterized by excess deposition of fibrillary collagen. The aim of this study was to investigate the protective effect of a triterpenoid-enriched extract (TEE) from bitter melon leaves against carbon tetrachloride (CCl4)-induced hepatic fibrosis in mice. Male ICR mice received TEE (100 or 150 mg kg-1) by daily oral gavage for one week before starting CCl4 administration and throughout the entire experimental period. After intraperitoneal injection of CCl4 for nine weeks, serum and liver tissues of the mice were collected for biochemical, histopathological and molecular analyses. Our results showed that TEE supplementation reduced CCl4-induced serum aspartate aminotransferase and alanine aminotransferase activities. Histopathological examinations revealed that CCl4 administration results in hepatic fibrosis, while TEE supplementation significantly suppressed hepatic necroinflammation and collagen deposition. In addition, TEE supplementation decreased α-smooth muscle actin (α-SMA)-positive staining and protein levels of α-SMA and transforming growth factor-β1. TEE-supplemented mice had lower mRNA expression levels of interleukin-6, tumor necrosis factor-α, and toll-like receptor 4. Moreover, TEE (150 mg kg-1) supplementation significantly reduced intrahepatic inflammatory Ly6C+ monocyte infiltration. We demonstrated that TEE could ameliorate hepatic fibrosis by regulating inflammatory cytokine secretion and α-SMA expression in the liver to reduce collagen accumulation.
Collapse
Affiliation(s)
- Mei-Ling Chang
- Department of Food Science, Nutrition and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Álvarez-Mercado AI, Rojano-Alfonso C, Micó-Carnero M, Caballeria-Casals A, Peralta C, Casillas-Ramírez A. New Insights Into the Role of Autophagy in Liver Surgery in the Setting of Metabolic Syndrome and Related Diseases. Front Cell Dev Biol 2021; 9:670273. [PMID: 34141709 PMCID: PMC8204012 DOI: 10.3389/fcell.2021.670273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/23/2021] [Indexed: 01/18/2023] Open
Abstract
Visceral obesity is an important component of metabolic syndrome, a cluster of diseases that also includes diabetes and insulin resistance. A combination of these metabolic disorders damages liver function, which manifests as non-alcoholic fatty liver disease (NAFLD). NAFLD is a common cause of abnormal liver function, and numerous studies have established the enormously deleterious role of hepatic steatosis in ischemia-reperfusion (I/R) injury that inevitably occurs in both liver resection and transplantation. Thus, steatotic livers exhibit a higher frequency of post-surgical complications after hepatectomy, and using liver grafts from donors with NAFLD is associated with an increased risk of post-surgical morbidity and mortality in the recipient. Diabetes, another MetS-related metabolic disorder, also worsens hepatic I/R injury, and similar to NAFLD, diabetes is associated with a poor prognosis after liver surgery. Due to the large increase in the prevalence of MetS, NAFLD, and diabetes, their association is frequent in the population and therefore, in patients requiring liver resection and in potential liver graft donors. This scenario requires advancement in therapies to improve postoperative results in patients suffering from metabolic diseases and undergoing liver surgery; and in this sense, the bases for designing therapeutic strategies are in-depth knowledge about the molecular signaling pathways underlying the effects of MetS-related diseases and I/R injury on liver tissue. A common denominator in all these diseases is autophagy. In fact, in the context of obesity, autophagy is profoundly diminished in hepatocytes and alters mitochondrial functions in the liver. In insulin resistance conditions, there is a suppression of autophagy in the liver, which is associated with the accumulation of lipids, being this is a risk factor for NAFLD. Also, oxidative stress occurring in hepatic I/R injury promotes autophagy. The present review aims to shed some light on the role of autophagy in livers undergoing surgery and also suffering from metabolic diseases, which may lead to the discovery of effective therapeutic targets that could be translated from laboratory to clinical practice, to improve postoperative results of liver surgeries when performed in the presence of one or more metabolic diseases.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Mexico
| |
Collapse
|
13
|
Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021; 10:134-161. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, B4 7ET, Birmingham, UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
14
|
Li P, Peng J, Li Y, Gong L, Lv Y, Liu H, Zhang T, Yang S, Liu H, Li J, Liu L. Pharmacokinetics, Bioavailability, Excretion and Metabolism Studies of Akebia Saponin D in Rats: Causes of the Ultra-Low Oral Bioavailability and Metabolic Pathway. Front Pharmacol 2021; 12:621003. [PMID: 33935711 PMCID: PMC8082176 DOI: 10.3389/fphar.2021.621003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Akebia saponin D (ASD) has a variety of biological activities and great medicinal potential, but its oral bioavailability is so low as to limit its development. Its pharmacokinetic profiles and excretion and metabolism in vivo have not been fully elucidated. This study was an attempt in this area. Methods: A simple LC-MS/MS method to simultaneously quantify ASD and its metabolites M1∼M5 in rat plasma, feces, urine and bile was established with a negative ESI model using dexketoprofen as the internal standard. Meanwhile, the UPLC-HR/MS system was used to screen all possible metabolites in the urine, feces and bile of rats, as compared with blank samples collected before administration. Absolute quantitative analysis was for M0, M3, M4, and M5, while semi-quantitative analysis was for M1, M2, and Orbitrap data. Results: The AUC0-t values after intravenous administration of 10 mg/kg and intragastrical administration of 100 mg/kg ASD were 19.05 ± 8.64 and 0.047 ± 0.030 h*μg/ml respectively. The oral bioavailability was determined to be extremely low (0.025%) in rats. The exposure of M4 and M5 in the oral group was higher than that of M0 in the terminal phase of the plasma concentration time profile, and ASD was stable in the liver microsome incubation system of rats, but metabolism was relatively rapid during anaerobic incubation of intestinal contents of rats, suggesting that the low bioavailability of ASD might have been attributed to the poor gastrointestinal permeability and extensive pre-absorption degradation rather than to the potent first pass metabolism. This assertion was further verified by a series of intervention studies, where improvement of lipid solubility and intestinal permeability as well as inhibition of intestinal flora increased the relative bioavailability to different extents without being changed by P-gp inhibition. After intravenous administration, the cumulative excretion rates of ASD in the urine and bile were 14.79 ± 1.87%, and 21.76 ± 17.61% respectively, but only 0.011% in feces, suggesting that the urine and bile were the main excretion pathways and that there was a large amount of biotransformation in the gastrointestinal tract. Fifteen possible metabolites were observed in the urine, feces and bile. The main metabolites were ASD deglycosylation, demethylation, dehydroxylation, decarbonylation, decarboxylation, hydroxylation, hydroxymethylation, hydroxyethylation and hydrolysis. Conclusion: The pharmacokinetics, bioavailability, metabolism and excretion of ASD in rats were systematically evaluated for the first time in this study. It has been confirmed that the ultra-low oral bioavailability is due to poor gastrointestinal permeability, extensive pre-absorption degradation and biotransformation. ASD after iv administration is not only excreted by the urine and bile, but possibly undergoes complex metabolic elimination.
Collapse
Affiliation(s)
- Pengfei Li
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Peng
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Yuexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi City, China
| | - Lili Gong
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yali Lv
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Tianhong Zhang
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Song Yang
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongchuan Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jinglai Li
- Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Lihong Liu
- Pharmacy Department of Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Yang S, Hu T, Liu H, Lv YL, Zhang W, Li H, Xuan L, Gong LL, Liu LH. Akebia saponin D ameliorates metabolic syndrome (MetS) via remodeling gut microbiota and attenuating intestinal barrier injury. Biomed Pharmacother 2021; 138:111441. [PMID: 33652261 DOI: 10.1016/j.biopha.2021.111441] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex, multifactorial disease which lead to an increased risk of cardiovascular disease, type 2 diabetes, and stroke. However, selective, and potent drugs for the treatment of MetS are still lacking. Previous studies have found that Akebia saponin D (ASD) has beneficial effects on metabolic diseases such as obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Therefore, our study was designed to determine the effect and mechanism of action of ASD against MetS in a high-fat diet (HFD) induced mouse model. ASD significantly decreased plasma lipid and insulin resistance in these mice, and a targeted approach using metabolomic analyses of plasma and feces indicated that glucose and lipids in these mice crossed the damaged intestinal barrier into circulation. Furthermore, ASD was able to increase lipid excretion and inhibit intestinal epithelial lipid absorption. Results for gut microbiota composition showed that ASD significantly reduced HFD-associated Alistipes, Prevotella, and enhanced the proportions of Butyricimonas, Ruminococcus, and Bifidobacterium. After 14 weeks of ASD/fecal microbiota transplantation (FMT) interventions the developed gut barrier dysfunction was restored. Additionally, RNA-seq revealed that ASD reduced the lipid-induced tight junction (TJ) damage in intestinal epithelial cells via down-regulation of the PPAR-γ-FABP4 pathway in vitro and that use of the PPAR-γ inhibitor (T0070907) was able to partially block the effects of ASD, indicating that the PPAR-γ/FABP4 pathway is a critical mediator involved in the improvement of MetS. Our results demonstrated that ASD not only modifies the gut microbiome but also ameliorates the HFD-induced gut barrier disruption via down-regulation of the PPAR-γ-FABP4 pathway. These findings suggest a promising, and novel therapeutic strategy for gut protection against MetS.
Collapse
Affiliation(s)
- Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Hu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Han Li
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lingling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
16
|
Peng P, Jia D, Cao L, Lu W, Liu X, Liang C, Pan Z, Fang Z. Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113446. [PMID: 33031902 DOI: 10.1016/j.jep.2020.113446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Screening and identifying effective anticancer compounds from active traditional Chinese herbs for HCC are in demand. Akebia trifoliata (Thunb) Koidz, with pharmacological anti-HCC activities in clinical, has been shown in previous research. In the present research, we elucidated a potential anticancer effect of Akebia saponin E (ASE), which is isolated from the immature seeds of Akebia trifoliata (Thunb.) Koidz, and revealed that ASE could induce severe expanded vacuoles in HCC cells. But the potential mechanism of vacuole-formation and the anti-HCC effects by ASE remain uncover. AIM OF THIS STUDY To elucidate the potential mechanism of vacuole-formation and the proliferation inhibition effects by ASE in HCC cell lines. MATERIALS AND METHODS MTT assay, colony formation assay and flow cytometry were performed to detect cell viability. Immunofluorescence analysis was used to examine the biomarkers of endomembrane. Cells were infected with tandem mRFP-GFP-LC3 lentivirus to assess autophagy flux. RNA-seq was conducted to analyze the genome-wide transcriptional between treatment cell groups. In vitro PIKfyve kinase assay is detected by the ADP-GloTM Kinase Assay Kit. RESULTS ASE could inhibit the proliferation of HCC with severe expanded vacuoles in vitro, and could significantly reduce the size and weight of xenograft tumor in vivo. Further, the vacuoles induced by ASE were aberrant enlarged lysosomes instead of autophagosome or autolysosomes. With cytoplasmic vacuolation, ASE induced a mTOR-independent TFEB activation for lysosomal biogenesis and a decrement of cholesterol levels in HCC cells. Furthermore, ASE could reduce the activity of PIKfyve (phosphoinositide kinase containing a FYVE-type finger), causing aberrant lysosomal biogenesis and cholesterol dyshomeostasis which triggered the expanded vacuole formation. CONCLUSION ASE can prospectively inhibit the kinase activity of PIKfyve to induce lysosome-associated cytoplasmic vacuolation, and may be utilized as an alternative candidate to treat human HCC.
Collapse
Affiliation(s)
- Peike Peng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Dongwei Jia
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linna Cao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenli Lu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqiang Pan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoqin Fang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
17
|
Han B, He C. Targeting autophagy using saponins as a therapeutic and preventive strategy against human diseases. Pharmacol Res 2021; 166:105428. [PMID: 33540047 DOI: 10.1016/j.phrs.2021.105428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Autophagy is a ubiquitous mechanism for maintaining cellular homeostasis through the degradation of long-lived proteins, insoluble protein aggregates, and superfluous or damaged organelles. Dysfunctional autophagy is observed in a variety of human diseases. With advanced research into the role that autophagy plays in physiological and pathological conditions, targeting autophagy is becoming a novel tactic for disease management. Saponins are naturally occurring glycosides containing triterpenoids or steroidal sapogenins as aglycones, and some saponins are reported to modulate autophagy. Research suggests that saponins may have therapeutic and preventive efficacy against many autophagy-related diseases. Therefore, this review comprehensively summarizes and discusses the reported saponins that exhibit autophagy regulating activities. In addition, the relevant signaling pathways that the mechanisms involved in regulating autophagy and the targeted diseases were also discussed. By regulating autophagy and related pathways, saponins exhibit bioactivities against cancer, neurodegenerative diseases, atherosclerosis and other cardiac diseases, kidney diseases, liver diseases, acute pancreatitis, and osteoporosis. This review provides an overview of the autophagy-regulating activity of saponins, the underlying mechanisms and potential applications for managing various diseases.
Collapse
Affiliation(s)
- Bing Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
18
|
Akebia Saponin D prevents axonal loss against TNF-induced optic nerve damage with autophagy modulation. Mol Biol Rep 2020; 47:9733-9738. [PMID: 33249542 PMCID: PMC7723935 DOI: 10.1007/s11033-020-06008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/16/2020] [Indexed: 10/30/2022]
Abstract
Akebia Saponin D (ASD), a triterpenoid saponin, was shown to have protective effects in certain neuronal cells. The purpose of the present study was to investigate the possibility of ASD to prevent tumor necrosis factor (TNF)-induced axonal loss and the ASD modulation of the biologic process of autophagy in optic nerves. Rats were given intravitreal administration of TNF, simultaneous administration of 2, 20, or 200 pmol ASD and TNF, or ASD alone. LC3-II and p62 expression, which is a marker of autophagic flux, and phosphorylated p38 (p-p38) expression in optic nerves were examined by immunoblot analysis. Morphometric analysis revealed a significant ameliorated effect of ASD against TNF-induced optic nerve damage. p62 was significantly increased in the optic nerve in TNF-treated eyes, but this increase was totally prevented by ASD. The ASD alone injection showed significant reduction of p62 levels compared with the PBS-treated control eyes. LC3-II was significantly increased by ASD treatment in the TNF-injected eyes. p-p38 was significantly increased in the optic nerve in TNF-treated eyes, but this increase was completely prevented by ASD. The protective effects of ASD may be associated with enhanced autophagy activation and inhibition of p-p38.
Collapse
|
19
|
Lee MR, Kim JE, Park JW, Kang MJ, Choi HJ, Bae SJ, Choi YW, Kim KM, Hong JT, Hwang DY. Fermented mulberry (Morus alba) leaves suppress high fat diet-induced hepatic steatosis through amelioration of the inflammatory response and autophagy pathway. BMC Complement Med Ther 2020; 20:283. [PMID: 32948162 PMCID: PMC7501671 DOI: 10.1186/s12906-020-03076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) is reported to exert anti-obesity activity, although their molecular mechanism during hepatic steatosis has not verified. METHODS To investigate the role of inflammation and autophagy during the anti-hepatic steatosis effects of EMfC, we measured alterations in the key parameters for inflammatory response and autophagy pathway in liver tissues of the high fat diet (HFD) treated C57BL/6N mice after exposure to EMfC for 12 weeks. RESULTS Significant anti-hepatic steatosis effects, including decreased number of lipid droplets and expression of Klf2 mRNA, were detected in the liver of the HFD + EMfC treated group. The levels of mast cell infiltration, expression of two inflammatory mediators (iNOS and COX-2), and the MAPK signaling pathway were remarkably decreased in the liver of HFD + EMfC treated group as compared to the HFD + Vehicle treated group. Furthermore, a similar inhibitory effect was measured for the expression levels of pro-inflammatory cytokines, including IL-1β, IL-6, TNF-α and NF-κB. The expression level of members in the AKT/mTOR signaling pathway (a central regulator in autophagy) was recovered after treatment with EMfC, and autophagy-related proteins (Beclin and LC3-II) were remarkably decreased in the HFD + EMfC treated group compared to the HFD + Vehicle treated group. Moreover, the HFD + EMfC treated group showed decreased transcript levels of autophagy-regulated genes including Atg4b, Atg5, Atg7 and Atg12. CONCLUSIONS Taken together, findings of the present study provide novel evidences that the anti-hepatic steatosis of EMfC is tightly linked to the regulation of the inflammatory response and autophagy pathway in the liver tissue of HFD-induced obesity mice.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Su Ji Bae
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea
| | - Young Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institue, Pusan National University, Miryang, 50463, South Korea
| | - Kyung Mi Kim
- Life Science Research Institute, Novarex Co., Ltd, Chungju, 28126, South Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Chungju, 28644, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, South Korea.
| |
Collapse
|
20
|
Rehan M, Shafiullah, Mir SA. Structural diversity, natural sources, and pharmacological potential of plant-based saponins with special focus on anticancer activity: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02600-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Chen S, Li M, Jiang W, Zheng H, Qi LW, Jiang S. The role of Neu1 in the protective effect of dipsacoside B on acetaminophen-induced liver injury. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:823. [PMID: 32793668 PMCID: PMC7396229 DOI: 10.21037/atm-19-3850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Pharmacological induction of autophagy can protect against acetaminophen (APAP) induced acute liver failure (ALF) by removing APAP adducts (APAP-AD), but its mechanism is not well understood. Hepatoprotective effect of saponins from traditional Chinese medicine has attracted widespread attention from all over the world. The content of saponins in Lonicerae Flos (Shanyinhua in Chinese) is up to 15–25%. Dipsacoside B (DB) is a common bioactive ingredient of different Shanyinhua, but its hepatoprotective effect and mechanism are still unknown. The present investigation aimed to study the benefit of DB in APAP-induced hepatotoxicity mouse model and different cell model. Methods Mice were treated with DB by intraperitoneal injection 1 h before treated with 500 mg/kg APAP, which caused ALF after 4 h. HepG2 cells were treated with DB for 1 h before treated with 10 mM APAP for 12 h. Hepatotoxicity was assessed via ALT and AST. Neuraminidase 1 (Neu1), lysosomal autophagy marker LC3 and P62 were examined by western blot. Neu1 activity was assayed using its substrate 2-(4-methylumbelliferyl)-D-N-acetylneuraminic acid. Apoptosis level was examined by TUNEL and caspase 3 activity. Molecular docking was used to predict the interaction between DB and protein Neu1. Results Our results demonstrated that pretreatment with 0.5 μM DB (in vitro) and 50 mg/kg DB (in vivo) respectively reversed increased level of AST and ALT induced by APAP. Histopathological examinations showed reduced necrosis and apoptosis in the liver of DB-treated APAP mice. DB promoted the removal of APAP-AD by lysosomal autophagy. These effects were associated with significant decrease in the level of Neuraminidase 1 (Neu1), a negative regulator of lysosomal exocytosis. Molecular docking results showed that DB could bind to Neu1 protein (binding energy =−7.86 kcal/mol). Akt/mTOR-mediated autophagy and inhibition of apoptosis may be the main mechanisms for the hepatoprotective effects of DB in acetaminophen-induced liver injury. Conclusions These data indicate that DB alleviated hepatotoxicity caused by APAP at least in part via Neu1 inhibition, Akt/mTOR pathway is involved in the detoxification effect of DB on acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengzhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Shujun Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
22
|
α-Linolenic Acid-Enriched Cold-Pressed Perilla Oil Suppress High-Fat Diet-Induced Hepatic Steatosis through Amelioration of the ER Stress-Mediated Autophagy. Molecules 2020; 25:molecules25112662. [PMID: 32521713 PMCID: PMC7321089 DOI: 10.3390/molecules25112662] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Perilla oil has been considered to have excellent potential for treating various diseases due to its contents of beneficial fatty acids, such as α-linolenic acid, oleic acid and linoleic acid. The therapeutic effects and molecular mechanism of an α-linolenic acid-enriched cold-pressed perilla oil (LEP) on hepatic steatosis of an obesity model were investigated by analyzing alterations in fat accumulation and endoplasmic reticulum (ER) stress-mediated autophagy, in high-fat diet (HFD)-induced obesity C57BL/6N mice treated with LEP for 16 weeks. Although no significant alterations were detected in body weight and most organ weights, the liver weight and accumulation of lipid droplets in the liver section were significantly lower in HFD + LEP treated group as compared to the HFD + Vehicle treated group. Reduced mRNA expression levels of adipogenesis and lipogenesis regulating factors, including the peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein (C/EBP)α, fatty acid synthase (FAS), and adipocyte fatty acid-binding protein 2 (aP2) were observed after LEP treatment for 16 weeks, while the levels of lipolysis were remarkably increased in the same group. Moreover, the LEP-treated groups showed suppression of ER stress-regulating factors, such as the C/EBP homologous protein (CHOP), eukaryotic translation initiation factor 2α (eIF2α), inositol-requiring protein 1 (IRE1)α, and Jun-N-terminal kinase (JNK) during anti-hepatic steatosis effects. The expression level of the microtubule-associated protein 1A/1B-light chain 3 (LC3) protein and phosphatidylinositol-3-kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) pathway for the autophagy response showed a significant decrease in the HFD+LEP-treated group. Furthermore, ER stress-mediated autophagy was accompanied with enhanced phosphorylation of extracellular signal-regulated kinase (ERK), JNK, and p38 protein in the mitogen-activated protein (MAP) kinase signaling pathway. Taken together, the results of the present study indicate that treatment with LEP inhibits hepatic steatosis in the HFD-induced obese model through regulation of adipogenesis and lipolysis. We believe our results are the first to show that the anti-hepatic steatosis activity of α-linolenic acid from cold-pressed perilla oil might be tightly correlated with the amelioration of ER stress-mediated autophagy.
Collapse
|
23
|
Xu Y, Guo W, Zhang C, Chen F, Tan HY, Li S, Wang N, Feng Y. Herbal Medicine in the Treatment of Non-Alcoholic Fatty Liver Diseases-Efficacy, Action Mechanism, and Clinical Application. Front Pharmacol 2020; 11:601. [PMID: 32477116 PMCID: PMC7235193 DOI: 10.3389/fphar.2020.00601] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with high prevalence in the developed countries. NAFLD has been considered as one of the leading causes of cryptogenic cirrhosis and chronic liver disease. The individuals with obesity, insulin resistance and diabetes mellitus, hyperlipidaemia, and hypertension cardiovascular disease have a high risk to develop NAFLD. The related critical pathological events are associated with the development of NAFLD including insulin resistance, lipid metabolism dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. The development of NAFLD range from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis is characterized by fat accumulation, which represents the early stage of NAFLD. Then, inflammation triggered by steatosis drives early NAFLD progression into NASH. Therefore, the amelioration of steatosis and inflammation is essential for NAFLD therapy. The herbal medicine have taken great effects on the improvement of steatosis and inflammation for treating NAFLD. It has been found out that these effects involved the multiple mechanisms underlying lipid metabolism and inflammation. In this review, we pay particular attention on herbal medicine treatment and make summary about the research of herbal medicine, including herb formula, herb extract and naturals compound on NAFLD. We make details about their protective effects, the mechanism of action involved in the amelioration steatosis and inflammation for NAFLD therapy as well as the clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
24
|
Huang X, Chen W, Yan C, Yang R, Chen Q, Xu H, Huang Y. Gypenosides improve the intestinal microbiota of non-alcoholic fatty liver in mice and alleviate its progression. Biomed Pharmacother 2019; 118:109258. [DOI: 10.1016/j.biopha.2019.109258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/02/2023] Open
|
25
|
Yang S, Zhang W, Xuan LL, Han FF, Lv YL, Wan ZR, Liu H, Ren LL, Gong LL, Liu LH. Akebia Saponin D inhibits the formation of atherosclerosis in ApoE mice by attenuating oxidative stress-induced apoptosis in endothelial cells. Atherosclerosis 2019; 285:23-30. [DOI: 10.1016/j.atherosclerosis.2019.04.202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022]
|
26
|
Al Sharif M, Vitcheva V, Simeonova R, Krasteva I, Manov V, Alov P, Popov G, Shkondrov A, Pajeva I. In silico and in vivo studies of Astragalus glycyphylloides saponin(s) with relevance to metabolic syndrome modulation. Food Chem Toxicol 2019; 130:317-325. [PMID: 31128217 DOI: 10.1016/j.fct.2019.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 11/29/2022]
Abstract
Triterpenoids are well known modulators of metabolic syndrome. One of the suggested modes of action (MoAs) involves peroxisome proliferator-activated receptor gamma (PPARγ) binding. In this study we aimed to: (i) evaluate in silico potential metabolites and PPARγ-mediated MoA of the sapogenin of the main saponin present in a purified saponins' mixture (PSM) from Astragalus glycyphylloides; (ii) estimate in silico and in vivo PSM's toxicity; and (iii) investigate in vivo antihyperglycaemic, hypolipidaemic, antioxidant and hepatoprotective effects of PSM. Metabolites and toxicity were predicted using Meteor and Derek Nexus expert systems (Lhasa Limited) and PPARγ binding was investigated using the software MOE (CCG Inc.). PSM's acute oral toxicity was evaluated in mice and the pharmacological effects were assessed in streptozotocin-induced diabetic spontaneously hypertensive rats (SHRs). Liver histopathology was studied as well. PPARγ weak partial agonism was predicted in silico for 24 probable/plausible Phase I metabolites which docking poses were clustered in 12 different binding modes with characteristic protein-ligand interactions. PSM's beneficial effects on the levels of blood glucose, triglycerides, and total cholesterol, on oxidative stress markers and liver histology in diabetic SHRs were comparable to those of the PPARγ ligand pioglitazone. PSM's safety profile was confirmed in silico and in vivo.
Collapse
Affiliation(s)
- Merilin Al Sharif
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria.
| | - Vessela Vitcheva
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000, Sofia, Bulgaria.
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000, Sofia, Bulgaria.
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000, Sofia, Bulgaria.
| | - Vasil Manov
- Department of Internal Non-communicable Diseases, Pathology and Pharmacology, Faculty of Veterinary Medicine, University of Forestry - Sofia, 10 Kliment Ochridsky Blvd., 1756, Sofia, Bulgaria.
| | - Petko Alov
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria.
| | - Georgi Popov
- Department of Internal Non-communicable Diseases, Pathology and Pharmacology, Faculty of Veterinary Medicine, University of Forestry - Sofia, 10 Kliment Ochridsky Blvd., 1756, Sofia, Bulgaria.
| | - Aleksandar Shkondrov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000, Sofia, Bulgaria.
| | - Ilza Pajeva
- Department of QSAR and Molecular Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113, Sofia, Bulgaria.
| |
Collapse
|
27
|
Zhou P, Yang X, Yang Z, Huang W, Kou J, Li F. Akebia Saponin D Regulates the Metabolome and Intestinal Microbiota in High Fat Diet-Induced Hyperlipidemic Rats. Molecules 2019; 24:molecules24071268. [PMID: 30939835 PMCID: PMC6479315 DOI: 10.3390/molecules24071268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperlipidemia is a major component of metabolic syndrome, and regarded as one of the main risk factors causing metabolic diseases. We have developed a therapeutic drug, akebia saponin D (ASD), and determined its anti-hyperlipidemia activity and the potential mechanism(s) of action by analyzing the metabolome and intestinal microbiota. Male Sprague-Dawley rats were fed a high fat diet to induce hyperlipidemia, and then given ASD orally for 8 weeks. Lipid levels in serum were determined biochemically. Metabolites in serum, urine and feces were analyzed by UPLC-Q/TOF-MS, and the structure of the intestinal microbiota was determined by 16S rRNA sequencing. The ASD treatment significantly decreased the levels of TC, TG and LDL-c and increased the serum level of HDL-c. Metabolomics analysis indicated that the ASD treatment mainly impacted seven differential metabolites in the serum, sixteen differential metabolites in the urine and four differential metabolites in feces compared to the model group. The ASD treatment significantly changed eight bacteria at the genus level compared to the model group. In conclusion, ASD treatment can significantly alleviate HFD-induced hyperlipidemia and the hypolipidemic effect of ASD treatment is certainly associated with a systematic change in the metabolism, as well as dynamic changes in the structure of the intestinal microbiota.
Collapse
Affiliation(s)
- Peipei Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaolin Yang
- Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing 210009, China.
| | - Zhonglin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Wenzhe Huang
- Nanjing Research Institute, Jiangsu Kangyuan Pharmaceutical Co., LTD, Nanjing 211100, China.
| | - Junping Kou
- Jiangsu Key laboratory of TCM Evaluation and Translational Research, Department of Complex TCM Prescriptions, China Pharmaceutical University, Nanjing 211198, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
28
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Jia N, Lin X, Ma S, Ge S, Mu S, Yang C, Shi S, Gao L, Xu J, Bo T, Zhao J. Amelioration of hepatic steatosis is associated with modulation of gut microbiota and suppression of hepatic miR-34a in Gynostemma pentaphylla (Thunb.) Makino treated mice. Nutr Metab (Lond) 2018; 15:86. [PMID: 30555521 PMCID: PMC6282400 DOI: 10.1186/s12986-018-0323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a chronic and progressive liver disease with an increased risk of morbidity and mortality. However, so far no specific pharmacotherapy has been approved. Gynostemma pentaphylla (Thunb.) Makino (GP) is a traditional Chinese medicine that is widely used against hyperlipemia as well as hyperglycemia. This study aims to evaluate the effect of GP on NAFLD and explore the possible mechanism. Methods High-fat-diet induced NAFLD mice model were orally administrated with GP at dose of 11.7 g/kg or equivalent volume of distilled water once a day for 16 weeks. Body weight, food intake and energy expenditure were assessed to evaluate the general condition of mice. The triglycerides, total cholesterol content in the liver and liver histopathology, serum lipid profile and serum insulin level, fecal microbiome, hepatic microRNAs and relative target genes were analyzed. Results Mice in GP treatment group displayed improved hepatic triglycerides content with lower lipid droplet in hepatocyte and NAFLD activity score. Besides, GP treatment altered the composition of gut microbiota and the relative abundance of some of the key components that are implicated in metabolic disorders, especially phylum Firmicutes (Eubacterium, Blautia, Clostridium and Lactobacillus). Several hepatic microRNAs were downregulated by GP treatment such as miR-130a, miR-34a, miR-29a, miR-199a, among which the expression miR-34a was altered by more than four-fold compared to that of HFD group (3:14). The correlation analysis showed that miR-34a was strongly related to the change of gut microbiota especially phylum Firmicutes (R = 0.796). Additionally, the target genes of miR-34a (HNF4α, PPARα and PPARα) were restored by GP both in mRNA and protein levels. Conclusion Our results suggested that GP modulated the gut microbiota and suppressed hepatic miR-34a, which was associated with the amelioration of hepatic steatosis.
Collapse
Affiliation(s)
- Ning Jia
- 1Shandong University of Traditional Chinese Medicine, Jinan, 250355 China.,2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Xiaoyan Lin
- 6Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Shizhan Ma
- 2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Shujian Ge
- 7Department of Scientific Research, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Shumin Mu
- 8Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014 China
| | - Chongbo Yang
- 2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Shulong Shi
- 1Shandong University of Traditional Chinese Medicine, Jinan, 250355 China.,2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China.,5Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Jin Xu
- 2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| | - Tao Bo
- 5Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, 324, Jing 5 Rd, Jinan, 250021 China
| | - Jiajun Zhao
- 1Shandong University of Traditional Chinese Medicine, Jinan, 250355 China.,2Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021 China.,Shandong Provincial Key Laboratory of Institute of Endocrinology and Lipid Metabolism, Jinan, 250021 China.,Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, 250021 China
| |
Collapse
|
30
|
Gong LL, Yang S, Liu H, Zhang W, Ren LL, Han FF, Lv YL, Wan ZR, Liu LH. Anti-nociceptive and anti-inflammatory potentials of Akebia saponin D. Eur J Pharmacol 2018; 845:85-90. [PMID: 30508505 DOI: 10.1016/j.ejphar.2018.11.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
Abstract
Akebia saponin D, which is originates from Dipsacus asper Wall, has been used as a tonic, an analgesic and anti-inflammatory agent for the therapy of low back pain, rheumatic arthritis, traumatic hematoma, habitual abortion and bone fractures in traditional Chinese medicine. However, the anti-nociceptive and anti-inflammatory activity and mechanism of Akebia saponin D has been rarely reported. The aim of this study was to investigate the anti-nociceptive and anti-inflammatory activity of Akebia saponin D and to assess its possible mechanism. The anti-nociceptive effect was measured by formalin test, hot plate, and acetic acid-induced writhing in mice while the anti-inflammatory effect was measured by carrageenan induced paw edema test, xylene-induced ear swelling and acetic acid-induced vascular permeability in mice and rats. Furthermore, anti-inflammatory effect was also measured in vitro using LPS-induced RAW 264.7 cells. Our results demonstrated that Akebia saponin D dose-dependently decreased the licking time in the formalin test, delayed the reaction time of mice to the hot plate, and inhibited acetic acid-induced writhing. Treatment of Akebia saponin D attenuated the carrageenan induced paw edema in rats, inhibited the mouse ear swelling, and decreased Evans blue concentration in acetic acid induced vascular permeability test, revealing its strong anti-inflammatory effect. Akebia saponin D significantly decreased NO production and iNOS expression. Our results indicate that Akebia saponin D has anti-nociceptive and anti-inflammatory effects. It will provide experimental evidences for the use of Akebia saponin D and can be used to develop a therapeutic drug against pain and inflammation related diseases.
Collapse
Affiliation(s)
- Li-Li Gong
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Song Yang
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - He Liu
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Lu-Lu Ren
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Zi-Rui Wan
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Hikita H, Sakane S, Takehara T. Mechanisms of the autophagosome-lysosome fusion step and its relation to non-alcoholic fatty liver disease. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
32
|
Gong LL, Yang S, Zhang W, Han FF, Lv YL, Wan ZR, Liu H, Jia YJ, Xuan LL, Liu LH. Akebia saponin D alleviates hepatic steatosis through BNip3 induced mitophagy. J Pharmacol Sci 2017; 136:189-195. [PMID: 29609842 DOI: 10.1016/j.jphs.2017.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
Akebia Saponin D (ASD) is the most abundant constituent of the rhizome of Dipsacus asper Wall. The prior studies have shown that ASD alleviates hepatic steatosis targeted at the modulation of autophagy and exerts hepatoprotective effects through mitochondria. However, it is still unclear which signal transduction pathway that ASD increase autophagy and protect the mitochondria. The purpose of this paper was to explore the mechanisms through which ASD alleviates hepatic steatosis. ASD significantly reduced lipid accumulation in BRL cells. Furthermore, ASD significantly increased the mitophagy acting as increase the colocalization between mitochondria and punctate EGFP-LC3. ASD treatment increased the expression of BNip3, phospho-AMPK, prevented oleic acid (OA) induced LC3-II and phospho-mTOR expression. These effects were similar to the effects cotreatment with rapamycin. ASD treatment could not attenuate the expression of BNip3 blocked by chloroquine (CQ) or siRNA-mediated knockdown of BNip3. These results suggest that Akebia saponin D alleviates hepatic steatosis targeted at BNip3 mediated mitophagy. Activation of BNip3 via ASD may offer a new strategy for treating NAFLD.
Collapse
Affiliation(s)
- Li-Li Gong
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Song Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fei-Fei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Li Lv
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zi-Rui Wan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - He Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang-Jie Jia
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ling-Ling Xuan
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li-Hong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|